Combinatorics, moments and quasi-invariance for Poisson random integrals

Nicolas Privault

1. Moment identities

Consider a Poisson point process with σ-finite diffuse measure $\sigma(d x)$ on a σ compact metric space X. The underlying probability space Ω is a space of configurations whose elements $\omega \in \Omega$ are identified with the Radon point measures $\omega=\sum_{x \in \omega} \epsilon_{x}$, where ϵ_{x} denotes the Dirac measure at $x \in X$ and the Poisson probability measure with intensity σ on Ω is denoted by π_{σ}. The isometry formula for the multiple compensated Poisson stochastic integrals $I_{k}\left(f_{k}\right)$ of symmetric squareintegrable functions $f_{k}: X^{k} \rightarrow \mathbb{R}$ in k variables shows that

$$
\begin{equation*}
\mathbb{E}\left[I_{k}\left(f^{\otimes k}\right) F\right]=\mathbb{E}\left[\int_{X^{k}} f\left(x_{1}\right) \cdots f\left(x_{k}\right) D_{x_{1}} \cdots D_{x_{k}} F \sigma\left(d x_{1}\right) \cdots \sigma\left(d x_{k}\right)\right] \tag{1}
\end{equation*}
$$

where $F: \Omega \rightarrow \mathbb{R}$ is a finite sum of multiple stochastic integrals and D_{x} is the finite difference operator defined by

$$
D_{x} F:=\varepsilon_{x}^{+} F(\omega)-F(\omega)=F(\omega \cup\{x\})-F(\omega), \quad \omega \in \Omega, \quad x \in X
$$

Next, using the relation

$$
\mathcal{E}(g):=\exp \left(-\int_{0}^{\infty} g(x) d x\right) \prod_{x \in \omega}(1+g(x))=\sum_{n=0}^{\infty} \frac{1}{n!} I_{n}\left(g^{\otimes n}\right)
$$

with $g=e^{f}-1$ we find, by the Faà di Bruno formula applied to the exponential function,

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{1}{n!} \mathbb{E}\left[F\left(\int_{X} f d \omega\right)^{n}\right]=\mathbb{E}\left[F e^{\int_{X} f d \omega}\right]=e^{\int_{X}\left(e^{f}-1\right) d \sigma} \mathbb{E}\left[F \mathcal{E}\left(e^{f}-1\right)\right] \\
& \quad=\sum_{k=0}^{\infty} \frac{1}{k!} \int_{X^{k}}\left(e^{f\left(x_{1}\right)}-1\right) \cdots\left(e^{f\left(x_{n}\right)}-1\right) \mathbb{E}\left[\varepsilon_{\mathfrak{x}_{k}}^{+} F\right] \sigma\left(d x_{1}\right) \cdots \sigma\left(d x_{k}\right) \\
& \quad=\sum_{n=0}^{\infty} \frac{1}{n!} \sum_{P_{1}, \ldots, P_{k} \subset\{1, \ldots, n\}} \int_{X^{k}} f^{\left|P_{1}\right|}\left(x_{1}\right) \cdots f^{\left|P_{k}\right|}\left(x_{k}\right) \mathbb{E}\left[\varepsilon_{\mathfrak{x}_{k}}^{+} F\right] \sigma\left(d x_{1}\right) \cdots \sigma\left(d x_{k}\right),
\end{aligned}
$$

with $\varepsilon_{\mathfrak{x}_{k}}^{+}=\varepsilon_{x_{1}}^{+} \cdots \varepsilon_{x_{k}}^{+}$, for $F: \Omega \rightarrow \mathbb{R}$ a bounded random variable, where the sum runs over all partitions $\left\{P_{1}, \ldots, P_{k}\right\}$ of $\{1, \ldots, n\}$, hence the relation
$\mathbb{E}\left[F\left(\int_{X} f d \omega\right)^{n}\right]=\sum_{P_{1}, \ldots, P_{k} \subset\{1, \ldots, n\}} \int_{X^{k}} f^{\left|P_{1}\right|}\left(x_{1}\right) \cdots f^{\left|P_{k}\right|}\left(x_{k}\right) \mathbb{E}\left[\varepsilon_{\mathfrak{x}_{k}}^{+} F\right] \sigma\left(d x_{1}\right) \cdots \sigma\left(d x_{k}\right)$,
which extends as the moment identity
$\mathbb{E}\left[\left(\int_{X} u_{x}(\omega) \omega(d x)\right)^{n}\right]=\sum_{P_{1}, \ldots, P_{k}} \mathbb{E}\left[\int_{X^{k}} \varepsilon_{\mathfrak{x}_{k}}^{+}\left(u_{x_{1}}^{\left|P_{1}\right|} \cdots u_{x_{k}}^{\left|P_{k}\right|}\right) \sigma\left(d x_{1}\right) \cdots \sigma\left(d x_{k}\right)\right]$, (2)
for $u(x, \omega)$ a sufficiently integrable random process on $X \times \Omega$, cf. Prop. 3.1 of [6]. From the relation

