Quantum stochastic calculus applied to path spaces over Lie groups

Nicolas Privault
Département de Mathématiques
Université de La Rochelle
Avenue Michel Crépeau
17042 La Rochelle, France
nprivaul@univ-lr.fr

Abstract

Quantum stochastic calculus is applied to the proof of Skorokhod and Weitzenböck type identities for functionals of a Lie group-valued Brownian motion. In contrast to the case of \mathbb{R}^{d}-valued paths, the computations use all three basic quantum stochastic differentials.

Key words: Quantum stochastic calculus, Lie group-valued Brownian motion. Mathematics Subject Classification. 60H07, 81S25, 58J65, 58C35.

1 Introduction

Quantum stochastic calculus [4], [7], and anticipating stochastic calculus [6] have been linked in [5], where the Skorokhod isometry is formulated and proved using the annihilation and creation processes. On the other hand, a Skorokhod type isometry has been constructed in [3] for functionals on the path space over Lie groups. This isometry yields in particular a Weitzenböck type identity in infinite-dimensional geometry. We refer to [1], [2] for the case of path spaces over Riemannian manifolds.

We will prove such a Skorokhod type isometry formula on the path space over a Lie group, using the conservation operator which is usually linked to stochastic calculus for jump processes. In this way we will recover the Weitzenböck formula established
in [3]. This provides a link between the non-commutative settings of Lie groups and of quantum stochastic calculus.
This paper is organised as follows. In Sect. 2 we recall how the Skorokhod isometry can be derived from quantum stochastic calculus in the case of \mathbb{R}^{d}-valued Brownian motion. In Sect. 3 the gradient and divergence operators of stochastic analysis on path groups are introduced, and the Skorokhod type isometry of [3] is stated. The proof of this isometry is given in Sect. 4 via quantum stochastic calculus on the path space over a Lie group. Sect. 4 ends with a remark on the links between vanishing of torsion and quantum stochastic calculus.

2 Skorokhod isometry on the path space over \mathbb{R}^{d}

In this section we recall how the Skorokhod isometry is linked to quantum stochastic calculus. Let $(B(t))_{t \in \mathbb{R}_{+}}$denote an \mathbb{R}^{d}-valued Brownian motion on the Wiener space W with Wiener measure μ. Let

$$
\mathcal{S}=\left\{G=g\left(B\left(t_{1}\right), \ldots, B\left(t_{n}\right)\right) \quad: \quad g \in \mathcal{C}_{b}^{\infty}\left(\left(\mathbb{R}^{d}\right)^{n}\right), t_{1}, \ldots, t_{n}>0\right\}
$$

and

$$
\mathcal{U}=\left\{\sum_{i=1}^{n} u_{i} G_{i} \quad: \quad G_{i} \in \mathcal{S}, u_{i} \in L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}^{d}\right), i=1, \ldots, n, n \geq 1\right\}
$$

Let $D: L^{2}(W) \rightarrow L^{2}\left(W \times \mathbb{R}_{+} ; \mathbb{R}^{d}\right)$ be the closed operator given by

$$
D_{t} G=\sum_{i=1}^{n} 1_{\left[0, t_{i}\right]}(t) \nabla_{i} g\left(B\left(t_{1}\right),, \ldots, B\left(t_{n}\right)\right), \quad t \geq 0
$$

for $G=g\left(B\left(t_{1}\right), \ldots, B\left(t_{n}\right)\right) \in \mathcal{S}$, and let δ denote its adjoint. Thus

$$
E[G \delta(u)]=E[\langle D G, u\rangle], \quad G \in \operatorname{Dom}(D), u \in \operatorname{Dom}(\delta),
$$

where $\operatorname{Dom}(D)$ and $\operatorname{Dom}(\delta)$ are the respective domains of D and δ. We let $\langle\cdot, \cdot\rangle$ denote the scalar product in both $L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}^{d}\right)$ and $L^{2}\left(W \times \mathbb{R}_{+} ; \mathbb{R}^{d}\right)$, and let (\cdot, \cdot) denote the scalar product on \mathbb{R}^{d}. Since D is a derivation, we have the divergence relation

$$
\delta(u G)=G \delta(u)-\langle u, D G\rangle, \quad G \in \mathcal{S}, u \in \mathcal{U}
$$

