
A deep learning approach to the probabilistic
numerical solution of path-dependent partial

differential equations

Jiang Yu Nguwi∗ Nicolas Privault†

Division of Mathematical Sciences

School of Physical and Mathematical Sciences

Nanyang Technological University

21 Nanyang Link, Singapore 637371

July 9, 2023

Abstract

Recent work on Path-Dependent Partial Differential Equations (PPDEs) has shown
that PPDE solutions can be approximated by a probabilistic representation, imple-
mented in the literature by the estimation of conditional expectations using regression.
However, a limitation of this approach is to require the selection of a basis in a func-
tion space. In this paper, we overcome this limitation by the use of deep learning
methods, and we show that this setting allows for the derivation of error bounds on
the approximation of conditional expectations. Numerical examples based on a two-
person zero-sum game, as well as on Asian and barrier option pricing, are presented.
In comparison with other deep learning approaches, our algorithm appears to be more
accurate, especially in large dimensions.

Keywords: Path-dependent partial differential equations (PPDEs), deep neural networks,

numerical methods for PPDEs.

Mathematics Subject Classification (2010): 65C05, 60H30.

∗nguw0003@e.ntu.edu.sg
†nprivault@ntu.edu.sg

1

mailto:nguw0003@e.ntu.edu.sg
mailto:nprivault@ntu.edu.sg

1 Introduction

Fully nonlinear PPDEs of the form∂tu(t, ω) + b(t, ω) · ∂ωu(t, ω) +
1

2
σσ⊤(t, ω) : ∂ωωu(t, ω) + F

(
·, u, ∂ωu, ∂2

ωωu
)
(t, ω) = 0,

u(T, ω) = g(ω),

(1.1)

have been introduced in [Pen11] and their well-posedness in the sense of viscosity solutions

have been studied in [EKTZ14, ETZ16a, ETZ16b]. Here, ω is in the set of Rd-valued contin-

uous paths, b(t, ω) is Rd-valued, σ(t, ω) takes values in the space of invertible d×d matrices,

and F is a real-valued function on [0, T]×Ω×R×Rd×Rd×d satisfying Assumption 1 below.

The precise meaning of the partial derivatives ∂tu(t, ω), ∂ωu(t, ω) and ∂ωωu(t, ω), which are

connected to the horizontal and vertical derivatives used in the functional Itô formula of

[Dup09], will be discussed in Section 2.

PPDEs of the type (1.1) have recently been the object of increased attention due to their

ability to model control and pricing problems in a non-Markovian setting, see e.g. [TZ15],

[JO19], [VZ19].

Nevertheless, as a large class of PPDE is not analytically solvable, one has to rely on

numerical solutions. In [RT17], a probabilistic scheme based on [FTW11] has been pro-

posed, and was proved to converge to the PPDE viscosity solution. However, its practical

implementation is far from trivial due to the presence of the conditional expectation. The

suggestion of [RT17] to use regression as in [GLW05] relies on a careful basis function choice,

which may not always be possible, see the discussion at the end of Section 2.

On the other hand, neural networks methods for fully nonlinear PDEs have been intro-

duced independently in [HJE18] and [SS18] using backward stochastic differential equations

and the Galerkin method, respectively. See also [BEJ19], [HPW20], [BBC+21], [PWG21],

and [LLP22] for other variants of deep learning-based numerical algorithms, and [EHJK19],

[BBH+20], for the recently developed multilevel Picard method.

A deep neural network algorithm for the numerical solution of PPDEs has been proposed

in [SZ21] by applying Long Short-Term Memory (LSTM) networks in the framework of

the deep Galerkin method for PDEs, see [SS18]. On the other hand, [SVŠS20] propose

to combine the LSTM network and the path signature to solve linear PPDEs. A deep

2

signature algorithm has been recently proposed in [FLZ23] to solve path and state-dependent

forward-backward stochastic differential equations (FBSDEs). Unlike regression methods,

deep learning algorithms do not rely on the choice of a basis, see also [LL21] for the use of

neural networks instead of a regression basis in the pricing of Bermudan options using the

Longstaff-Schwarz algorithm.

In this paper, we propose a deep learning approach to the implementation of the prob-

abilistic scheme of [RT17] for the numerical solution of fully nonlinear PPDEs of the form

(1.1). The main idea of Algorithm 4.1 is based on the L2 minimality property of conditional

expectations, which allows us to transform the conditional expectation in the probabilistic

scheme into an optimization problem (3.4) that can be solved using neural networks.

Additionally, we propose an error bound of the Algorithm 4.1 in Proposition 4.2, which

is used to prove its convergence in Theorem 4.4. In Section 5, we detail the implementation

of our algorithm, followed by numerical examples consisting of a two-person zero-sum game,

and Asian and barrier options pricing. For the zero-sum game, Algorithm 4.1 appears more

accurate than the deep learning algorithm of [SZ21] in dimensions 1 and 10, and more precise

than [RT17] in dimension d = 100, see Table 1. For Asian options, our results also improve

on [SVŠS20] and [SZ21] in dimension d = 10, see Table 2. In dimension d = 100 for barrier

options, our algorithm is also more precise than [RT17], and more precise than [SVŠS20] and

[SZ21] in dimension d = 10, see Table 3. In comparison with [SVŠS20], our method avoids

the computation of Hessian matrices. However, our numerical simulations are restricted in

time to T = 0.1, for which our algorithm performs optimally.

The Python codes designed for our numerical experiments are available at https://

github.com/nguwijy/deep_ppde.

This paper is organized as follows. The necessary preliminaries on PPDEs are stated in

Section 2, and the probabilistic schemes introduced in [FTW11] for PDEs and in [RT17] for

PPDEs are reviewed in Section 3. In Section 4 we present our main deep learning algorithm,

and derive its error bound and convergence respectively in Proposition 4.2 and Theorem 4.4.

Numerical implementation and examples are presented in Section 5.

3

https://github.com/nguwijy/deep_ppde
https://github.com/nguwijy/deep_ppde

2 Viscosity solutions of path-dependent PDEs

Fix T > 0, x0 ∈ Rd, let Ω = Cx0([0, T];Rd) denote the set of Rd-valued continuous paths ω

starting at ω0 = x0 and let Θ := [0, T] × Ω. We let B = (Bt)t∈[0,T] denote the Rd-valued

canonical process on Ω, while F = (Ft)0≤t≤T denotes the canonical filtration generated by

(Bt)t∈[0,T], and P0 is the Wiener measure on (Ω,F). A natural metric d on Θ is defined as

d((t, ω), (t′, ω′)) = |t− t′|+ ∥ωt∧· − ω′
t′∧·∥, (t, ω), (t′, ω′) ∈ Θ,

where ∥ω∥ := sup
t∈[0,T]

∥ωt∥d, ω ∈ Ω, and ∥ · ∥d denotes the Euclidean norm on Rd. Next, we

define P as the set of probability measures P such that the canonical process

Bt = AP
t +MP

t =

∫ t

0

µP
sds+MP

t , t ∈ [0, T],

is a semimartingale, where (AP)t∈[0,T] is a finite variation process and (MP)t∈[0,T] is a contin-

uous martingale, so that the quadratic variation

⟨MP⟩t =
∫ t

0

aPsds, t ∈ [0, T],

taking values in the space Sd of d × d symmetric matrices is absolutely continuous with

respect to the Lebesgue measure on [0, T], and

sup
t∈[0,T]

∥µP
t ∥d ≤ L,

1

2
sup

t∈[0,T]

Tr
(
aPt
)
≤ L, P-a.s.,

where L > 0 is fixed throughout the paper. We also denote by v1 · v2 the dot product of

v1, v2 ∈ Rd, let Id be the identity matrix in Sd, let A : B = Tr(AB), and let 1d = (1, . . . , 1)

represent the all-ones vector in Rd. We refer to Theorem 2.4 in [ETZ16a] for the following

definition which makes sense of the partial derivatives on Θ ∂ωu(t, ω), ∂ωωu(t, ω), in the

PPDE (1.1), which are connected to the path derivatives used in functional Itô formulas, see

[Dup09], or Proposition 6 in [Pri97].

