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This talk presents tree-based probabilistic algorithms for the existence of solu-
tions of nonlinear fractional PDEs with their numerical implementation.

1. Parabolic case

Given η : (0,∞) → [0,∞) a Bernstein function, consider the (nonlocal) semi-
linear PDE

∂u

∂t
(t, x)− η(−∆/2)u(t, x) + f

(
t, x, u(t, x),

∂u

∂x1
(t, x), . . . ,

∂u

∂xm
(t, x)

)
= 0,

u(T, x) = ϕ(x), x = (x1, . . . , xd) ∈ Rd,

where f(t, x, y, z1, . . . , zm) is a polynomial nonlinearity given by

f(t, x, y, z1, . . . , zm) =
∑

l=(l0,...,lm)∈Lm

cl(t, x)y
l0zl11 · · · zlmm ,

and Lm ⊂ Nm+1 is finite. By choosing η(λ) := (2λ)α/2, this setting includes the
case of the standard fractional Laplacian ∆α. We assume that the coefficients
cl(t, x) are uniformly bounded and that the terminal condition ϕ is Lipschitz and
bounded on Rd.

Theorem 1.1. ([8]) Suppose that
∫∞
λ0

1√
λη(λ)

dλ < ∞ for some λ0 > 0. Then,

there exists a small enough T > 0 such that the PDE

u(t, x) =

∫
Rd

φ(T − t, y − x)ϕ(y)dy

+
∑

l=(l0,...,lm)∈Lm

∫ T

t

∫
Rd

φ(s− t, y − x)cl(s, y)u
l0(s, y)

m∏
j=1

(
∂u

∂yj
(s, y)

)lj

dyds,

admits an integral solution on [0, T ].

To prove the above result, for each i = 0, 1, . . . , d we construct a sufficiently in-
tegrable functionalHϕ(Tt,x,i) of a random tree Tt,x,i driven by a subordinated Lévy
process (Zt)t∈R+

:= (BSt
)t∈R+

, where (Bt)t∈R+
is a multidimensional Brownian

motion, such that we have the representations

u(t, x) := E
[
Hϕ(Tt,x,0)

]
, (t, x) ∈ [0, T ]× Rd,

and
∂u

∂xi
(t, x) := E

[
Hϕ(Tt,x,i)

]
, (t, x) ∈ [0, T ]× Rd, i = 1, . . . , d.

Dealing with gradient terms requires to perform an integration by parts, which is
made possible using the Gaussian density of Bt in the subordination Zt := BSt

, as
done in [7] in the case of stable processes with η(λ) := (2λ)α/2. Related local and
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global-in-time existence results have been obtained by deterministic arguments
under more technical conditions in e.g. [5], [6]

Corollary 1.2. ([8]) Taking η(λ) := (2λ)α/2 with α ∈ (1, 2), under the above
assumptions there exists a small enough T > 0 such that the PDE

∂u

∂t
(t, x)− (−∆)α/2u(t, x) + f

(
t, x, u(t, x),

∂u

∂x1
(t, x), . . . ,

∂u

∂xm
(t, x)

)
= 0,

u(T, x) = ϕ(x), x = (x1, . . . , xd) ∈ Rd,

with α-fractional Laplacian admits an integral solution on [0, T ].

2. Elliptic case

We consider the class of semilinear elliptic PDEs on the open ball B(0, R) of
radius R > 0 in Rd, of the form

(1)

{
∆αu(x) + f

(
x, u(x),∇u(x)

)
= 0, x ∈ B(0, R),

u(x) = ϕ(x), x ∈ Rd\B(0, R),

where ϕ : Rd → R is a bounded Lipschitz function on Rd \ B(0, R), ∆α denotes
the fractional Laplacian with parameter α ∈ (0, 2), and f(x, y, z) is a polynomial
nonlinearity term. Next, we provide existence results and probabilistic represen-
tations for the solution of (1) under boundedness and smoothness conditions on
polynomial coefficients. Our approach allows us to take into account gradient non-
linearities, which has not been done by deterministic finite difference methods, see
e.g. [4].

Theorem 2.1. ([9], [10]) Let d ≥ 2 and α ∈ (1, 2), assume that the boundary
condition ϕ belongs to Hα(Rd) and is bounded on Rd \ B(0, R). Under the above
assumptions, the semilinear elliptic PDE{

∆αu(x) + f
(
x, u(x),∇u(x)

)
= 0, x ∈ B(0, R),

u(x) = ϕ(x), x ∈ Rd\B(0, R),

admits a viscosity solution in C1(B(0, R))∩C0(B(0, R)) provided that R and |cl|∞,
l ∈ Lm, are sufficiently small.

Existence of solutions are obtained through a probabilistic representation of the
form u(x) := E[Hϕ(Tx,0)], x ∈ B(0, R), where Hϕ(Tx,0) is a functional of a random
branching tree Tx,0. For each i = 0, 1, . . . , d we construct a sufficiently integrable
functional Hϕ(Tx,i) of a random tree Tx,i such that we have the representation

(2) u(x) = E
[
Hϕ(Tx,0)

]
, x ∈ Rd.

The main difficulty in the proof is to show the uniform integrability required on
H(Tx,i) for E[H(Tx,i)] to be continuous in x ∈ Rd is satisfied for α ∈ (1, 2), as
required in the framework of viscosity solutions. For this, we extend arguments of



MFO-RIMS Tandem Workshop: Nonlocality in Analysis, Probability and
Statistics

[1] from the standard Laplacian ∆ and Brownian motion to the fractional Lapla-
cian ∆α := −(−∆)α/2 and its associated stable process, and use bounds on the
fractional Green and Poisson kernel and stable process hitting times from [3], [2].

As an example, consider the elliptic PDE with nonlinear gradient term

(3) ∆su(x) + Ψk,α(x) + (2k + α)2|x|4(1− |x|2)2k+α + ((1− |x|2)x · ∇u(x))2 = 0,

x ∈ B(0, 1), with u(x) = 0 for x ∈ Rd \ B(0, R), and explicit solution u(x) =

Φk,α(x) = (1−|x|2)k+α/2
+ , x ∈ Rd. Numerical estimates of (2) by the Monte Carlo

method are presented in the figure below.
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(a) Numerical solution of (3) with k = 0.
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(b) Numerical solution of (3) with k = 2.

Figure 1. Numerical solutions with d = 10 and α = 1.75.
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