Given $u \in L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}^{d}\right)$, the quantum stochastic differentials $d a^{-}(t)$ and $d a^{+}(t)$ are defined from

$$
\begin{equation*}
a_{u}^{-} G=\int_{0}^{\infty} u(t) d a^{-}(t) G=\langle D G, u\rangle, \quad G \in \operatorname{Dom}(D), \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{v}^{+} G=\int_{0}^{\infty} v(t) d a^{+}(t) G=\delta(v G), \quad G \in \operatorname{Dom}(D) \tag{2.2}
\end{equation*}
$$

They satisfy the Itô table

\cdot	$d t$	$d a_{v}^{-}(t)$	$d a_{v}^{+}(t)$
$d t$	0	0	0
$d a_{u}^{+}(t)$	0	0	0
$d a_{u}^{-}(t)$	0	0	$(u(t), v(t)) d t$

with $d a_{u}^{-}(t)=u(t) d a^{-}(t)$ and $d a_{v}^{+}(t)=v(t) d a^{+}(t)$. Using the Itô table we have

$$
a_{u}^{-} a_{v}^{+}=\int_{0}^{\infty} \int_{0}^{t} d a_{v}^{+}(s) d a_{u}^{-}(t)+\int_{0}^{\infty} \int_{0}^{t} d a_{u}^{-}(s) d a_{v}^{+}(t)+\int_{0}^{\infty} u(t) v(t) d t
$$

and

$$
a_{v}^{+} a_{u}^{-}=\int_{0}^{\infty} \int_{0}^{t} d a_{u}^{-}(s) d a_{v}^{+}(t)+\int_{0}^{\infty} \int_{0}^{t} d a_{v}^{+}(s) d a_{u}^{-}(t),
$$

which implies the canonical commutation relation

$$
\begin{equation*}
a_{u}^{-} a_{v}^{+}=\langle u, v\rangle+a_{v}^{+} a_{u}^{-} . \tag{2.3}
\end{equation*}
$$

This relation and its proof can be abbreviated as

$$
d\left[a_{u}^{-}, a_{v}^{+}\right](t)=\left[d a_{u}^{-}(t), d a_{v}^{+}(t)\right]=(u(t), v(t)) d t,
$$

where $[\cdot, \cdot]$ denotes the commutator of operators. Relation (2.3) is easily translated back to the Skorokhod isometry:

$$
\begin{aligned}
E[\delta(u F) \delta(v G)] & =\left\langle a_{u}^{+} F, a_{v}^{+} G\right\rangle=\left\langle F, a_{u}^{-} a_{v}^{+} G\right\rangle \\
& =\langle u \otimes F, v \otimes G\rangle+\left\langle F, a_{v}^{+} a_{u}^{-} G\right\rangle \\
& =\langle u \otimes F, v \otimes G\rangle+\left\langle a_{v}^{-} F, a_{u}^{-} G\right\rangle \\
& =E[\langle u, v\rangle F G]+E\left[\int_{0}^{\infty} \int_{0}^{\infty}\left(u(t) \otimes D_{s} F, D_{t} G \otimes v(s)\right) d s d t\right],
\end{aligned}
$$

$F, G \in \mathcal{S}, u, v \in L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}^{d}\right)$, which implies

$$
E\left[\delta(h)^{2}\right]=E\left[\|h\|_{L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}^{d}\right)}^{2}\right]+E\left[\int_{0}^{\infty} \int_{0}^{\infty}\left(D_{s} h(t),\left(D_{t} h(s)\right)^{*}\right) d s d t\right], \quad h \in \mathcal{U}
$$

where $\left(D_{t} h(s)\right)^{*}$ denotes the adjoint of $D_{t} h(s)$ in $\mathbb{R}^{d} \otimes \mathbb{R}^{d}$. In this note we carry over this method to the proof of a Skorokhod type isometry on the path space over a Lie group, using the calculus of all the annihilation, creation and gauge (or conservation) process and the Itô table

\cdot	$d t$	$d a_{v}^{-}(t)$	$d a_{v}^{+}(t)$	$q(t) d \Lambda(t)$
$d t$	0	0	0	0
$d a_{u}^{+}(t)$	0	0	0	0
$d a_{u}^{-}(t)$	0	0	$(u(t), v(t)) d t$	$q^{*}(t) u(t) d a^{-}(t)$
$p(t) d \Lambda(t)$	0	0	$p(t) v(t) d a^{+}(t)$	$p(t) q(t) d \Lambda(t)$

where $(q(t))_{t \in \mathbb{R}_{+}}$is a (bounded) measurable operator process on \mathbb{R}^{d} and $q(t) d \Lambda(t)$ is defined from

$$
\int_{0}^{\infty} q(t) d \Lambda(t) F=\delta(q(\cdot) D \cdot F)
$$

for $F \in \operatorname{Dom}(D)$ such that $\left(q(t) D_{t} F\right)_{t \in \mathbb{R}_{+}} \in \operatorname{Dom}(\delta)$.