Definition 2.1 We say that u ∈ C1,2(Θ) if (t, ω) 7→ u(t, ω) ∈ R is continuous on (Θ, d)

and there exists continuous processes (t, ω) 7→ ∂tu ∈ R, (t, ω) 7→ ∂ωu(t, ω) ∈ Rd, (t, ω) 7→
∂ωωu(t, ω) ∈ Sd, continuous on (Θ, d), and such that

du(t, ω) = ∂tu(t, ω)dt+
1

2
∂ωωu(t, ω) : d⟨B⟩t + ∂ωu(t, ω) · dBt, P-a.s., for all P ∈ P .

4

As in e.g. [RT17] and [FTW11], we assume that the coefficients of (1.1) satisfy the following

conditions throughout the paper.

Assumption 1 i) σ(t, ω) is invertible in Sd for all (t, ω) ∈ Θ, and b(t, ω), σ(t, ω) satisfy

sup
(t,ω)̸=(t′,ω′)

∥b(t, ω)− b(t′, ω′)∥d
|t− t′|1/2 + ∥ωt∧· − ω′

t∧·∥
+ sup

(t,ω)̸=(t′,ω′)

∥σ(t, ω)− σ(t′, ω′)∥d×d

|t− t′|1/2 + ∥ωt∧· − ω′
t∧·∥

< ∞,

where ∥·∥d×d denotes the Frobenius norm on Sd.

ii) σ−1(t, ω) is bounded in Sd, uniformly in (t, ω) ∈ Θ.

iii) ω 7→ g(ω) is bounded and Lipschitz on Ω,

iv) F (t, ω, u, z, γ) is continuous in (t, ω, u, z, γ) ∈ Θ× R× Rd × Sd.

v) F (t, ω, u, z, γ) is Lipschitz with respect to (ω, u, z, γ) ∈ Ω × R × Rd × Sd uniformly in

t ∈ [0, T], and sup
(t,ω)∈Θ

|F (t, ω, 0, 0, 0)| < ∞.

vi) F (t, ω, u, z, γ) is elliptic, i.e. γ 7→ F (t, ω, u, z, γ) is non-decreasing in γ ∈ Sd for the

positive semidefinite order ≤psd.

vii) F (t, ω, u, z, γ) satisfies
∂F

∂γ
(t, ω, u, z, γ) ≤psd (σσ⊤)(tω) for a.e. (t, ω, u, z, γ) ∈ Θ×R×

Rd × Sd.

viii)
∂F

∂z
(t, ω, u, z, γ) ∈ Image

(
∂F

∂γ
(t, ω, u, z, γ)

)
for all (t, ω, u, z, γ) ∈ Θ×R×Rd×Sd, and

ess sup(t,ω,u,z,γ)

∣∣∣∣∣
(
∂F

∂z

)⊤(
∂F

∂γ

)−1
∂F

∂z
(t, ω, u, z, γ)

∣∣∣∣∣ < ∞.

In general, F may not be smooth enough to ensure the existence of the classical solution for

(1.1), hence we rely on the weaker notion of viscosity solution. For this, we will use the shift

operations

(ω ⊗t ω
′)s := ωs1[0,t](s) + (ω′

s−t − x0 + ωt)1(t,T](s), ω, ω′ ∈ Ω,

and let, for u : Θ → R,

ut,ω(s, ω′) := u(t+ s, ω ⊗t ω
′), ω, ω′ ∈ Ω.

5

Next, for u in the set BUC(Θ) of all bounded and uniformly continuous functions u : Θ → R
on (Θ, d), letting

E [·] := sup
P∈P

EP[·] and E [·] := inf
P∈P

EP[·],

we define the sets of test functions

Au(t, ω) :=
{
φ ∈ C1,2(Θ) : (φ− ut,ω)0 = 0 = sup

τ∈THδ

E
[
(φ− ut,ω)τ

] }
and

Au(t, ω) :=
{
φ ∈ C1,2(Θ) : (φ− ut,ω)0 = 0 = inf

τ∈THδ

E
[
(φ− ut,ω)τ

] }
,

(t, ω) ∈ Θ, where Hδ(ω
′) := δ ∧ inf{s ≥ 0 : |ω′

s| ≥ δ}, and THδ
is the set of all F-stopping

times taking values in [0, Hδ]. The following definition makes sense of the viscosity solution

of the PPDE (1.1).

Definition 2.2 A function u ∈ BUC(Θ) is a viscosity subsolution (resp. supersolution) of

the PPDE (1.1) if for any (t, ω) ∈ Θ and for all φ ∈ Au(t, ω), (resp. φ ∈ Au(t, ω)), we

have

∂tφ(t, ω) + b(t, ω) · ∂ωφ(t, ω) +
1

2
σσ⊤(t, ω) : ∂ωωφ(t, ω) + F

(
· , φ, ∂ωφ, ∂2

ωωφ
)
(t, ω) ≥ 0,

resp. ≤ 0.

In addition, we say that u ∈ BUC(Θ) is a viscosity solution of the PPDE (1.1) if it is both

a viscosity subsolution and a viscosity supersolution of (1.1).

3 Probabilistic numerical solution

In this section, we consider the probabilistic scheme introduced by [FTW11] for PDEs and

later generalized to PPDEs in [RT17]. Given N ≥ 1 and h := T/N , consider the random

variable

X
(t,ω)
h :=

(
x0

x0 + b(t, ω)h+ σ(t, ω)Bh

)
, (3.1)

where Bh ∼ N(0, hId) is a d-dimensional Gaussian vector. For any vectorized matrix y =

(x0, x1, . . . , xi)
V ∈ R(i+1)d with 0 ≤ i ≤ N , we consider the linear interpolation y ∈ Ω of y

defined as

ys =

s− kh

h
xk+1 +

(
1− s− kh

h

)
xk, s ∈ [kh, (k + 1)h), k = 0, 1, . . . , i− 1,

xi, s ∈ [ih, T].

(3.2)

6

For ϕ : Θ → R a given function, we let Dhϕ(t, ω) = (ϕ(t, ω), ∂ωϕ(t, ω), ∂ωωϕ(t, ω)) denote

the path partial derivatives of ϕ(t, ω) with respect to ω as in Definition 2.1, rewritten by

integration by parts as

Dhϕ(t, ω) := E
[
ϕ
(
t+ h, ω ⊗t X

(t,ω)
h

)
Hh(t, ω)

∣∣∣Ft

]
,

see [FTW11], [RT17], where Hh =
(
Hh

0 , H
h
1 , H

h
2

)
are the weights defined by

Hh
0 := 1, Hh

1 := (σ⊤)−1Bh

h
, Hh

2 := (σ⊤)−1BhB
⊤
h − hId
h2

σ−1.

As in Equations (2.5) of [FTW11] and (4.11) of [RT17], we let the operator Tt,ω be defined

as

Tt,ω
[
uh(t+ h, ·)

]
:= E

[
uh
(
t+ h, ω ⊗t X

(t,ω)
h

) ∣∣∣Ft

]
+ hF

(
· ,Dhu

h
t+h

)
(t, ω), (3.3)

which is used to construct the probabilistic Euler discretization uh of u defined inductively

as in (2.4) of [FTW11] and § 3 of [RT17], i.e. as the linear interpolation uh(t, ω) of the

sequence uh(Nh, ω) = g(ω),

uh(ih, ω) = Tt,ω
[
uh((i+ 1)h, ·)

]
, i = 0, 1, . . . , N − 1.

(3.4)

The convergence of uh to u as h tends to zero is ensured by the following result, see Theo-

rem 3.9 and Proposition 4.9 in [RT17].

Theorem 3.1 Under Assumption 1, assume further that the PPDE (1.1) satisfies the com-

parison principle for viscosity subsolutions and supersolutions, i.e. if v and w are respectively

viscosity subsolution and supersolution of PPDE (1.1) and v(T, ·) ≤ w(T, ·), then v ≤ w

on Θ. Then, the PPDE (1.1) admits a unique viscosity solution u given by the limit

u(t, ω) = lim
h→0

uh(t, ω), (3.5)

locally uniformly in (t, ω) ∈ Θ.