$$
\varepsilon_{\mathfrak{x}_{k}}^{+}\left(u_{x_{1}} \cdots u_{x_{k}}\right)=\varepsilon_{x_{1}, \ldots, x_{k}}^{+}\left(u_{x_{1}} \cdots u_{x_{k}}\right)=\sum_{\Theta \subset\{1, \ldots, k\}} D_{\Theta}\left(u_{x_{1}} \cdots u_{x_{k}}\right),
$$

where $D_{\Theta}=D_{x_{1}} \cdots D_{x_{l}}$ when $\Theta=\{1, \ldots, l\}$, we deduce that

$$
\begin{gathered}
\mathbb{E}\left[\left(\int_{X} u_{x}(\omega) \omega(d x)\right)^{n}\right]=\sum_{P_{1}, \ldots, P_{k}} \mathbb{E}\left[\int_{X^{k}} \varepsilon_{\mathfrak{x}_{k}}^{+}\left(u_{x_{1}}^{\left|P_{1}\right|} \cdots u_{x_{k}}^{\left|P_{k}\right|}\right) \sigma\left(d x_{1}\right) \cdots \sigma\left(d x_{k}\right)\right] \\
=\sum_{P_{1}, \ldots, P_{k}} \sum_{\Theta \subset\{1, \ldots, k\}} \mathbb{E}\left[\int_{X^{k}} D_{\Theta}\left(u_{x_{1}}^{\left|P_{1}\right|} \cdots u_{x_{k}}^{\left|P_{k}\right|}\right) \sigma\left(d x_{1}\right) \cdots \sigma\left(d x_{k}\right)\right]
\end{gathered}
$$

Under the cyclic condition $D_{x_{1}} u_{x_{2}} \cdots D_{x_{k}} u_{x_{1}}=0$, we get $D_{x_{1}} \cdots D_{x_{k}}\left(u_{x_{1}} \cdots u_{x_{k}}\right)=$ $0, x_{1}, \ldots, x_{k} \in X, \omega \in \Omega$, cf. [3], [5], and provided in addition that the moment $\int_{X} u^{k}(s) \sigma(d s)$ is deterministic, $k \geq 1$, a decreasing induction shows that

$$
\mathbb{E}\left[\left(\int_{X} u_{x}(\omega) \omega(d x)\right)^{n}\right]=\sum_{P_{1}, \ldots, P_{k}} \int_{X^{k}} u_{x_{1}}^{\left|P_{1}\right|} \cdots u_{x_{k}}^{\left|P_{k}\right|} \sigma\left(d x_{1}\right) \cdots \sigma\left(d x_{k}\right), \quad n \geq 1
$$

i.e. $\int_{X} u_{x}(\omega) \omega(d x)$ has a compound Poisson distribution. See [7] for related consequence for the mixing of random transformations of Poisson measures. Such results have been recently extended to point processes with Papangelou intensities in [1].

2. Quasi-Invariance

Formula (1) can be extended to indicator functions $\mathbf{1}_{A(\omega)}$ over random sets $A(\omega)$, as

$$
\begin{align*}
\mathbb{E} & {\left[F I_{n}\left(\mathbf{1}_{A}^{\otimes n}\right)\right]=\mathbb{E}\left[F C_{n}(\omega(A), \sigma(A))\right] } \tag{3}\\
& =\mathbb{E}\left[\int_{X^{n}} D_{x_{1}} \cdots D_{x_{n}}\left(F \prod_{p=1}^{n} \mathbf{1}_{A}\left(x_{p}\right)\right) \sigma\left(d x_{1}\right) \cdots \sigma\left(d x_{n}\right)\right],
\end{align*}
$$

