Combinatorics, moments and quasi-invariance for Poisson random integrals

NICOLAS PRIVAULT

1. Moment identities

Consider a Poisson point process with σ -finite diffuse measure $\sigma(dx)$ on a σ compact metric space X. The underlying probability space Ω is a space of configurations whose elements $\omega \in \Omega$ are identified with the Radon point measures $\omega = \sum_{x \in \omega} \epsilon_x$, where ϵ_x denotes the Dirac measure at $x \in X$ and the Poisson proba-

bility measure with intensity σ on Ω is denoted by π_{σ} . The isometry formula for the multiple compensated Poisson stochastic integrals $I_k(f_k)$ of symmetric squareintegrable functions $f_k: X^k \to \mathbb{R}$ in k variables shows that

(1)
$$\mathbb{E}\left[I_k(f^{\otimes k})F\right] = \mathbb{E}\left[\int_{X^k} f(x_1)\cdots f(x_k)D_{x_1}\cdots D_{x_k}F\sigma(dx_1)\cdots\sigma(dx_k)\right]$$

where $F: \Omega \to \mathbb{R}$ is a finite sum of multiple stochastic integrals and D_x is the finite difference operator defined by

$$D_x F := \varepsilon_x^+ F(\omega) - F(\omega) = F(\omega \cup \{x\}) - F(\omega), \qquad \omega \in \Omega, \quad x \in X.$$

Next, using the relation

$$\mathcal{E}(g) := \exp\left(-\int_0^\infty g(x)dx\right) \prod_{x \in \omega} (1+g(x)) = \sum_{n=0}^\infty \frac{1}{n!} I_n(g^{\otimes n})$$

with $g = e^f - 1$ we find, by the Faà di Bruno formula applied to the exponential function,

$$\sum_{n=0}^{\infty} \frac{1}{n!} \mathbb{E}\left[F\left(\int_{X} fd\omega\right)^{n}\right] = \mathbb{E}[Fe^{\int_{X} fd\omega}] = e^{\int_{X} (e^{f}-1)d\sigma} \mathbb{E}\left[F\mathcal{E}(e^{f}-1)\right]$$
$$= \sum_{k=0}^{\infty} \frac{1}{k!} \int_{X^{k}} (e^{f(x_{1})}-1) \cdots (e^{f(x_{n})}-1) \mathbb{E}\left[\varepsilon_{\mathfrak{r}_{k}}^{+}F\right] \sigma(dx_{1}) \cdots \sigma(dx_{k})$$
$$= \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{P_{1},\dots,P_{k} \subset \{1,\dots,n\}} \int_{X^{k}} f^{|P_{1}|}(x_{1}) \cdots f^{|P_{k}|}(x_{k}) \mathbb{E}\left[\varepsilon_{\mathfrak{r}_{k}}^{+}F\right] \sigma(dx_{1}) \cdots \sigma(dx_{k}).$$

with $\varepsilon_{\mathfrak{x}_k}^+ = \varepsilon_{x_1}^+ \cdots \varepsilon_{x_k}^+$, for $F: \Omega \to \mathbb{R}$ a bounded random variable, where the sum runs over all partitions $\{P_1, \ldots, P_k\}$ of $\{1, \ldots, n\}$, hence the relation

$$\mathbb{E}\left[F\left(\int_X fd\omega\right)^n\right] = \sum_{P_1,\dots,P_k \subset \{1,\dots,n\}} \int_{X^k} f^{|P_1|}(x_1)\cdots f^{|P_k|}(x_k)\mathbb{E}\left[\varepsilon_{\mathfrak{x}_k}^+F\right]\sigma(dx_1)\cdots\sigma(dx_k),$$

which extends as the moment identity

$$\mathbb{E}\left[\left(\int_{X} u_{x}(\omega)\omega(dx)\right)^{n}\right] = \sum_{P_{1},\dots,P_{k}} \mathbb{E}\left[\int_{X^{k}} \varepsilon_{\mathfrak{x}_{k}}^{+}(u_{x_{1}}^{|P_{1}|}\cdots u_{x_{k}}^{|P_{k}|})\sigma(dx_{1})\cdots\sigma(dx_{k})\right],$$
(2)

for $u(x, \omega)$ a sufficiently integrable random process on $X \times \Omega$, cf. Prop. 3.1 of [6]. From the relation

$$\varepsilon_{\mathfrak{g}_k}^+(u_{x_1}\cdots u_{x_k})=\varepsilon_{x_1,\dots,x_k}^+(u_{x_1}\cdots u_{x_k})=\sum_{\Theta\subset\{1,\dots,k\}}D_\Theta(u_{x_1}\cdots u_{x_k}),$$

where $D_{\Theta} = D_{x_1} \cdots D_{x_l}$ when $\Theta = \{1, \dots, l\}$, we deduce that

$$\mathbb{E}\left[\left(\int_{X} u_{x}(\omega)\omega(dx)\right)^{n}\right] = \sum_{P_{1},\dots,P_{k}} \mathbb{E}\left[\int_{X^{k}} \varepsilon_{\mathfrak{x}_{k}}^{+}(u_{x_{1}}^{|P_{1}|}\cdots u_{x_{k}}^{|P_{k}|})\sigma(dx_{1})\cdots\sigma(dx_{k})\right]$$
$$= \sum_{P_{1},\dots,P_{k}} \sum_{\Theta \subset \{1,\dots,k\}} \mathbb{E}\left[\int_{X^{k}} D_{\Theta}(u_{x_{1}}^{|P_{1}|}\cdots u_{x_{k}}^{|P_{k}|})\sigma(dx_{1})\cdots\sigma(dx_{k})\right].$$