We refer to Theorem 4.2 of [RTZ17] for sufficient conditions on PPDE coefficients for the

comparison principle of viscosity solutions to be satisfied, see also Section 5.1. Convergence

rates of O(h1/10) and O(h) have been derived for (3.5) respectively in [FTW11] for PDEs of

Hamilton-Jacobi-Bellman type and in [ZZ14] for PPDEs under smoothness conditions, while

the convergence rate of PPDE solutions remains unknown without smoothness conditions.

7

4 Deep learning approximation

In [RT17], the numerical estimation of the conditional expectation in (3.3) has been imple-

mented using regression as in [GLW05], which requires to choose a basis for the functional

space to be projected on. For example, assuming that F (t, ω, u, z, γ) takes the form

F (t, ω, u, z, γ) = F̃

(
t, ωt,

∫ t

0

ωsds, u, z, γ

)
and that g in (1.1) takes the form

g(ω) = g̃

(
ωT ,

∫ T

0

ωsds

)
,

it can be reasonably guessed that the actual solution u will be of the form

u(t, ω) = ũ

(
t, ωt,

∫ t

0

ωsds

)
,

which motivates the choice of basis(
1, ωt,

∫ t

0

ωsds, ω
2
t ,

(∫ t

0

ωsds

)2

, ωt

∫ t

0

ωsds

)
,

that uses second order polynomials. However, when g is not expressed in such form, e.g.

when

g(ω) = g̃

(
ωT , sup

s∈[0,T]

ωs

)
,

it is less clear how the actual solution u will look like, making it difficult to pick a suitable

basis for the projection. Here, we overcome this difficulty by an alternative deep learning

approach that does not rely on a specific form for the actual solution u, and has been

previously applied with success to various high-dimensional problems, see e.g. [HJE18],

[HPW20], [BBC+21].

Given ρ : R → R an activation function such as ρReLU(x) := max(0, x), ρtanh(x) :=

tanh(x), or ρId(x) := x, we define the set of layer functions Lρ
d1,d2

by

Lρ
d1,d2

:=
{
L : Rd1 → Rd2 : L(x) = ρ(Wx+ b), x ∈ Rd1 , W ∈ Rd2×d1 , b ∈ Rd2

}
,

where d1 ≥ 1 is the input dimension, d2 ≥ 1 is the output dimension, and the activation

function ρ is applied component-wise to Wx+ b. Then, we denote by

NNρ,l,m
d0,d1

:=
{
Ll ◦ · · · ◦ L0 : Rd0 → Rd1 : L0 ∈ Lρ

d0,m
, Ll ∈ LρId

m,d1
, Li ∈ Lρ

m,m, 1 ≤ i < l
}

8

the set of feed-forward neural networks with one output layer, l ≥ 1 hidden layers each

containing m ≥ 1 neurons, and the activation functions of the output and hidden layers

being respectively the identity function ρId and ρ. Any Ll ◦ · · · ◦ L0 ∈ NNρ,l,m
d0,d1

is fully

determined by the sequence

θ :=
(
W0, b0,W1, b1, . . . ,Wl−1, bl−1,Wl, bl

)
of ((d0 + 1)m+ (l − 1)(m+ 1)m+ (m+ 1)d1) parameters, such that

Li(x) = ρ(Wix+ bi), i = 0, 1, . . . , l.

Building on (3.1)-(3.2), we let Xπ denote the discretization

Xπ
0 = x0, Xπ

i+1 =

(
Xπ

i

X
(ih,Xπ

i)

h (1)− x0 +Xπ
i (i)

)
, i = 0, 1, . . . , N − 1, (4.1)

where Xπ
i (k) ∈ Rd is the k-th entry of the zero-based array Xπ

i ∈ R(i+1)d for 0 ≤ k ≤ i ≤ N .

The same notation is used for X
(ih,Xπ

i)

h . Next, we introduce our deep learning scheme for the

approximation of (3.4). In order not to overload the notation, we use the same notation θ

for the parameters of the three neural networks used in the algorithm.

Algorithm 4.1 i) Fix (d,N, l, (mi)0≤i<N), the activation function ρ, initialize V̂N : R(N+1)d →
R by V̂N(x) := g(x), x ∈ R(N+1)d.

ii) For i = N − 1, . . . , 0, given V̂i+1 : R(i+2)d → R,

a) Initialize the neural networks

(Yi(· ; θ),Zi(· ; θ), γi(· ; θ)) ∈ NNρ,l,mi

(i+1)d,1 × NNρ,l,mi

(i+1)d,d × NNρ,l,mi

(i+1)d,d(d+1)/2,

b) Compute the mean square error function

Ei(θ) := E
[∣∣V̂i+1

(
Xπ

i+1

)
Hh

0 − Yi

(
Xπ

i ; θ
)∣∣2 + ∥∥V̂i+1

(
Xπ

i+1

)
Hh

1 −Zi

(
Xπ

i ; θ
)∥∥2

d

+
∥∥V̂i+1

(
Xπ

i+1

)
Hh

2 − Sym
(
γi
(
Xπ

i ; θ
))∥∥2

d×d

]
, (4.2)

where for any sequence (a1, . . . , ad(d+1)/2) ∈ Rd(d+1)/2 we let

Sym
(
(a1, . . . , ad(d+1)/2)

⊤) :=

2ad(d−1)/2+1 ad(d+1)/2−1 . . . a2 a1

ad(d+1)/2−1
. a3

...
.

...

a2
. ad(d−1)/2

a1 a3 . . . ad(d−1)/2 2ad(d+1)/2

 ,

9

c) Assuming the existence of minθ Ei(θ), we choose

θ∗i ∈ argmin
θ

Ei(θ).

d) Update
(
Ŷi(·), Ẑi(·), γ̂i(·)

)
= (Yi(· ; θ∗i),Zi(· ; θ∗i), γi(· ; θ∗i)) and V̂i : R(i+1)d → R by

V̂i(x) := Ŷi(x) + hF
(
ih, x, Ŷi(x), Ẑi(x), Sym (γ̂i(x))

)
. (4.3)

We note that minimizing the error function Ei(θ) is equivalent to minimizing the quantity

εl,m,θ
i := E

[∣∣Ei

[
V̂i+1

(
Xπ

i+1

)
Hh

0

]
− Yi (X

π
i ; θ)

∣∣2 + ∥∥Ei

[
V̂i+1

(
Xπ

i+1

)
Hh

1

]
−Zi (X

π
i ; θ)

∥∥2
d

+
∥∥Ei

[
V̂i+1

(
Xπ

i+1

)
Hh

2

]
− Sym (γi (X

π
i ; θ))

∥∥2
d×d

]
, (4.4)

from the relationship

Ei(θ) = E
[∣∣V̂i+1

(
Xπ

i+1

)
Hh

0 − Ei

[
V̂i+1

(
Xπ

i+1

)
Hh

0

]
+ Ei

[
V̂i+1

(
Xπ

i+1

)
Hh

0

]
− Yi

(
Xπ

i ; θ
)∣∣2

+
∥∥V̂i+1

(
Xπ

i+1

)
Hh

1 − Ei

[
V̂i+1

(
Xπ

i+1

)
Hh

1

]
+ Ei

[
V̂i+1

(
Xπ

i+1

)
Hh

1

]
−Zi

(
Xπ

i ; θ
)∥∥2

d

+
∥∥V̂i+1

(
Xπ

i+1

)
Hh

2 − Ei

[
V̂i+1

(
Xπ

i+1

)
Hh

2

]
+ Ei

[
V̂i+1

(
Xπ

i+1

)
Hh

2

]
− Sym

(
γi
(
Xπ

i ; θ
))∥∥2

d×d

]
= E

[∣∣V̂i+1

(
Xπ

i+1

)
Hh

0 − Ei

[
V̂i+1

(
Xπ

i+1

)
Hh

0

]∣∣2 + ∥∥V̂i+1

(
Xπ

i+1

)
Hh

1 − Ei

[
V̂i+1

(
Xπ

i+1

)
Hh

1

]∥∥2
d

+
∥∥V̂i+1

(
Xπ

i+1

)
Hh

2 − Ei

[
V̂i+1

(
Xπ

i+1

)
Hh

2

]∥∥2
d×d

]
+ εl,m,θ

i ,

where in the second equality, we have used the fact that for any square-integrable Fi-

measurable random variable Y ,

E[(Ei[X]− Y)(X − Ei[X])] = E[(Ei[X]− Y)Ei[X − Ei[X]]] = 0.

