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Abstract
We consider the limiting behavior of the count of subgraphs isomorphic to a graph

G with m ≥ 0 fixed endpoints (or roots) in the random-connection model, as the
intensity λ of the underlying Poisson point process tends to infinity. When connection
probabilities are of order λ−α we identify a phase transition phenomenon depending
on a critical decay rate α∗

m(G) > 0 such that normal approximation for subgraph
counts holds when α ∈ (0, α∗

m(G)), and a Poisson limit result holds if α = α∗
m(G).

Our approach relies on cumulant growth rates derived by the convex analysis of planar
diagrams that enumerate the partitions involved in cumulant identities. As a result, by
the cumulant method we obtain normal approximation results with convergence rates
in the Kolmogorov distance, and a Poisson limit theorem, for subgraph counts.
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1 Introduction

The first instance of a threshold phenomenon in random graphs was observed in the Erdős-

Rényi model for the containment of balanced graphs, see [ER61]. In [Bol81b, Theorem 1],

a Poisson limit theorem for the counting of strictly balanced subgraphs was proved at

the threshold. Poisson approximation under the total variation distance has been proved

in [Bar82] via the Stein-Chen method, see also [BHJ92, Chapter 5]. Phase transition phe-

nomena for inhomogeneous random graphs have been studied for the growth rate of the giant

component in [BJR07], and for connectivity thresholds in [DF14].
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Consider an Erdős-Rényi random graph on n vertices, with independent connection prob-

ability pn such that pn = c/nα for some c > 0 and α > 0. Necessary and sufficient conditions

for the asymptotic normality of the (normalized) count NG of subgraphs isomorphic to a

fixed graph G were obtained in [Ruc88], as follows.

• When

0 < α < min
H⊂G

v(H)

e(H)
, (1.1)

the normalized subgraph count NG converges to a normal random variable, where v(H)

and e(H) respectively denote the counts of vertices and edges of any subgraph H of

G.

• When

α = min
H⊂G

v(H)

e(H)
,

the rescaled subgraph count converges to a Poisson distribution provided that the

graph G is strictly balanced, see Definition 2.1-(1), and

lim
n→∞

np1/αn = c > 0, (1.2)

see [Bol81a], [KR83], and Theorem 3.19 in [JŁR00].

More recently, explicit convergence rates in the Wasserstein distance for subgraph counts

have been obtained in [BKR89], see also [PS20] and references therein for rates in the Kol-

mogorov distance using the discrete Malliavin calculus.

Poisson and compound Poisson approximation of subgraph counts were obtained together

with convergence rates in [CGR16] and [CGR18] for the stochastic block model, which

can be viewed as a special case of the graphon-based random-connection model. Normal

approximation results for subgraph counts in graphon-based random graphs were obtained

in [KR21], [Zha22], [BCJ23], and [LP25a] via the determination of quantitative bounds and

higher order fluctuations.

This paper considers the counting of subgraphs isomorphic to a fixed graph in the Poisson

random-connection model (RCM) Gφ(η), which is a random graph whose vertex set is given

by a Poisson point process η with intensity Λ on Rd, d ≥ 1, and where every pair of vertices

is randomly connected with a location-dependent probability given by a connection function

φ : Rd ×Rd → [0, 1]. The random-connection model can be regarded as a unified framework

containing several classical random graph models as particular cases.
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In particular, when φ is a function of the distance between pairs of points of η, i.e.

φ(x, y) := ϕ(∥x−y∥) for some measurable function ϕ : R+ → [0, 1], the resulting graph is also

known as a soft random geometric graph, see [Pen91], [Pen16], and [LNS21]. When ϕ takes

the form ϕ(u) = 1{u≤ε}, for some ε > 0, the random-connection model becomes a random

geometric graph, c.f. the monograph [Pen03], in which a pair of vertices is connected by an

edge if and only if the distance between them is less than the fixed threshold ε. For another

example, when the underlying point process η is a binomial point process and the connection

function φ(x, y) ≡ p is constant for some p ∈ (0, 1), the resulting graph is the Erdős-Rényi

random graph, c.f. [ER59] and [Gil59]. When the connection function φ(x, y) is symmetric

on [0, 1]× [0, 1] it is also called a graphon, and the corresponding random-connection model

arises as a limit of dense graph sequences, see [LS06], [Lov12], [Zha22], [BCJ23].

In the Poisson random-connection model, phase transition phenomena have been ob-

served in [MR96], where a critical point Poisson intensity parameter has been identified

for the occurrence of percolation. Poisson approximation results for edge counts and for

subgraphs of the same order were established in [Pen18], and normal approximation result

have been obtained for subgraph counts in [CT22]. In [LP24], normal approximation for the

subgraph counts in the Poisson random-connection model as the intensity of the underly-

ing Poisson point process goes to infinity has been established, together with convergence

rates under the Kolmogorov distance, through combinatorial arguments and the cumulant

method, see also [GT18], [Jan19], and [DE13], [ST24], [HHO25] for moderate deviations. By

expressing the cumulants of subgraph counts as sums over non-flat and connected partition

diagrams, cumulant growth has been analyzed under different limiting regimes, leading to

the asymptotic normality of connected subgraph counts in the dilute case, and for trees in

the sparse case.