Under the cyclic condition $D_{x_1}u_{x_2}\cdots D_{x_k}u_{x_1}=0$, we get $D_{x_1}\cdots D_{x_k}(u_{x_1}\cdots u_{x_k})=0$, $x_1,\ldots,x_k\in X$, $\omega\in\Omega$, cf. [3], [5], and provided in addition that the moment $\int_X u^k(s)\sigma(ds)$ is deterministic, $k\geq 1$, a decreasing induction shows that

$$\mathbb{E}\left[\left(\int_X u_x(\omega)\omega(dx)\right)^n\right] = \sum_{P_1,\dots,P_k} \int_{X^k} u_{x_1}^{|P_1|} \cdots u_{x_k}^{|P_k|} \sigma(dx_1) \cdots \sigma(dx_k), \qquad n \ge 1,$$

i.e. $\int_X u_x(\omega)\omega(dx)$ has a compound Poisson distribution. See [7] for related consequence for the mixing of random transformations of Poisson measures. Such results have been recently extended to point processes with Papangelou intensities in [1].

2. Quasi-invariance

Formula (1) can be extended to indicator functions $\mathbf{1}_{A(\omega)}$ over random sets $A(\omega)$, as

(3)
$$\mathbb{E}\left[FI_{n}(\mathbf{1}_{A}^{\otimes n})\right] = \mathbb{E}\left[FC_{n}(\omega(A), \sigma(A))\right]$$
$$= \mathbb{E}\left[\int_{X^{n}} D_{x_{1}} \cdots D_{x_{n}}\left(F\prod_{p=1}^{n} \mathbf{1}_{A}(x_{p})\right)\sigma(dx_{1}) \cdots \sigma(dx_{n})\right],$$

via a pathwise extension of the multiple stochastic integral, by application of Stirling inversion to (2) and to the Charlier polynomial $C_n(x, \lambda)$ of order $n \in \mathbb{N}$ with parameter $\lambda > 0$, cf. [4]. As a consequence, if $\tau : \Omega \times X \to Y$ satisfies the cyclic condition $D_{t_1}\tau(\omega, t_2) \cdots D_{t_k}\tau(\omega, t_1) = 0, t_1, \ldots, t_k \in X, \omega \in \Omega$, for all $k \geq 1$, and $g: Y \to \mathbb{R}$ is sufficiently integrable we get

$$\mathbb{E}\left[e^{-\int_X g(\tau(\omega,x))\sigma(dx)}\prod_{x\in\omega}(1+g(\tau(\omega,x)))\right]=1.$$

Denoting by $\tau_* : \Omega \to \Omega$ the mapping defined by shifting configuration points according to τ , this implies the non-adapted Girsanov identity

$$\mathbb{E}\left[F(\tau_*(\omega))e^{-\int_X \phi(\omega,x)\sigma(dx)} \prod_{x \in \omega} (1 + \phi(\omega,x))\right] = \mathbb{E}[F], \qquad F \in L^1(\Omega),$$

provided $\tau(\omega, \cdot): X \to X$ is invertible on X for all $\omega \in \Omega$, and the density

$$\phi(\omega, x) := \frac{d\tau_*^{-1}(\omega, \cdot)\sigma}{d\sigma}(x) - 1, \qquad x \in X,$$

exists for all $\omega \in \Omega$. If $\tau_* : \Omega \to \Omega$ is invertible then the random transformation $\tau_*^{-1} : \Omega \to \Omega$ is absolutely continuous with respect to π_{σ} , with density

(4)
$$\frac{d\tau_*^{-1}\pi_{\sigma}}{d\pi_{\sigma}} = e^{-\int_X \phi(\omega,x)\sigma(dx)} \prod_{x \in \omega} (1+\phi(\omega,x)).$$

3. Examples and stopping sets

Examples can be constructed when $A(\omega)$ is a stopping set, i.e. a random set such that $\{A \subset U\} \in \mathcal{F}_K$ for all $U \subset K$, where \mathcal{F}_K denotes the σ -algebra generated by points inside K, cf. [8] and Def. 2.27 in [2]. In this case (3) shows that $\mathbb{E}[I_n(\mathbf{1}_A^{\otimes n})] = 0$. Examples of transformations $\tau(\omega, x)$ can be defined by leaving $A(\omega)$ invariant and by shifting $x \mapsto \tau(\omega, x)$ depending only on those points of ω that belong to $A(\omega)$. Specific examples include A the smallest ball containing the n points closest to the origin when $X = \mathbb{R}^d$, or $A = [0, T_n]$ when $X = \mathbb{R}_+$ and T_n is the *n*th Poisson jump time, and A the complement of the open convex hull of the points of ω that belong to the unit ball.

References

- L. Decreusefond and I. Flint. Moment formulae for general point processes. Preprint arXiv:1211.4811, 2012.
- [2] I. Molchanov. Theory of random sets. Probability and its Applications (New York). Springer-Verlag London Ltd., London, 2005.
- [3] N. Privault. Moment identities for Poisson-Skorohod integrals and application to measure invariance. C. R. Math. Acad. Sci. Paris, 347:1071–1074, 2009.
- [4] N. Privault. Girsanov identities for Poisson measures under quasi-nilpotent transformations. Ann. Probab., 40(3):1009–1040, 2012.
- [5] N. Privault. Invariance of Poisson measures under random transformations. Ann. Inst. H. Poincaré Probab. Statist., 48(4):947–972, 2012.
- [6] N. Privault. Moments of Poisson stochastic integrals with random integrands. Probability and Mathematical Statistics, 32(2):227–239, 2012.
- [7] N. Privault. Mixing of Poisson random measures under interacting transformations. arXiv:1301.0672, 2013.
- [8] S. Zuyev. Stopping sets: gamma-type results and hitting properties. Adv. in Appl. Probab., 31(2):355–366, 1999.