The next result provides an error bound of the Algorithm 4.1, where K is the Lipschitz

constant in Assumption 1-(v) and K̃ is the bounding constant in Assumption 1-(ii)

Proposition 4.2 Using (3.4) and the notation of Algorithm 4.1, and assuming Assumptions

1-(ii) and 1-(v), we have

max
i=0,...,N−1

E
[∣∣V̂i (X

π
i)− uh

(
ih,Xπ

ih

)∣∣2] ≤ M
LN − 1

L− 1
εl,m,

where we let L := 32(1 +K2h2 +K2K̃2hd+K2K̃4d(d+ 1)), M := 32(1 +K2h2), and

εl,m :=
N−1∑
i=0

ε
l,m,θ∗i
i . (4.5)

10

The proof of Proposition 4.2, see Appendix A, uses only the Lipschitz continuity of F and the

boundedness of σ−1 in Assumption 1 , while the rest of the conditions in Assumption 1 are

required in Theorem 3.1 as in [FTW11] and [RT17]. Next, we recall the following universal

approximation theorem.

Theorem 4.3 (Theorem 1 in [Hor91]). Fix l ≥ 1, if the activation function ρ is unbounded

and nonconstant, then for any finite measure µ the set
∞⋃

m=1

NNρ,l,m
d0,1

is dense in Lq(µ) for all

q ≥ 1.

The next corollary shows that the neural network approximation can be made arbitrarily

close to the PPDE solution u
(
0, (x0)s∈[0,T]

)
.

Theorem 4.4 Under the assumptions of Theorems 3.1 and 4.3, assume additionally that the

activation function ρ is Lipschitz. Then, for any ε > 0 there exists (mi)0≤i<N and (θ∗i)0≤i<N

such that (V̂i)0≤i≤N constructed from (mi)0≤i<N and (θ∗i)0≤i<N in (4.3) satisfies∣∣u(0, (x0)s∈[0,T])− V̂0(x0)
∣∣ < ε.

Proof. Let ε > 0. By Theorem 3.1, we can find h > 0 small enough such that∣∣u (0, (x0)s∈[0,T]

)
− uh

(
0, (x0)s∈[0,T]

)∣∣ < ε

2
.

First, we note that by Proposition 4.2, the proof is complete by the triangle inequality if we

can choose (mi)0≤i<N and (θ∗i)0≤i<N such that εl,m defined by (4.4) and (4.5) satisfies

εl,m =
N−1∑
i=0

E
[∣∣Ei

[
V̂i+1

(
Xπ

i+1

)
Hh

0

]
− Yi (X

π
i ; θ

∗
i)
∣∣2 + ∥∥Ei

[
V̂i+1

(
Xπ

i+1

)
Hh

1

]
−Zi (X

π
i ; θ

∗
i)
∥∥2
d

+
∥∥Ei

[
V̂i+1

(
Xπ

i+1

)
Hh

2

]
− Sym (γi (X

π
i ; θ

∗
i))
∥∥2
d×d

]
<

L− 1

2M(LN − 1)
ε, (4.6)

Next, we note that (4.6) holds if we show that

E
[∥∥Ei

[
V̂i+1

(
Xπ

i+1

)
Hh

2

]
− Sym

(
γi
(
Xπ

i ; θ
∗
i

))∥∥2
d×d

]
<

L− 1

6NM(LN − 1)
ε,

i = 0, . . . , N − 1, as the argument for the other terms is similar. For this, we rely on the

universal approximation Theorem 4.3, which requires us to show that Ei

[
V̂i+1

(
Xπ

i+1

)
Hh

2

]
, as

a function of Xi on R(i+1)d → Sd, is in L2(µ), where µ is the joint distribution of Xπ
i . By

the Lipschitz condition on b(t, ω) and σ(t, ω) in Assumption 1 we have

E
[
max
0≤k≤i

∥Xπ
i (k)∥

q
d

]
< ∞ and E [∥φ(Xπ

i)∥
q
k] < ∞, (4.7)

11

for any Lipschitz continuous function φ : R(i+1)d → Rk and all q ≥ 1, 0 ≤ i ≤ N ,

see Appendix B. Hence, by Assumptions 1-(iii), 1-(v), and Hölder’s inequality, we have

Ei

[
V̂i+1

(
Xπ

i+1

)
Hh

2

]
= Ei

[
g
(
Xπ

(i+1)h

)
Hh

2

]
∈ L2(µ) at the level i = N − 1. For 0 ≤ i < N ,

using Assumptions 1-(ii) and 1-(v), we have

E
[∥∥Ei

[
V̂i+1

(
Xπ

i+1

)
Hh

2

]∥∥2
d×d

]
≤ E

[
∥Hh

2 ∥2d×d ×
∣∣Ŷi+1(X

π
i+1) + hF

(
(i+ 1)h,Xπ

(i+1)h, Ŷi+1(X
π
i+1), Ẑi+1(X

π
i+1), Sym

(
γ̂i+1(X

π
i+1)
))∣∣2]

≤ 63
(
E
[
∥Hh

2 ∥4d×d

]
E
[
|Ŷi+1(X

π
i+1)|4 + h4|F ((i+ 1)h, (0)0≤s≤T , 0, 0, 0)|4

+ h4K4
(
∥Xπ

(i+1)h∥4 + |Ŷi+1(X
π
i+1)|4 + ∥Ẑi+1(X

π
i+1)∥4d + ∥Sym

(
γ̂i+1(X

π
i+1)
)
∥4d×d

)])1/2
< ∞,

which shows that Ei

[
V̂i+1

(
Xπ

i+1

)
Hh

2

]
∈ L2(µ). In the last inequality we have used (4.7),

the fact that φ ∈ NNρ,l,m
d0,d1

is Lipschitz when the activation function ρ is Lipschitz, and

E
[
∥Hh

2 ∥4d×d

]
< ∞ with ∥Xπ

ih∥ := max
0≤k≤i

∥Xπ
i (k)∥d. □

Using additionally that u ∈ BUC(Θ) is uniformly continuous, Proposition 4.2 and Theo-

rem 4.4 can be extended from (0, (x0)s∈[0,T]) to any (t, ω) ∈ Θ by changing (4.1) to start

from Xπ
kh = (ωπ

s∧kh)s∈[0,T], where ωπ is the linear interpolation of the discretization of ω.

Implementation

The optimization in (4.2) is implemented using Monte Carlo simulation and the Adam

gradient descent algorithm, see [KB14]. Precisely, fix the batch size O and the training steps

P , let
(
Xπ,j

i+1

)
1≤j≤O

be an i.i.d. sample of (i+2)d-dimensional random vector with batch size

O generated by (4.1), and let

LO
i (θ) :=

1

O

O∑
j=1

(∣∣V̂i+1

(
Xπ,j

i+1

)
Hh

0 − Yi

(
Xπ,j

i ; θ
)∣∣2 + ∥∥V̂i+1

(
Xπ,j

i+1

)
Hh

1 −Zi

(
Xπ,j

i ; θ
)∥∥2

d

+
∥∥V̂i+1

(
Xπ,j

i+1

)
Hh

2 − Sym
(
γi
(
Xπ,j

i ; θ
))∥∥2

d×d

)
.

Since in (4.2) the error term of Y becomes negligible in the high-dimensional case, we use

the weighted error function of

E
[∣∣V̂i+1

(
Xπ

i+1

)
Hh

0 − Yi

(
Xπ

i ; θ
)∣∣2 + 1

d

∥∥V̂i+1

(
Xπ

i+1

)
Hh

1 −Zi

(
Xπ

i ; θ
)∥∥2

d

+ 1
d2

∥∥V̂i+1

(
Xπ

i+1

)
Hh

2 − Sym
(
γi
(
Xπ

i ; θ
))∥∥2

d×d

]
.