3 Skorokhod isometry on the path space over a Lie group

Let G be a compact connected d-dimensional Lie group with associated Lie algebra \mathcal{G} identified to \mathbb{R}^{d} and equipped with an Ad-invariant scalar product on $\mathbb{R}^{d} \simeq \mathcal{G}$, also denoted by (\cdot, \cdot). The commutator in \mathcal{G} is denoted by $[\cdot, \cdot]$. Let $\operatorname{ad}(u) v=[u, v]$, $u, v \in \mathcal{G}$, with $\operatorname{Ad} e^{u}=e^{\operatorname{ad} u}, u \in \mathcal{G}$.
The Brownian motion $(\gamma(t))_{t \in \mathbb{R}_{+}}$on \mathbf{G} is constructed from $(B(t))_{t \in \mathbb{R}_{+}}$via the Stratonovich differential equation

$$
\left\{\begin{array}{l}
d \gamma(t)=\gamma(t) \odot d B(t) \\
\gamma(0)=\mathrm{e},
\end{array}\right.
$$

where e is the identity element in G. Let $\mathbb{P}(G)$ denote the space of continuous G valued paths starting at e, with the image measure of the Wiener measure by I : $(B(t))_{t \in \mathbb{R}_{+}} \mapsto(\gamma(t))_{t \in \mathbb{R}_{+}}$. Let

$$
\tilde{\mathcal{S}}=\left\{F=f\left(\gamma\left(t_{1}\right), \ldots, \gamma\left(t_{n}\right)\right) \quad: \quad f \in \mathcal{C}_{b}^{\infty}\left(\mathrm{G}^{n}\right)\right\}
$$

and

$$
\tilde{\mathcal{U}}=\left\{\sum_{i=1}^{n} u_{i} F_{i} \quad: \quad F_{i} \in \tilde{\mathcal{S}}, u_{i} \in L^{2}\left(\mathbb{R}_{+} ; \mathcal{G}\right), i=1, \ldots, n, n \geq 1\right\}
$$

Definition 3.1 For $F=f\left(\gamma\left(t_{1}\right), \ldots, \gamma\left(t_{n}\right)\right) \in \tilde{\mathcal{S}}, f \in \mathcal{C}_{b}^{\infty}\left(\mathrm{G}^{n}\right)$, we let $\tilde{D} F \in L^{2}(W \times$ $\left.\mathbb{R}_{+} ; \mathcal{G}\right)$ be defined as

$$
\langle\tilde{D} F, v\rangle=\frac{d}{d \varepsilon} f\left(\gamma\left(t_{1}\right) e^{\varepsilon \int_{0}^{t_{1}} v(s) d s}, \ldots, \gamma\left(t_{n}\right) e^{\varepsilon \int_{0}^{t_{n}} v(s) d s}\right)_{\mid \varepsilon=0}, \quad v \in L^{2}\left(\mathbb{R}_{+}, \mathcal{G}\right)
$$

In other terms, \tilde{D} acts as a natural gradient on the cylindrical functionals on $\mathbb{P}(\mathrm{G})$ with

$$
\tilde{D}_{t} F=\sum_{i=1}^{n} \partial_{i} f\left(\gamma\left(t_{1}\right), \ldots, \gamma\left(t_{n}\right)\right) 1_{\left[0, t_{i}\right]}(t), \quad t \geq 0
$$

Let $\tilde{\delta}$ denote the adjoint of \tilde{D}, that satisfies

$$
\begin{equation*}
E[F \tilde{\delta}(v)]=E[\langle\tilde{D} F, v\rangle], \quad F \in \tilde{\mathcal{S}}, v \in L^{2}\left(\mathbb{R}_{+} ; \mathcal{G}\right) \tag{3.1}
\end{equation*}
$$

(that $\tilde{\delta}$ exists and satisfies (3.1) can be seen as a consequence of Lemma 4.1 below). Given $v \in L^{2}\left(\mathbb{R}_{+} ; \mathcal{G}\right)$ we define

$$
q_{v}(t)=\int_{0}^{t} \operatorname{ad}(v(s)) d s, \quad t>0 .
$$

Definition 3.2 ([3]) The covariant derivative of $u \in L^{2}\left(\mathbb{R}_{+} ; \mathcal{G}\right)$ in the direction $v \in$ $L^{2}\left(\mathbb{R}_{+} ; \mathcal{G}\right)$ is the element $\nabla_{v} u$ of $L^{2}\left(\mathbb{R}_{+} ; \mathcal{G}\right)$ defined as follows:

$$
\nabla_{v} u(t)=q_{v}(t) u(t)=\int_{0}^{t} \operatorname{ad}(v(s)) u(t) d s, \quad t>0
$$

In the following we will distinguish between ∇_{v} which acts on $L^{2}\left(\mathbb{R}_{+} ; \mathcal{G}\right)$ and $q_{v}(t)$ which acts on \mathcal{G} and is needed in the quantum stochastic integrals to follow.