In this paper, we derive convergence rates in the Kolmogorov distance for the normal

approximation of subgraph counts in the Poisson random-connection model, and we identify

a critical threshold at which Poisson convergence occurs. To the best of our knowledge,

this is the first time that such a phase transition, from normal to Poisson limit theorems

for subgraph counts, has been observed in the Poisson random-connection model. In ad-

dition, we include the counting of subgraphs containing one or more endpoints, defined as

roots placed as arbitrary deterministic locations. This extends previous approaches to the

counting of rooted subgraphs in the Erdős-Rényi and inhomogeneous random graph models,
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see [RV86] and [Mau24]. In applications to e.g. wireless networks, endpoints can model

physical devices placed at given fixed locations, such as roadside units in vehicular networks,

see, e.g., [NZZ+11], [ZCY+12], and [KGKLN23].

We investigate the asymptotic behavior of subgraph counts in a Poisson random-connection

model. By allowing the connection probability to vary as the intensity of the underlying

Poisson point process tends to infinity, we identify a phase transition where the limiting

distribution shifts between normal and Poisson, whenever the graph G satisfies a balance

condition (2.6). Similar to the Erdős-Rényi graph, while this balance condition (2.6) may

not be necessary for asymptotic normality, we believe it is essential for the emergence of a

Poisson limit, see Remark 6.6.

The counting of subgraphs containing one or more fixed endpoints, which covers the

counting of rooted subgraphs [RV86], [Mau24] in the case of a single endpoint, has been

considered in [LP25b] in the random-connection model. However, the analyses of cumulant

growths in [LP24] and [LP25b], were constrained by the use of partitions of maximal cardi-

nality, which resulted in an incomplete characterization of the limiting regimes that ensure

asymptotic normality. In the present paper, we overcome those restrictions via a detailed

analysis of the behavior of the count NG of subgraphs isomorphic to a given connected graph

G in the random-connection model with and without fixed endpoints.

In comparison with [LP24] and [LP25b], the present paper provides a unified analysis of

normal approximation for subgraph counts in terms of a single threshold and in the presence

of endpoints, without restriction to specific dilute and sparse regimes, see Theorem 3.3 and

Corollary 3.4. This analysis is performed in terms of subgraph densities, and it covers

the Poisson convergence regime which is shown to hold at the parameter threshold, see

Theorem 3.6.

For this, we develop new combinatorial tools in the random-connection model, based

on the convex analysis of subgraph plots introduced for the Erdős-Rényi model in [JŁR00],

which we use to analyse the partitions involved in the representation of subgraph count

cumulants. This yields an exhaustive analysis of asymptotic normalized cumulant growth

on a random-connection model Gφ(η ∪ {y1, . . . , ym}) including endpoints y1, . . . , ym, with

intensity measure of the form λ ·µ, λ > 0, in Proposition 7.1, where µ is a diffuse sigma-finite

measure on Rd and the connection function φ : Rd × Rd → [0, 1] is rescaled as φλ := cλ · φ,

λ > 0.
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Growth rates for the cumulants of normalized subgraph counts are then obtained on the

random-connection model Gφ(η ∪ {y1, . . . , ym}) in Theorem 3.3 under Assumptions 3.2-(i)-

(iii) and the balance condition (2.6). Given two functions f(λ) and g(λ) > 0, we write

• f(λ) = O(g(λ)), or f(λ) ≲ g(λ), if lim supλ→∞ f(λ)/g(λ) <∞,

• f(λ) = Ω(g(λ)), or f(λ) ≳ g(λ), if lim infλ→∞ f(λ)/g(λ) > 0,

• f(λ) ≍ g(λ) if f(λ) = O(g(λ)) and f(λ) = Ω(g(λ)),

• f(λ) ∼ g(λ) if limλ→∞ f(λ)/g(λ) = 1,

• f(x) ≪ g(x), or g(x) ≫ f(x), if f(x) ≥ 0 and f(x)/g(x) → 0.

with the convention 0/0 = 0. For G a graph with v(G) = r + m vertices including m

endpoints, we have the following consequences of Theorem 3.3.

• We show in Corollary 3.4 that when

1 ≳ cλ ≫ λ−min(r/e(G),1/am(G)),

the normalized subgraph count NG converges to a normal random variable as λ tends

to infinity, where am(G) is defined in (2.4) and depends on endpoint connectivity. As

a consequence, when cλ takes the form cλ ≍ λ−α as λ tends to infinity for some α > 0,

we extend the thresholds (1.1)-(1.2) in [JŁR00] from the Erdős-Rényi model to the

random-connection model, by showing that, under the balance condition (2.6), normal

approximation holds for the normalized subgraph count NG provided that

0 < α < α∗
m(G) := min

(
r

e(G)
,

1

am(G)

)
,

i.e.