12

Then, we initialize the parameter θ0 using Xavier initialization, see [GB10], and update it

using the following rule

vp = β1vp−1 + (1− β1)
∂LO

i

∂θ
(θp−1)

wp = β2wp−1 + (1− β2)

(
∂LO

i

∂θ
(θp−1)

)2

θp = θp−1 − ηp

(
vp

1− β1

)/(
εAdam +

√
wp

1− β1

)
,

where 1 ≤ p ≤ P , (ηp)1≤p≤P ∈ RP is the learning rate, (εAdam, β1, β2) ∈ R3 are the parameters

of the Adam algorithm, and (v0, w0) is initialized at (0, 0). Empirically we have θP ≈ θ∗ when

O and P are large enough, see e.g. [KB14]. In addition, we use the batch normalization

technique, see [IS15], to stabilize the training process. Define BNα,ζ,εBN
a transformation

over a set of d1-dimensional
(
x
(i)
j

)
1≤i≤O,1≤j≤d1

with batch size O by

BNα,ζ,εBN

(
x(i)
)
=
(
ζj + αj

(
x
(i)
j − µj

)/√
σ2
j + εBN

)
1≤j≤d1

, (4.8)

where α, ζ ∈ Rd1 , εBN ∈ R, and

µj =
1

O

O∑
i=1

x
(i)
j and σ2

j =
1

O

O∑
i=1

(x
(i)
j − µj)

2.

Fix εBN ∈ R, a neural network φ(· ; θ) ∈ NNρ,l,m
d0,d1

is modified such that each of the layer

functions Li ∈ Lρ
d2,d3

is changed to Li ∈ Lρ,BN
d2,d3

, where

Lρ,BN
d2,d3

:=
{
L : Rd2 → Rd3 : L(x) = BNα,ζ,εBN

(ρ(Wx+ b)) ,W ∈ Rd3×d2 , α, b, ζ ∈ Rd3
}
,

and a transformation from x ∈ Rd0 to BNγ−1,β−1,εBN
(x), parameterized by γ−1, β−1 ∈ Rd0 , is

added before passing to the first layer. Then, the neural network parameter θ is changed to

the sequence

ΘBN =
(
γ−1, β−1,W0, b0, γ0, β0,W1, b1, γ1, β1, . . . ,Wl−1, bl−1, γl−1, βl−1,Wl, bl, γl, βl

)
of parameters, such that

Li(x) = BNγi,βi,εBN
(ρ(Wix+ bi)) , i = 0, 1, . . . , l.

In Section 5 we provide three examples of implementation of the numerical scheme of Propo-

sition 4.2. In our numerical examples we use the activation function ρ = ρReLU, the Adam pa-

rameters (β1, β2, εAdam) = (0.9, 0.999, 10−8), the batch normalization parameter εBN = 10−6,

13

and the learning rate

ηp =

10−1, 1 ≤ p < 2P/3,

10−2, 2P/3 ≤ p < 5P/6,

10−3, 5P/6 ≤ p < P.

The values of P have been set so that runtimes are comparable when d = 1, and reused for

simulations with d > 1.

As in [AA13], for improved convergence our numerical implementation will also use the

modification
Yhϕ(t, ω) := E

[
ϕ
(
t+ h, ω ⊗t X

(t,ω)
h

)
Hh

0

∣∣∣Ft

]
,

Zhϕ(t, ω) := E
[(

ϕ
(
t+ h, ω ⊗t X

(t,ω)
h

)
− Yhϕ(t, ω)

)
Hh

1

∣∣∣Ft

]
,

Γhϕ(t, ω) := E
[(

ϕ
(
t+ h, ω ⊗t X

(t,ω)
h

)
− Yhϕ(t, ω)− Zhϕ(t, ω) ·Wh

)
Hh

2

∣∣∣Ft

]
,

of (3.4) where the operator Tt,ω in (3.3) is replaced by

Tt,ω
[
uh(t+ h, ·)

]
= Yhϕ(t, ω) + hF (· , Yhϕ, Zhϕ,Γhϕ) (t, ω), (4.9)

and the error function Ei(θ) in (4.2) is replaced with

Ei(θ) = E
[∣∣V̂i+1

(
Xπ

i+1

)
Hh

0 − Yi

(
Xπ

i ; θ
)∣∣2 + ∥∥(V̂i+1

(
Xπ

i+1

)
− Yi

(
Xπ

i ; θ
))
Hh

1 −Zi

(
Xπ

i ; θ
)∥∥2

d

+
∥∥(V̂i+1

(
Xπ

i+1

)
− Yi

(
Xπ

i ; θ
)
−Zi

(
Xπ

i ; θ
)
·Wh

)
Hh

2 − γi
(
Xπ

i ; θ
)∥∥2

d×d

]
. (4.10)

Although the following examples do not satisfy all conditions stated in Assumption 1, we

will use them as in e.g. [RT17] to assess the performance of Algorithm 4.1.

5 Numerical examples

Our examples are run with T = 0.1, for which our algorithm performs optimally and can

improve the results of [RT17], [SVŠS20] and [SZ21] for the zero-sum game, of [SVŠS20,

SZ21] in dimension d = 10 for Asian options, and of [RT17, SVŠS20, SZ21] respectively

in dimensions d = 100 and d = 10 for barrier options. Due to the different nature and

implementation of the algorithms, runtime comparison is used for reference, but is not fully

reliable.

14

5.1 Path-dependent two-person zero-sum game

In this section we consider the higher dimensional extension

u(0, (x0)s∈[0,T]) = inf
µt∈[µ,µ]

sup
at∈[a,a]

E
[
g

(
Xµ,a

T ,

∫ T

0

Xµ,a
s ds

)
+

∫ T

0

f

(
t,Xµ,a

t ,

∫ t

0

Xµ,a
s ds

)
dt

]
,

of the path-dependent two-person zero-sum game in (5.1) of [RT17], where (Xt)0≤t≤T =

(X1
t , . . . , X

d
t)0≤t≤T follows the SDE{

dXµ,a
t = µt1ddt+

√
at IddBt,

X0 = x0 ∈ Rd,
(5.1)

where µ, µ, a, a ∈ R, and (Bt)0≤t≤T = (B1
t , . . . , B

d
t)0≤t≤T is a d-dimensional Brownian mo-

tion. The solution of this control problem is given by the solution u : [0, T]×C([0, T];Rd) →
R of the following PPDE, evaluated at (0, (x0)s∈[0,T]):
∂tu(t, ω) + min

µ∈[µ,µ]
µ
(
1d · ∂ωu(t, ω)

)
+

1

2
max
a∈[a,a]

(
a tr

(
∂2
ωωu(t, ω)

))
+ f

(
t, ωt,

∫ t

0

ωsds

)
= 0,

u(T, ω) = g

(
ωT ,

∫ T

0

ωsds

)
.

For the purpose of our deep algorithm, we rewrite the above PPDE as

∂tu+
a

2
tr
(
∂2
ωωu
)
+ min

µ∈[µ,µ]
µ (1d · ∂ωu)+

1

2
max
a∈[a,a]

a tr
(
∂2
ωωu
)
+f

(
t, ωt,

∫ t

0

ωsds

)
−a

2
tr
(
∂2
ωωu
)
= 0,

(5.2)

with

F (t, ω, u, z, γ) =
1
√
a

min
µ∈[µ,µ]

µ (1d · z) +
1

2a
max
a∈[a,a]

(
a tr γ

)
+ f

(
t, ωt,

∫ t

0

ωsds

)
− 1

2
tr γ.