The operators $q_{v}(t)$ and ∇_{v} are antisymmetric on \mathcal{G} and $L^{2}\left(\mathbb{R}_{+} ; \mathcal{G}\right)$ respectively, because (\cdot, \cdot) is Ad-invariant.

The Skorokhod isometry on the path space over G holds for the covariant derivative ∇. The definition of ∇_{v} extends to $\tilde{\mathcal{U}}$, as

$$
\nabla_{v}(u F)(t)=u(t)\langle\tilde{D} F, v\rangle+F q_{v}(t) u(t), \quad t>0, \quad F \in \tilde{\mathcal{S}}, u \in L^{2}\left(\mathbb{R}_{+} ; \mathcal{G}\right)
$$

Let $\nabla_{s}(u F)(t) \in \mathcal{G} \otimes \mathcal{G}$ be defined as

$$
\left\langle e_{i} \otimes e_{j}, \nabla_{s}(u F)(t)\right\rangle=\left\langle u(t), e_{j}\right\rangle\left\langle e_{i}, \tilde{D}_{s} F\right\rangle+1_{[0, t]}(s) F\left\langle e_{j}, \operatorname{ad}\left(e_{i}\right) u(t)\right\rangle, \quad i, j=1, \ldots, d .
$$

In this context the following isometry has been proved in [3].
Theorem 3.3 ([3]) We have for $h \in \tilde{\mathcal{U}}$:

$$
\begin{equation*}
E\left[\tilde{\delta}(h)^{2}\right]=E\left[\|h\|_{L^{2}\left(\mathbb{R}_{+} ; \mathcal{G}\right)}^{2}\right]+E\left[\int_{0}^{\infty} \int_{0}^{\infty}\left(\nabla_{s} h(t),\left(\nabla_{t} h(s)\right)^{*}\right) d t d s\right] . \tag{3.2}
\end{equation*}
$$

The proof in [3] is clear and self-contained, however its calculations involve a number of coincidences which are apparently not related to each other. In this paper we provide a short proof which offers some explanation for these. Let the analogs of (2.1)-(2.2) be defined as

$$
\tilde{a}_{u}^{-} F=\int_{0}^{\infty} d \tilde{a}_{u}^{-}(t) F=\langle\tilde{D} F, u\rangle, \quad F \in \tilde{\mathcal{S}},
$$

and

$$
\tilde{a}_{u}^{+} F=\int_{0}^{\infty} d \tilde{a}_{u}^{+}(t) F=\tilde{\delta}(u F), \quad F \in \tilde{\mathcal{S}},
$$

$u \in L^{2}\left(\mathbb{R}_{+} ; \mathcal{G}\right)$, i.e. $d \tilde{a}_{u}^{-}(t) F=\left(u(t), \tilde{D}_{t} F\right) d t$.
Our proof relies on
a) the relation

$$
\begin{equation*}
d \tilde{a}_{u}^{-}(t)=d a_{u}^{-}(t)+q_{u}(t) d \Lambda(t), \quad t>0, \quad u \in L^{2}\left(\mathbb{R}_{+} ; \mathcal{G}\right), \tag{3.3}
\end{equation*}
$$

see Lemma 4.1 below,
b) the commutation relation between \tilde{a}_{u}^{-}and \tilde{a}_{v}^{+}which is analogous to (2.3) and is proved via quantum stochastic calculus in the following lemma.

Lemma 3.4 We have on $\tilde{\mathcal{S}}$:

$$
\begin{equation*}
\tilde{a}_{u}^{-} \tilde{a}_{v}^{+}-\tilde{a}_{v}^{+} \tilde{a}_{u}^{-}=\langle u, v\rangle+\tilde{a}_{\nabla_{v} u}^{-}+\tilde{a}_{\nabla_{u} v}^{+}, \tag{3.4}
\end{equation*}
$$

$u, v \in L^{2}\left(\mathbb{R}_{+} ; \mathcal{G}\right)$.

