Probabilistic representations for the solutions of nonlinear PDEs with
fractional Laplacians
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This talk presents tree-based probabilistic algorithms for the existence of solu-
tions of nonlinear fractional PDEs with their numerical implementation.

1. PARABOLIC CASE

Given 7 : (0,00) — [0,00) a Bernstein function, consider the (nonlocal) semi-
linear PDE
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w(T,z) = ¢(x), = (21,...,74) € RY,
where f(t,x,y,21,...,2m) is a polynomial nonlinearity given by
f(taxayazlv"'azm) = Z cl(tvx)ylozlll "'Zf'ﬁna
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and £,, C N™+1 is finite. By choosing n(\) := (2X)®/2, this setting includes the
case of the standard fractional Laplacian A,. We assume that the coefficients
¢i(t, z) are uniformly bounded and that the terminal condition ¢ is Lipschitz and
bounded on R%.

Theorem 1.1. ([8]) Suppose that f;j ﬁ;()\) d\ < oo for some Ao > 0. Then,

there exists a small enough T' > 0 such that the PDE

uta) = [ o7~y =)oty

m lj
+ Z //}Rd (s—t,y—z)e(s,y)u l“syg( sy) dyds,
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admits an mtegml solution on [0,T].

To prove the above result, for each i = 0,1, ..., d we construct a sufficiently in-
tegrable functional H4(7;, 5,:) of a random tree 7y , ; driven by a subordinated Lévy
process (Zi)ier, = (Bs,)icr,, where (By)icr, is a multidimensional Brownian
motion, such that we have the representations

u(t,z) ==E[He(Teno0)], (t,2) €[0,T] x RY,

and

ou
5‘:@-
Dealing with gradient terms requires to perform an integration by parts, which is
made possible using the Gaussian density of B, in the subordination Z; := Bg,, as
done in [7] in the case of stable processes with n()) := (21)®/2. Related local and

(t.x) =E[Hy(Trwi)], (tz)€[0,T]xRY i=1,....d
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global-in-time existence results have been obtained by deterministic arguments
under more technical conditions in e.g. [5], [6]

Corollary 1.2. ([8]) Taking n()\) = (2A\)*/? with a € (1,2), under the above
assumptions there exists a small enough T > 0 such that the PDE

ou ou ou
_— — (— Q/Z e _— =
G t.0) = (80 2ut0) + 1 (100, (0 (1)) =

WT,2) = §lx), = (a1,...,a4) € R,

with a-fractional Laplacian admits an integral solution on [0,T].

2. ELLIPTIC CASE

We consider the class of semilinear elliptic PDEs on the open ball B(0, R) of
radius R > 0 in R?, of the form

{Aau(x) + f(a:,u(x), Vu(x)) =0, xz € B(0,R),

1) )
u(z) = ¢(x), x € RA\B(0, R),

where ¢ : R? — R is a bounded Lipschitz function on R¢\ B(0, R), A, denotes
the fractional Laplacian with parameter o € (0,2), and f(z,y, 2) is a polynomial
nonlinearity term. Next, we provide existence results and probabilistic represen-
tations for the solution of (1) under boundedness and smoothness conditions on
polynomial coefficients. Our approach allows us to take into account gradient non-
linearities, which has not been done by deterministic finite difference methods, see

e.g. [4].

Theorem 2.1. ([9], [10]) Let d > 2 and o € (1,2), assume that the boundary
condition ¢ belongs to H*(R?) and is bounded on R\ B(0, R). Under the above
assumptions, the semilinear elliptic PDE

{Aau(x) + f (=, u(x), Vu(z)) =0, x € B(0,R),
u(z) = ¢(x), r € R\B(0, R),

admits a viscosity solution in C1(B(0, R))NC°(B(0, R)) provided that R and |c;|s,
l € L,,, are sufficiently small.

Existence of solutions are obtained through a probabilistic representation of the
form u(z) := E[Hy(Tz0)], © € B(0, R), where H4(75,0) is a functional of a random
branching tree 7. For each ¢ = 0,1,...,d we construct a sufficiently integrable
functional H4(7;,;) of a random tree T, ; such that we have the representation

(2) u(z) =E[He(To0)] z € R%

The main difficulty in the proof is to show the uniform integrability required on
H(Tz.:) for E[H(T.:)] to be continuous in x € R? is satisfied for a € (1,2), as
required in the framework of viscosity solutions. For this, we extend arguments of



MFO-RIMS Tandem Workshop: Nonlocality in Analysis, Probability and
Statistics

[1] from the standard Laplacian A and Brownian motion to the fractional Lapla-
cian A, := —(—A)*/? and its associated stable process, and use bounds on the
fractional Green and Poisson kernel and stable process hitting times from [3], [2].

As an example, consider the elliptic PDE with nonlinear gradient term
(3) Agu(z) + U o(2) + 2k + )?|z|* (1 — [z2)2 T + (1 — |2*)x - Vu(z))? = 0,
r € B(0,1), with u(z) = 0 for z € R?\ B(0, R), and explicit solution u(x) =

Dy o(z) =(1— |£E|2)i+a/2, x € R, Numerical estimates of (2) by the Monte Carlo
method are presented in the figure below.
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(A) Numerical solution of (3) with £k =0. (B) Numerical solution of (3) with k = 2.

FIGURE 1. Numerical solutions with d = 10 and o = 1.75.
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