Denoting by x = (x1, . . . , xd) and y = (y1, . . . , yd) we put g(x, y) = cos

(
1
d

d∑
i=1

(xi + yi)

)
and

f(t, x, y) =

(
1

d

d∑
i=1

xi + µ

)(
sin

(
1

d

d∑
i=1

(
xi + yi

)))+

−

(
1

d

d∑
i=1

xi + µ

)(
sin

(
1

d

d∑
i=1

(
xi + yi

)))−

+
a

2d

(
cos

(
1

d

d∑
i=1

(
xi + yi

)))+

− a

2d

(
cos

(
1

d

d∑
i=1

(
xi + yi

)))−

.

Although this choice of f(t, x, y) does not satisfy part (v) of Assumption 1, it makes the

PPDE (5.2) explicitly solvable as u(t, ω) = cos

(
1

d

d∑
i=1

(
ωi
t +

∫ t

0

ωi
sds

))
, which can be used

to estimate the precision of Algorithm 4.1.

15

In Table 1, our PPDE algorithm is compared to [RT17] and [SZ21] with ten Monte Carlo

runs, by taking µ = −0.2, µ = 0.2, a = 0.04, a = 0.09, T = 0.1, x0 = (0, . . . , 0), and

runtimes are measured in seconds.

Method d Regr./Deep Mean Stdev Ref. value Rel. L1-error Runtime (s)
Deep PPDE (4.10) 1 Deep 1.000805 9.61E-05 1.0 8.05E-04 62
Deep PPDE (4.2) 1 Deep 0.999331 1.52E-03 1.0 1.37E-03 61
[SZ21] 1 Deep 1.000852 1.12E-02 1.0 9.42E-03 26
[RT17] (4.9) 1 Regr. 0.999946 4.72E-05 1.0 5.47E-05 1
[RT17] (3.4) 1 Regr. 1.075509 2.59E-02 1.0 7.55E-02 1
Deep PPDE (4.10) 10 Deep 1.000914 2.19E-04 1.0 9.14E-04 63
Deep PPDE (4.2) 10 Deep 0.9939934 2.99E-03 1.0 6.01E-03 62
[SZ21] 10 Deep 0.9537241 1.63E-01 1.0 1.06E-01 517
[RT17] (4.9) 10 Regr. 1.000166 6.00E-06 1.0 1.66E-04 2
[RT17] (3.4) 10 Regr. 2.348812 4.31E-01 1.0 Diverges 2
Deep PPDE (4.10) 100 Deep 1.002474 5.01E-04 1.0 2.47E-03 83
Deep PPDE (4.2) 100 Deep 0.970783 1.89E-02 1.0 3.01E-02 81
[RT17] (4.9) 100 Regr. 26.12039 7.36E+00 1.0 Diverges 104
[RT17] (3.4) 100 Regr. 328.2853 8.81E+01 1.0 Diverges 102

Table 1: Comparison for two-person zero-sum game between i) PPDE with training
parameters m = d+ 10, l = 2, O = 256, h = 0.01, and P = 900; ii) [RT17] with O = 10000
and h = 0.01; iii) [SZ21] with training parameters m = d + 10, l = 2, O = 256, h = 0.01,
and P = 1000. The numerical simulations of [SZ21] are not presented in dimension d = 100
because they require more than the 12 GB RAM provided by Google Colab.

5.2 Asian options

The second example is the following pricing problem of Asian basket call option:

u(0, (x0)s∈[0,T]) = E

e−r0T

(
1

Td

d∑
i=1

∫ T

0

X i
sds−K

)+
 ,

with strike price K ∈ R and interest rate r0 > 0, where (Xt)0≤t≤T = (X1
t , . . . , X

d
t)0≤t≤T is a

d-dimensional asset price process following the geometric Brownian motions

X i
t = X i

0e
σiB

i
t+rit−σ2

i t/2, t ∈ R+, i = 1, . . . , d, (5.3)

where x0 ∈ Rd, and r1, . . . , rd, σ1, . . . , σd ∈ R. The solution of this pricing problem is given

by evaluating at (t, x) = (0, (x0)s∈[0,T]) the solution u : [0, T] × C
(
[0, T];Rd

)
→ R of the

16

following PPDE:
∂tu(t, ω) + r(ωt) · ∂ωu(t, ω) +

1

2

(
σσ⊤(ωt) : ∂

2
ωωu(t, ω)

)
− r0u(t, ω) = 0,

u(T, ω) =

(
1

Td

d∑
i=1

∫ T

0

ωi
sds−K

)+

,

where r(ωt) =
(
r1ω

1
t , . . . , rdω

d
t

)
and σ(ωt) = Diag

(
σ1ω

1
t , . . . , σdω

d
t

)
. Here, F (t, ω, u, z, γ) =

−r0u does not depend on z and γ, therefore the neural networks Zi(· ; θ) and γi(· ; θ) are

not needed, which improves the efficiency of Algorithm 4.1.

When d = 1 we compare our deep PPDE algorithm with other deep PDE algorithms

such as [HJE18] and [BBC+21]. For this, we write

u(t, (Xs)s∈[0,t]) = g

(
t,

1

Xt

(
1

T

∫ t

0

Xudt−K

))
,

where g : [0, T]× R → R is the solution of the [RS95] PDE

∂tg +

(
1

T
− rz

)
∂g

∂x
+

1

2
σ2z2∂2

zzg = 0, g(T, z) = z+, (5.4)

see e.g. Proposition 13.10 in [Pri22].

We use Monte Carlo simulations with O = 1, 000, 000 and h = 0.01 as the reference

solution. to compare our PPDE algorithm with [RT17], [HJE18], [SVŠS20], [SZ21], and

[BBC+21] under the setting of r0 = r1 = · · · = rd = 0.01, σ1 = · · · = σd = 0.1, K = 0.7,

T = 0.1, x0 = (1, . . . , 1). The statistics of 10 independent runs are summarized in Table 2.

17

Method d Regr./Deep Mean Stdev Ref. value Rel. L1-error Runtime (s)
[HJE18] 1 Deep 0.3002467 2.31E-06 0.3002021 1.49E-04 32
[BBC+21] 1 Deep 0.3002827 4.21E-04 0.3002021 1.12E-03 20
[SVŠS20] 1 Deep 0.3002722 1.24E-03 0.3002021 3.51E-03 10
Deep PPDE (4.2) 1 Deep 0.3008159 1.29E-03 0.3002021 3.83E-03 31
[SZ21] 1 Deep 0.3002544 2.43E-03 0.3002021 6.01E-03 25
[RT17] 1 Regr. 0.3002768 2.23E-04 0.3002021 4.77E-04 1
Deep PPDE (4.2) 10 Deep 0.3010345 4.08E-04 0.3002024 2.77E-03 31
[SVŠS20] 10 Deep 0.3002251 2.11E-03 0.3002024 5.80E-03 411
[SZ21] 10 Deep 0.3040330 1.05E-02 0.3002024 2.97E-02 522
[RT17] 10 Regr. 0.3002137 6.07E-05 0.3002024 1.70E-04 2
Deep PPDE (4.2) 100 Deep 0.3006346 1.28E-04 0.3001993 1.45E-03 35
[RT17] 100 Regr. 0.3001923 2.65E-05 0.3001993 7.50E-05 23

Table 2: Comparison for Asian options between i) PPDE with training parameters m =
d + 10, l = 2, O = 256, h = 0.01, and P = 900; ii) [RT17] with O = 10000 and h = 0.01;
iii) [SZ21] with training parameters m = d + 10, l = 2, O = 256, h = 0.01, and iterations
1000; iv) LSTM with path signature [SVŠS20] with training parameters m = d+ 10, l = 2,
O = 256, h = 0.01, and P = 600; v) [HJE18] with training parameters m = d + 10, l = 2,
O = 64, h = 0.01, and P = 4000; vi) [BBC+21] with training parameters m = d+10, l = 2,
O = 256, h = 0.01, and P = 600. The numerical simulations of [SZ21] and [SVŠS20] are not
presented in dimension d = 100 because they require more than the 12 GB RAM provided
by Google Colab.