Proof. Using the quantum Itô table, Relation (3.3), Lemma 4.2 below and the fact that $q_{v}^{*}(t)=-q_{v}(t)$, we have

$$
\begin{aligned}
& d \tilde{a}_{u}^{-}(t) \cdot d \tilde{a}_{v}^{+}(t)-d \tilde{a}_{v}^{+}(t) \cdot d \tilde{a}_{u}^{-}(t) \\
&=\left(d a_{u}^{-}(t)+q_{u}(t) d \Lambda(t)\right) \cdot\left(d a_{v}^{+}(t)-q_{v}(t) d \Lambda(t)\right) \\
&-\left(d a_{v}^{+}(t)-q_{v}(t) d \Lambda(t)\right) \cdot\left(d a_{u}^{-}(t)+q_{u}(t) d \Lambda(t)\right) \\
&=(u(t), v(t)) d t+q_{v}(t) u(t) d a^{-}(t)-q_{u}(t) q_{v}(t) d \Lambda(t) \\
&+q_{u}(t) v(t) d a^{+}(t)+q_{v}(t) q_{u}(t) d \Lambda(t) \\
&=(u(t), v(t)) d t+\nabla_{v} u(t) d a^{-}(t)+q_{\nabla_{v} u}(t) d \Lambda(t)+\nabla_{u} v(t) d a^{+}(t)-q_{\nabla_{u} v}(t) d \Lambda(t) \\
&=(u(t), v(t)) d t+d \tilde{a}_{\nabla_{v} u}^{-}(t)+d \tilde{a}_{\nabla_{u} v}^{+}(t) .
\end{aligned}
$$

This commutation relation can be interpreted to give a proof of the Skorokhod isometry (3.2):

Proof of Th. 3.3. Applying Lemma 3.4 we have

$$
\begin{aligned}
& E[\tilde{\delta}(u F) \tilde{\delta}(v G)]=\left\langle\tilde{a}_{u}^{+} F, \tilde{a}_{v}^{+} G\right\rangle=\left\langle F, \tilde{a}_{u}^{-} \tilde{a}_{v}^{+} G\right\rangle \\
& =\langle u \otimes F, v \otimes G\rangle+\left\langle\tilde{a}_{v}^{-} F, \tilde{a}_{u}^{-} G\right\rangle+\left\langle F \nabla_{v} u, \tilde{D} G\right\rangle+\left\langle\tilde{D} F, G \nabla_{u} v\right\rangle \\
& =E[\langle u, v\rangle F G]+E\left[\int_{0}^{\infty}\left(F \nabla_{s} u(t)+\tilde{D}_{s} F \otimes u(t), G\left(\nabla_{t} v(s)\right)^{*}+v(s) \otimes \tilde{D}_{t} G\right) d s d t\right] \\
& =E[\langle u, v\rangle F G]+E\left[\int_{0}^{\infty}\left\langle\nabla_{s}(u F)(t),\left(\nabla_{t}(v G)(s)\right)^{*}\right\rangle d s d t\right],
\end{aligned}
$$

$$
F, G \in \tilde{\mathcal{S}}, u, v \in L^{2}\left(\mathbb{R}_{+} ; \mathcal{G}\right)
$$

We mention that a consequence of Th. 3.3 is the following Weitzenböck type identity, cf. [3], which extends the Shigekawa identity [8] to path spaces over Lie groups:

Theorem 3.5 ([3]) We have for $u \in \tilde{\mathcal{U}}$:

$$
\begin{equation*}
E\left[\tilde{\delta}(u)^{2}\right]+E\left[\|d u\|_{L^{2}\left(\mathbb{R}_{+} ; \mathcal{G}\right) \wedge L^{2}\left(\mathbb{R}_{+} ; \mathcal{G}\right)}^{2}\right]=E\left[\|u\|_{L^{2}\left(\mathbb{R}_{+}\right)}^{2}\right]+E\left[\|\nabla u\|_{L^{2}\left(\mathbb{R}_{+} ; \mathcal{G}\right) \otimes L^{2}\left(\mathbb{R}_{+} ; \mathcal{G}\right)}^{2}\right] . \tag{3.5}
\end{equation*}
$$

The next section is devoted to two lemmas that are used to prove (3.3).

4 Quantum stochastic differentials on path space

The following expression for \tilde{D} using quantum stochastic integrals can be viewed as an intertwining formula between \tilde{D}, D and I.