via a pathwise extension of the multiple stochastic integral, by application of Stirling inversion to (2) and to the Charlier polynomial $C_{n}(x, \lambda)$ of order $n \in \mathbb{N}$ with parameter $\lambda>0$, cf. [4]. As a consequence, if $\tau: \Omega \times X \rightarrow Y$ satisfies the cyclic condition $D_{t_{1}} \tau\left(\omega, t_{2}\right) \cdots D_{t_{k}} \tau\left(\omega, t_{1}\right)=0, t_{1}, \ldots, t_{k} \in X, \omega \in \Omega$, for all $k \geq 1$, and $g: Y \rightarrow \mathbb{R}$ is sufficiently integrable we get

$$
\mathbb{E}\left[e^{-\int_{X} g(\tau(\omega, x)) \sigma(d x)} \prod_{x \in \omega}(1+g(\tau(\omega, x)))\right]=1
$$

Denoting by $\tau_{*}: \Omega \rightarrow \Omega$ the mapping defined by shifting configuration points according to τ, this implies the non-adapted Girsanov identity

$$
\mathbb{E}\left[F\left(\tau_{*}(\omega)\right) e^{-\int_{X} \phi(\omega, x) \sigma(d x)} \prod_{x \in \omega}(1+\phi(\omega, x))\right]=\mathbb{E}[F], \quad F \in L^{1}(\Omega)
$$

provided $\tau(\omega, \cdot): X \rightarrow X$ is invertible on X for all $\omega \in \Omega$, and the density

$$
\phi(\omega, x):=\frac{d \tau_{*}^{-1}(\omega, \cdot) \sigma}{d \sigma}(x)-1, \quad x \in X,
$$

exists for all $\omega \in \Omega$. If $\tau_{*}: \Omega \rightarrow \Omega$ is invertible then the random transformation $\tau_{*}^{-1}: \Omega \rightarrow \Omega$ is absolutely continuous with respect to π_{σ}, with density

$$
\begin{equation*}
\frac{d \tau_{*}^{-1} \pi_{\sigma}}{d \pi_{\sigma}}=e^{-\int_{X} \phi(\omega, x) \sigma(d x)} \prod_{x \in \omega}(1+\phi(\omega, x)) . \tag{4}
\end{equation*}
$$

3. Examples and stopping sets

Examples can be constructed when $A(\omega)$ is a stopping set, i.e. a random set such that $\{A \subset U\} \in \mathcal{F}_{K}$ for all $U \subset K$, where \mathcal{F}_{K} denotes the σ-algebra generated by points inside K, cf. [8] and Def. 2.27 in [2]. In this case (3) shows that $\mathbb{E}\left[I_{n}\left(\mathbf{1}_{A}^{\otimes n}\right)\right]=0$. Examples of transformations $\tau(\omega, x)$ can be defined by leaving $A(\omega)$ invariant and by shifting $x \mapsto \tau(\omega, x)$ depending only on those points of ω that belong to $A(\omega)$. Specific examples include A the smallest ball containing the n points closest to the origin when $X=\mathbb{R}^{d}$, or $A=\left[0, T_{n}\right]$ when $X=\mathbb{R}_{+}$and T_{n} is the nth Poisson jump time, and A the complement of the open convex hull of the points of ω that belong to the unit ball.

References

[1] L. Decreusefond and I. Flint. Moment formulae for general point processes. Preprint arXiv:1211.4811, 2012.
[2] I. Molchanov. Theory of random sets. Probability and its Applications (New York). SpringerVerlag London Ltd., London, 2005.
[3] N. Privault. Moment identities for Poisson-Skorohod integrals and application to measure invariance. C. R. Math. Acad. Sci. Paris, 347:1071-1074, 2009.
[4] N. Privault. Girsanov identities for Poisson measures under quasi-nilpotent transformations. Ann. Probab., 40(3):1009-1040, 2012.
[5] N. Privault. Invariance of Poisson measures under random transformations. Ann. Inst. H. Poincaré Probab. Statist., 48(4):947-972, 2012.
[6] N. Privault. Moments of Poisson stochastic integrals with random integrands. Probability and Mathematical Statistics, 32(2):227-239, 2012.
[7] N. Privault. Mixing of Poisson random measures under interacting transformations. arXiv:1301.0672, 2013.
[8] S. Zuyev. Stopping sets: gamma-type results and hitting properties. Adv. in Appl. Probab., 31(2):355-366, 1999.