5.3 Barrier options

The third example is the following pricing problem of barrier basket call option:

u(0, (x0)s∈[0,T]) = E

e−r0T1{
max

0≤s≤T

(
1
d

d∑
i=1

Xi
s

)
<B

}(1

d

d∑
i=1

X i
T −K

)+
 ,

where the strike price K ∈ R, the barrier B ∈ R, and (Xt)0≤t≤T = (X1
t , . . . , X

d
t)0≤t≤T

is a d-dimensional stock processes that follows the geometric Brownian motions (5.3) The

solution of this pricing problem is given by evaluating at (t, x) = (0, (x0)s∈[0,T]) the solution

u : [0, T]× C
(
[0, T];Rd

)
→ R of the following PPDE:

∂tu(t, ω) + r(ωt) · ∂ωu(t, ω) +
1

2

(
σσ⊤(ωt) : ∂

2
ωωu(t, ω)

)
− r0u(t, ω) = 0,

u(T, ω) = 1{
max

0≤s≤T

(
1
d

d∑
i=1

ωi
s

)
<B

}(1

d

d∑
i=1

ωi
T −K

)+

.

As in Section 5.2, F (t, ω, u, z, γ) = −r0u does not depend on z and γ and the neural networks

Zi(· ; θ), and γi(· ; θ) are not needed.

18

We use Monte Carlo simulations with O = 1000000 and h = 0.01 as the reference solution

to compare our PPDE algorithm with [RT17], [SVŠS20], and [SZ21] under the setting of

r0 = r1 = · · · = rd = 0.01, σ1 = · · · = σd = 0.1, K = 0.7, B = 1.2, T = 0.1, x0 = (1, . . . , 1).

The statistics of 10 independent runs are summarized in Table 3.

Method d Regr./Deep Mean Stdev Ref. value Rel. L1-error Runtime (s)

[SVŠS20] 1 Deep 0.3009402 2.18E-03 0.3007008 5.75E-03 8
Deep PPDE (4.2) 1 Deep 0.3019161 1.97E-03 0.3007008 5.92E-03 31
[SZ21] 1 Deep 0.3019159 2.24E-03 0.3007008 6.98E-03 26
[RT17] 1 Regr. 0.3006738 2.81E-04 0.3007008 7.72E-04 1
Deep PPDE (4.2) 10 Deep 0.3017532 5.44E-04 0.3006973 3.51E-03 31
[SVŠS20] 10 Deep 0.301107 3.15E-03 0.3006973 7.35E-03 225
[SZ21] 10 Deep 0.3030515 1.03E-02 0.3006973 2.71E-02 519
[RT17] 10 Regr. 0.3007255 1.34E-04 0.3006973 3.56E-04 2
Deep PPDE (4.2) 100 Deep 0.3016375 1.98E-04 0.3007003 3.12E-03 35
[RT17] 100 Regr. 0.3035602 3.74E-03 0.3007003 1.05E-02 23

Table 3: Comparison for barrier options between i) PPDE with training parameters
m = d + 10, l = 2, O = 256, h = 0.01, and P = 900; ii) [RT17] with O = 10000 and
h = 0.01; iii) [SZ21] with training parameters m = d + 10, l = 2, O = 256, h = 0.01, and
P = 1000; iv) LSTM with path signature [SVŠS20] with training parameters m = d + 10,
l = 2, O = 256, h = 0.01, and P = 600. The numerical simulations of [SZ21] and [SVŠS20]
are not presented in dimension d = 100 because they require more than the 12 GB RAM
provided by Google Colab.

A Appendix

Proof of Proposition 4.2. Let δi := V̂i (X
π
i)− uh

(
ih,Xπ

ih

)
, i = 0, . . . , N − 1. By (3.4), (4.3),

Assumptions 1-(ii), 1-(v), and the conditional Hölder inequality, we have

E
[
|δi|2

]
= E

[∣∣Ŷi (X
π
i) + hF

(
ih,Xπ

ih, Ŷi (X
π
i) , Ẑi (X

π
i) , Sym (γ̂i (X

π
i))
)
− Ei

[
uh
(
(i+ 1)h,Xπ

(i+1)h

)]
+ hF

(
ih,Xπ

ih,Ei

[
uh
(
(i+ 1)h,Xπ

(i+1)h

)
Hh

0

]
,Ei

[
uh
(
(i+ 1)h,Xπ

(i+1)h

)
Hh

1

]
,Ei

[
uh
(
(i+ 1)h,Xπ

(i+1)hH
h
2

)])∣∣2]
≤ 16(1 +K2h2)E

[∣∣Ŷi (X
π
i)− Ei

[
uh
(
(i+ 1)h,Xπ

(i+1)h

)
Hh

0

] ∣∣2]
+ 16K2h2E

[∥∥Ẑi

(
Xπ

i

)
− Ei

[
uh
(
(i+ 1)h,Xπ

(i+1)h

)
Hh

1

]∥∥2
d

+
∥∥Sym(γ̂i (Xπ

i

))
− Ei

[
uh
(
(i+ 1)h,Xπ

(i+1)h

)
Hh

2

]∥∥2
d×d

]
= 16(1 +K2h2)E

[∣∣Ŷi (X
π
i)− Ei

[
V̂i+1

(
Xπ

i+1

)
Hh

0

]
+ Ei

[
V̂i+1

(
Xπ

i+1

)
Hh

0 − uh
(
(i+ 1)h,Xπ

(i+1)h

)
Hh

0

]∣∣2]
+ 16K2h2E

[∥∥Ẑi (X
π
i)− Ei

[
V̂i+1

(
Xπ

i+1

)
Hh

1

]
+ Ei

[
V̂i+1

(
Xπ

i+1

)
Hh

1 − uh
(
(i+ 1)h,Xπ

(i+1)h

)
Hh

1

]∥∥2
d

+
∥∥Sym (γ̂i (X

π
i))− Ei

[
V̂i+1

(
Xπ

i+1

)
Hh

2

]
+ Ei

[
V̂i+1

(
Xπ

i+1

)
Hh

2 − uh
(
(i+ 1)h,Xπ

(i+1)h

)
Hh

2

]∥∥2
d×d

]
19

≤ 32(1 +K2h2)εl,m,θ∗

i + 32E
[
Ei[|δi+1|2]Ei

[
(1 +K2h2)

∣∣Hh
0

∣∣2 +K2h2
∥∥Hh

1

∥∥2
d
+K2h2

∥∥Hh
2

∥∥2
d×d

]]
≤ 32(1 +K2h2)εl,m,θ∗

i + 32
(
1 +K2h2 +K2K̃2hd+K2K̃4d(d+ 1)

)
E
[
|δi+1|2

]
= Mεl,m,θ∗

i + LE
[
|δi+1|2

]
, i = 0, . . . , N − 2.

Using backward induction and the fact that V̂N(x) = uh(tN , x) = g(x), we obtain

max
i=0,...,N−1

E[|δi|2] ≤
N−1∑
i=0

LN−1−iMεl,m,θ∗

i ≤ Mεl,m
N−1∑
i=0

Li = M
LN − 1

L− 1
εl,m.

□

B Appendix

Proof of (4.7). We first show the finiteness of the first term in (4.7) by induction, where

i = 0 obviously holds. Assume that it holds at level i, by Assumption 1, Hölder’s inequality,

the independence between Bh and Xπ
ih, and (4.1), we have

E
[

max
0≤k≤i+1

∥Xπ
i+1(k)∥

q
d

]
≤ E

[
max

(
max
0≤k≤i

∥Xπ
i (k)∥

q
d, ∥X

π
i+1((i+ 1)h)∥qd

)]
= E

[
max

(
max
0≤k≤i

∥Xπ
i (k)∥

q
d, ∥Xπ

i (i) + b
(
ih,Xπ

ih

)
h+ σ

(
ih,Xπ

ih

)
Bh∥qd

)]
≤ E

[
max
0≤k≤i

∥Xπ
i (k)∥

q
d

]
+ E

[
∥Xπ

i (i) + b
(
ih,Xπ

ih

)
h+ σ

(
ih,Xπ

ih

)
Bh∥qd

]
≤ E

[
max
0≤k≤i

∥Xπ
i (k)∥

q
d

]
+ 3qE

[
∥Xπ

i (i)∥
q
d + hq

(
K
(
|ih|1/2 + ∥Xπ

ih∥
)
+ ∥b(0, (0)0≤s≤T)∥d

)q
+∥Bh∥qd

(
K
(
|ih|1/2 + ∥Xπ

ih∥
)
+ ∥σ(0, (0)0≤s≤T)∥d×d

)q]
≤ E

[
max
0≤k≤i

∥Xπ
i (k)∥

q
d

]
+ 9qE [∥Xπ

i (i)∥
q
d] + hq

(
Kq
(
T q/2 + E

[
∥Xπ

ih∥q
])