Lemma 4.1 We have for $v \in L^{2}\left(\mathbb{R}_{+} ; \mathcal{G}\right)$:

$$
d \tilde{a}_{v}^{-}(t)=d a_{v}^{-}(t)+q_{v}(t) d \Lambda(t), \quad t>0
$$

Proof. The process $t \mapsto \gamma(t) e^{t} v(s) d s$ satisfies the following stochastic differential equation in the Stratonovich sense:

$$
\begin{aligned}
d\left(\gamma(t) e^{\int_{0}^{t} v(s) d s}\right) & =\gamma(t) e^{\int_{0}^{t} v(s) d s}\left(\odot \operatorname{Ad} e^{-\int_{0}^{t} v(s) d s} d B(t)+v(t) d t\right) \\
& =\gamma(t) e^{\int_{0}^{t} v(s) d s}\left(\odot e^{-q_{v}(t)} d B(t)+v(t) d t\right), \quad t>0
\end{aligned}
$$

Let $I_{1}(u)$ denote the Wiener integral of $u \in L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}^{d}\right)$ with respect to $(B(t))_{t \in \mathbb{R}_{+}}$, and let $G=g\left(I_{1}\left(u_{1}\right), \ldots, I_{1}\left(u_{n}\right)\right) \in \mathcal{S}$, and $F=f\left(\gamma\left(t_{1}\right), \ldots, \gamma\left(t_{n}\right)\right) \in \tilde{\mathcal{S}}$. Since $\exp \left(q_{v}(t)\right): \mathcal{G} \longrightarrow \mathcal{G}$ is isometric, we have from the Girsanov theorem:

$$
E\left[f\left(\gamma\left(t_{1}\right) e^{\int_{0}^{t_{1}} v(s) d s}, \ldots, \gamma\left(t_{n}\right) e^{\int_{0}^{t_{n}} v(s) d s}\right) G\right]=E\left[F e^{I_{1}(v)-\frac{1}{2}\|v\|^{2}} \Theta_{v} G\right]
$$

where

$$
\Theta_{v} G=g\left(\int_{0}^{\infty} u_{1}(s) e^{q_{v}(s)} d B(s)-\left\langle u_{1}, v\right\rangle, \ldots, \int_{0}^{\infty} u_{n}(s) e^{q_{v}(s)} d B(s)-\left\langle u_{n}, v\right\rangle\right)
$$

From the derivation property of D and the divergence relation $\delta(v G)=G \delta(v)-$ $\langle v, D G\rangle$ we have

$$
\begin{aligned}
& \left.\frac{d}{d \varepsilon} \Theta_{\varepsilon v} G\right|_{\varepsilon=0}=\left.\sum_{i=1}^{n} \partial_{i} g\left(I_{1}\left(u_{1}\right), \ldots, I_{1}\left(u_{n}\right)\right) \frac{d}{d \varepsilon} \Theta_{\varepsilon v} I_{1}\left(u_{i}\right)\right|_{\mid \varepsilon=0} \\
& \quad=\sum_{i=1}^{n} \partial_{i} g\left(I_{1}\left(u_{1}\right), \ldots, I_{1}\left(u_{n}\right)\right)\left(-\left\langle v, u_{i}\right\rangle+\int_{0}^{\infty} q_{v}^{*}(s) u_{i}(s) d B(s)\right) \\
& \quad=-\sum_{i=1}^{n} \partial_{i} g\left(I_{1}\left(u_{1}\right), \ldots, I_{1}\left(u_{n}\right)\right)\left(\left\langle v, D I_{1}\left(u_{i}\right)\right\rangle+\delta\left(\nabla_{v} D I_{1}\left(u_{i}\right)\right)\right) \\
& \quad=-\left\langle v, D g\left(I_{1}\left(u_{1}\right), \ldots, I_{1}\left(u_{n}\right)\right)\right\rangle-\sum_{i=1}^{n} \partial_{i} g\left(I_{1}\left(u_{1}\right), \ldots, I_{1}\left(u_{n}\right)\right) \delta\left(\nabla_{v} D I_{1}\left(u_{i}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
= & -\langle v, D G\rangle-\sum_{i=1}^{n} \delta\left(\partial_{i} g\left(I_{1}\left(u_{1}\right), \ldots, I_{1}\left(u_{n}\right)\right) \nabla_{v} D I_{1}\left(u_{i}\right)\right) \\
& -\frac{1}{2} \sum_{i, j=1}^{n} \partial_{j} \partial_{i} g\left(I_{1}\left(u_{1}\right), \ldots, I_{1}\left(u_{n}\right)\right)\left(\left\langle u_{j}, \nabla_{v} u_{i}\right\rangle+\left\langle u_{i}, \nabla_{v} u_{j}\right\rangle\right) \\
= & -\langle v, D G\rangle-\delta\left(\nabla_{v} D G\right)
\end{aligned}
$$

since ∇_{v} is antisymmetric. Hence

$$
\begin{aligned}
E[\langle\tilde{D} F, v\rangle G] & =\frac{d}{d \varepsilon} E\left[f\left(\gamma\left(t_{1}\right) e^{\varepsilon \int_{0}^{t_{1}} h(s) d s}, \ldots, \gamma\left(t_{n}\right) e^{\varepsilon \int_{0}^{t_{n}} h(s) d s}\right) G\right]_{\mid \varepsilon=0} \\
& =\frac{d}{d \varepsilon} E\left[F e^{\varepsilon I_{1}(v)-\frac{1}{2} \varepsilon^{2}\|v\|^{2}} \Theta_{\varepsilon v} G\right]_{\mid \varepsilon=0} \\
& =E\left[F\left(G I_{1}(v)-\langle v, D G\rangle-\delta\left(\nabla_{v} D G\right)\right)\right]
\end{aligned}
$$

Using the identity $\delta(v)=I_{1}(v)$ we have

$$
\begin{aligned}
E[\langle\tilde{D} F, v\rangle G] & =E\left[F\left(G \delta(v)-\langle v, D G\rangle-\delta\left(\nabla_{v} D G\right)\right)\right] \\
& =E\left[F\left(\delta(v G)-\delta\left(\nabla_{v} D G\right)\right)\right] \\
& =E\left[F\left(a_{v}^{+}-\int_{0}^{\infty} q_{v}(t) d \Lambda(t)\right) G\right] \\
& =E\left[G\left(a_{v}^{-}+\int_{0}^{\infty} q_{v}(t) d \Lambda(t)\right) F\right] .
\end{aligned}
$$

It follows from the proof of Lemma 4.1 that \tilde{D} admits an adjoint $\tilde{\delta}$ that satisfies

$$
\tilde{\delta}(u F)=a_{u}^{+} F-\int_{0}^{\infty} q_{u}(t) d \Lambda(t) F, \quad F \in \tilde{\mathcal{S}},
$$

and

$$
E[F \tilde{\delta}(u)]=E[\langle\tilde{D} F, u\rangle], \quad F \in \tilde{\mathcal{S}}, u \in \tilde{\mathcal{U}} .
$$

Letting

$$
\tilde{a}_{u}^{+} F=\int_{0}^{\infty} d \tilde{a}_{u}^{+}(t) F=\tilde{\delta}(u F),
$$

we have

$$
d \tilde{a}_{u}^{+}(t)=d a_{u}^{+}(t)-q_{u}(t) d \Lambda(t)
$$

The following Lemma shows that

$$
\left[\nabla_{v}, \nabla_{u}\right]=\nabla_{\nabla_{v} u}-\nabla_{\nabla_{u} v}
$$

This means that the Lie bracket $\{u, v\}$ associated to the gradient ∇ on $L^{2}\left(\mathbb{R}_{+} ; \mathcal{G}\right)$ via $\left[\nabla_{u}, \nabla_{v}\right]=\nabla_{\{u, v\}}$ satisfies $\{u, v\}=\nabla_{u} v-\nabla_{v} u$, i.e. the connection defined by ∇ on $L^{2}\left(\mathbb{R}_{+} ; \mathcal{G}\right)$ has vanishing torsion.

Lemma 4.2 We have

$$
\left[q_{u}(t), q_{v}(t)\right]=q_{\nabla_{u v}}(t)-q_{\nabla_{v} u}(t), \quad t>0, \quad u, v \in L^{2}\left(\mathbb{R}_{+} ; \mathcal{G}\right)
$$

Proof. The Jacobi identity on \mathcal{G} shows that

$$
\begin{aligned}
{\left[q_{u}(t), q_{v}(t)\right] } & =\left[\int_{0}^{t} \operatorname{ad}(u(s)) d s, \int_{0}^{t} \operatorname{ad}(v(s)) d s\right]=\operatorname{ad}\left(\left[\int_{0}^{t} u(s) d s, \int_{0}^{t} v(s) d s\right]\right) \\
& =\int_{0}^{t} \int_{0}^{s} \operatorname{ad}([u(\tau), v(s)]) d \tau d s-\int_{0}^{t} \int_{0}^{s} \operatorname{ad}([v(\tau), u(s)]) d \tau d s \\
& =\int_{0}^{t} \operatorname{ad}\left(q_{u}(s) v(s)\right) d s-\int_{0}^{t} \operatorname{ad}\left(q_{v}(s) u(s)\right) d s \\
& =q_{\nabla_{u v}}(t)-q_{\nabla_{v} u}(t) .
\end{aligned}
$$