+ ∥b(0, (0)0≤s≤T)∥qd
)

+E [∥Bh∥qd]
(
Kq
(
T q/2 + E

[
∥Xπ

ih∥q
])

+ ∥σ(0, (0)0≤s≤T)∥qd×d

)
≤ C0 + C1E

[
max
0≤k≤i

∥Xπ
i (k)∥

q
d

]
< ∞,

where C0 ≥ 0 and C1 ≥ 1. In the second last inequality we used the fact that ∥Xπ
ih∥q =

max
0≤k≤i

∥Xπ
i (k)∥

q
d, and the centered Gaussian random variable Bh has finite E [|Bh|q] for any

choice of q. The finiteness of the second term in (4.7) is obvious since

E [∥φ(Xπ
i)∥

q
k] ≤ KqE

[
∥Xπ

ih∥
q
(i+1)d

]
+ ∥φ(0, (0)0≤s≤T)∥qk < ∞.

□

20

References
[AA13] S. Alanko and M. Avellaneda. Reducing variance in the numerical solution of BSDEs. C. R.

Math. Acad. Sci. Paris, 351(3-4):135–138, 2013.

[BBC+21] C. Beck, S. Becker, P. Cheridito, A. Jentzen, and A. Neufeld. Deep splitting method for parabolic
PDEs. SIAM J. Sci. Comput., 43(5):A3135–A3154, 2021.

[BBH+20] S. Becker, R. Braunwarth, M. Hutzenthaler, A. Jentzen, and Ph. von Wurstemberger. Numer-
ical simulations for full history recursive multilevel Picard approximations for systems of high-
dimensional partial differential equations. Commun. Comput. Phys., 28(5):2109–2138, 2020.

[BEJ19] C. Beck, W. E, and A. Jentzen. Machine learning approximation algorithms for high-dimensional
fully nonlinear partial differential equations and second-order backward stochastic differential
equations. J. Nonlinear Sci., 29(4):1563–1619, 2019.

[Dup09] B. Dupire. Functional Itô calculus. Available at SSRN: https://ssrn.com/abstract=1435551 or
https://dx.doi.org/10.2139/ssrn.1435551, 2009.

[EHJK19] W. E, M. Hutzenthaler, A. Jentzen, and T. Kruse. On multilevel Picard numerical approxima-
tions for high-dimensional nonlinear parabolic partial differential equations and high-dimensional
nonlinear backward stochastic differential equations. Journal of Scientific Computing, 79:1534–
1571, 2019.

[EKTZ14] I. Ekren, Ch. Keller, N. Touzi, and J. Zhang. On viscosity solutions of path dependent PDEs.
Ann. Probab., 42(1):204–236, 2014.

[ETZ16a] I. Ekren, N. Touzi, and J. Zhang. Viscosity solutions of fully nonlinear parabolic path dependent
PDEs: Part I. Ann. Probab., 44(2):1212–1253, 2016.

[ETZ16b] I. Ekren, N. Touzi, and J. Zhang. Viscosity solutions of fully nonlinear parabolic path dependent
PDEs: Part II. Ann. Probab., 44(4):2507–2553, 2016.

[FLZ23] Q. Feng, M. Luo, and Z. Zhang. Deep signature FBSDE algorithm. Numer. Algebra Control
Optim., 13:500–522, 2023.

[FTW11] A. Fahim, N. Touzi, and X. Warin. A probabilistic numerical method for fully nonlinear parabolic
PDEs. Ann. Appl. Probab., 21(4):1322–1364, 2011.

[GB10] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural net-
works. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pages 249–256, 2010.

[GLW05] E. Gobet, J.-Ph. Lemor, and X. Warin. A regression-based Monte Carlo method to solve backward
stochastic differential equations. Ann. Appl. Probab., 15(3):2172–2202, 2005.

[HJE18] J. Han, A. Jentzen, and W. E. Solving high-dimensional partial differential equations using deep
learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018.

[Hor91] K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks,
4(2):251–257, 1991.

[HPW20] C. Huré, H. Pham, and X. Warin. Deep backward schemes for high-dimensional nonlinear PDEs.
Math. Comp., 89(324):1547–1579, 2020.

[IS15] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning,
pages 448–456, 2015.

[JO19] A. Jacquier and M. Oumgari. Deep curve-dependent PDEs for affine rough volatility. Preprint
arXiv:1906.02551, 2019.

21

[KB14] D.P. Kingma and J. Ba. Adam: A method for stochastic optimization. Preprint arXiv:1412.6980,
2014.

[LL21] B. Lapeyre and J. Lelong. Neural network regression for Bermudan option pricing. Monte Carlo
Methods Appl., 27(3):227–247, 2021.

[LLP22] W. Lefebvre, G. Loeper, and H. Pham. Differential learning methods for solving fully nonlinear
PDEs. Preprint arXiv:2205.09815, 2022.

[Pen11] S. Peng. Note on viscosity solution of path-dependent PDE and g-martingales. Preprint
arXiv:1106.1144, 2011.

[Pri97] N. Privault. An extension of stochastic calculus to certain non-Markovian processes.
Prépublication 49, Université d’Evry, 1997. https://www.maths.univ-evry.fr/prepubli/49.ps.

[Pri22] N. Privault. Introduction to Stochastic Finance with Market Examples (2nd edition). Financial
Mathematics Series. Chapman & Hall/CRC, 2022.

[PWG21] H. Pham, X. Warin, and M. Germain. Neural networks-based backward scheme for fully nonlinear
PDEs. Partial Differ. Equ. Appl., 2(1):Paper No. 16, 24, 2021.

[RS95] L.C.G. Rogers and Z. Shi. The value of an Asian option. J. Appl. Probab., 32(4):1077–1088,
1995.

[RT17] Z. Ren and X. Tan. On the convergence of monotone schemes for path-dependent PDEs. Stochas-
tic Process. Appl., 127(6):1738–1762, 2017.

[RTZ17] Z. Ren, N. Touzi, and J. Zhang. Comparison of viscosity solutions of fully nonlinear degenerate
parabolic path-dependent PDEs. SIAM J. Math. Anal., 49(5):4093–4116, 2017.

[SS18] J. Sirignano and K. Spiliopoulos. DGM: A deep learning algorithm for solving partial differential
equations. Journal of Computational Physics, 375:1339–1364, 2018.

[SVŠS20] M. Sabate-Vidales, D. Šǐska, and L. Szpruch. Solving path dependent PDEs with LSTM networks
and path signatures. Preprint arXiv:2011.10630, 2020.

[SZ21] Y.F. Saporito and Z. Zhang. Path-dependent deep Galerkin method: a neural network approach
to solve path-dependent partial differential equations. SIAM J. Financial Math., 12(3):912–940,
2021.

[TZ15] S. Tang and F. Zhang. Path-dependent optimal stochastic control and viscosity solution of
associated Bellman equations. Discrete Contin. Dyn. Syst., 35(11):5521–5553, 2015.

[VZ19] F. Viens and J. Zhang. A martingale approach for fractional Brownian motions and related path
dependent PDEs. Ann. Appl. Probab., 29(6):3489–3540, 2019.

[ZZ14] J. Zhang and J. Zhuo. Monotone schemes for fully nonlinear parabolic path dependent PDEs.
Journal of Financial Engineering, 1(1):1450005, 2014.

22

	Introduction
	Viscosity solutions of path-dependent PDEs
	Probabilistic numerical solution
	Deep learning approximation
	Numerical examples
	Path-dependent two-person zero-sum game
	Asian options
	Barrier options

	Appendix
	Appendix