The Lie derivative on $\mathbb{P}(\mathrm{G})$ in the direction $u \in L^{2}\left(\mathbb{R}_{+} ; \mathcal{G}\right)$, introduced in [3], can be written \tilde{a}_{u}^{-}in our context. Finally we show that the vanishing of torsion discovered in [3] can be obtained via quantum stochastic calculus. Precisely, the Lie bracket $\{u, v\}$ associated to \tilde{a}_{v}^{-}via $\left[\tilde{a}_{u}^{-}, \tilde{a}_{v}^{-}\right]=\tilde{a}_{\{u, v\}}^{-}$satisfies $\{u, v\}=\nabla_{u} v-\nabla_{v} u$, i.e. the connection defined by ∇ on $\mathbb{P}(\mathrm{G})$ also has a vanishing torsion.

Proposition 4.3 We have on $\tilde{\mathcal{S}}$:

$$
\tilde{a}_{u}^{-} \tilde{a}_{v}^{-}-\tilde{a}_{v}^{-} \tilde{a}_{u}^{-}=\tilde{a}_{\nabla_{v} u}^{-}-\tilde{a}_{\nabla_{u v}}^{-} .
$$

$u, v \in L^{2}\left(\mathbb{R}_{+} ; \mathcal{G}\right)$.
Proof. Using Lemma 4.2, the quantum Itô table implies

$$
\begin{aligned}
& d \tilde{a}_{u}^{-}(t) \cdot d \tilde{a}_{v}^{-}(t)-d \tilde{a}_{v}^{-}(t) \cdot d \tilde{a}_{u}^{-}(t) \\
&=\left(d a_{u}^{-}(t)+q_{u}(t) d \Lambda(t)\right) \cdot\left(d a_{v}^{-}(t)+q_{v}(t) d \Lambda(t)\right) \\
&-\left(d a_{v}^{-}(t)+q_{v}(t) d \Lambda(t)\right) \cdot\left(d a_{u}^{-}(t)+q_{u}(t) d \Lambda(t)\right) \\
&= q_{u}(t) v(t) d a^{-}(t)+q_{u}(t) q_{v}(t) d \Lambda(t)-q_{v}(t) u(t) d a^{-}(t)-q_{v}(t) q_{u}(t) d \Lambda(t)
\end{aligned}
$$

$$
\begin{aligned}
& =\nabla_{u} v(t) d a^{-}(t)-q_{\nabla_{u v} v}(t) d \Lambda(t)-\left(\nabla_{v} u(t) d a^{-}(t)-q_{\nabla_{v} u}(t) d \Lambda(t)\right) \\
& =d \tilde{a}_{\nabla_{u v}}^{-}(t)-d \tilde{a}_{\nabla_{v} u}^{-}(t),
\end{aligned}
$$

from Lemma 4.1.

References

[1] A.B. Cruzeiro and P. Malliavin. Renormalized differential geometry on path space: Structural equation, curvature. J. Funct. Anal., 139:119-181, 1996.
[2] B. Driver. A Cameron-Martin type quasi-invariance theorem for Brownian motion on a compact Riemannian manifold. J. Funct. Anal., 110(2):272-376, 1992.
[3] S. Fang and J. Franchi. Platitude de la structure riemannienne sur le groupe des chemins et identité d'énergie pour les intégrales stochastiques [Flatness of Riemannian structure over the path group and energy identity for stochastic integrals]. C. R. Acad. Sci. Paris Sér. I Math., 321(10):1371-1376, 1995.
[4] R.L. Hudson and K. R. Parthasarathy. Quantum Ito's formula and stochastic evolutions. Comm. Math. Phys., 93(3):301-323, 1984.
[5] J. M. Lindsay. Quantum and non-causal stochastic calculus. Probab. Theory Related Fields, 97:65-80, 1993.
[6] D. Nualart and E. Pardoux. Stochastic calculus with anticipative integrands. Probab. Theory Related Fields, 78:535-582, 1988.
[7] K.R. Parthasarathy. An Introduction to Quantum Stochastic Calculus. Birkäuser, 1992.
[8] I. Shigekawa. de Rham-Hodge-Kodaira's decomposition on an abstract Wiener space. J. Math. Kyoto Univ., 26(2):191-202, 1986.