0 < α < α∗
m(G) =

r

e(G)
(1.3)

when m = 0 or m = 1.

• In Theorem 3.5, we derive convergence rates under the Kolmogorov distance, together

with a moderate deviation principle, concentration inequalities and a normal approx-

imation result with Cramér correction. In particular, when cλ ≍ λ−α, we obtain the

Kolmogorov bounds

sup
x∈R

|Pλ(NG ≤ x)− Φ(x)|
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≤


C

λ(1−αam(G))/(4r−2)
if 0 < α ≤ r − 1

e(G)− am(G)
,

C

λ(r−αe(G))/(4r−2)
if

r − 1

e(G)− am(G)
≤ α < α∗

m(G),

where Φ is the cumulative distribution of the standard normal distribution and C > 0

is a constant depending only on r ≥ 2. When G has no endpoints (m = 0) and is

strongly balanced, we have

sup
x∈R

|Pλ(NG ≤ x)− Φ(x)| ≤


C

λ1/(4v(G)−2)
if 0 < α ≤ v(G)− 1

e(G)
,

C

λ(v(G)−αe(G))/(4v(G)−2)
if

v(G)− 1

e(G)
≤ α < α∗

0(G) =
v(G)

e(G)
,

which extends Corollary 7.1 of [LP24] beyond the dilute regime considered there, and

also Corollary 7.2 therein without restriction to trees.

• Under the condition am(G)r ≤ e(G), Poisson convergence holds for NG by Theorem 3.6

in the boundary case

α = α∗
m(G) =

r

e(G)
,

• Finally, by Theorem 3.7-(a), NG converges to zero in probability if am(G)r ≤ e(G) and

α > α∗
m(G) =

r

e(G)
.

Remark 1.1 a) In the case of rooted subgraph counting, i.e. when m = 1 with a single

endpoint, Condition (1.3) is consistent with the Property (P) page 261 of [RV86] in the

Erdős-Rényi model, and with the asymptotic normality condition in Theorem 1 of [Mau24]

in inhomogeneous random graphs.

b) In the absence of endpoints (m = 0), Condition (2.6) means that G should be strongly

balanced, and (1.3) reads

0 < α < α∗
0(G) = min

H⊂G

v(H)

e(H)
=
v(G)

e(G)
,

which coincides with (1.1), see Definition 2.1-(1).

c) We note that in the random-connection model, our results require a strong balance con-

dition of the form (2.6), which is not needed in the Erdős-Rényi model, see [Ruc88],

[Bol81a], and is stronger than strict balance, see Definition 2.1-(1).
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Our approach relies on partition diagrams introduced in Section 4 and later used in Section 5

to arrange the partitions involved in cumulant expressions into a planar representation.

This planar representation method has been introduced in [ŁR92] to study the behaviour

of variance of subgraph counts in the Erdős-Rényi model, and is extended here to derive

cumulant growth rates of all orders in the random-connection model. In this paper, it is

used in Section 6 to identify the partition diagrams that play a leading role in cumulant

expressions, and yields cumulant growth rates in Proposition 7.1.

We proceed as follows. After recalling necessary preliminaries on the random-connection

model and balanced graphs in Section 2, we present our main results in Section 3. Sections 4

and 5 focus the planar diagram representation of cumulants, and Section 6 identifies the

leading diagrams appearing in cumulant expressions. Finally, growth rates for cumulants

are derived in Section 7. SageMath and R codes used for the computation of convex hulls

and for partition counting are listed in Appendices A and B.

2 Preliminaries and notation
Random-connection model

Given λ > 0 and µ a diffuse sigma-finite measure on Rd, d ≥ 1, we consider a Poisson point

process η on Rd with intensity measure of the form λ ·µ, which can be almost surely written

as

η =
τ∑

i=1

δXi

under the probability measure Pλ, see [LP18, Corollary 6.5], where τ is a N ∪ {∞}−valued

random variable, δx denotes the Dirac measure at x ∈ Rd, and X1, X2, . . . are random

elements in Rd. For fixed m ≥ 0, and y1, . . . , ym ∈ Rd, we consider the point process

η ∪ {y1, . . . , ym} on Rd defined by the union of η and y1, . . . , ym.

Given φ : Rd × Rd → [0, 1] a symmetric measurable function and cλ ∈ (0, 1), we also

let φλ := cλ · φ, λ > 0, denote the connection function of the random-connection model

Gφ(η ∪ {y1, . . . , ym}). The random-connection model is a random graph denoted by Gφ(η ∪
{y1, . . . , ym}), with vertex set η ∪ {y1, . . . , ym}, such that any two distinct vertices x, y ∈
η ∪ {y1, . . . , ym} are independently connected by an edge with probability φλ(x, y).
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Balanced graphs

In what follows, for any two graphs G1, G2, we write G1 ≃ G2 when G1 is isomorphic to G2.

We also let v(G) := |VG| ≥ 2 and e(G) := |EG| be the number of vertices and the number of

edges of any graph G.

Definition 2.1 [ŁR92], [JŁR00, pages 64-65]

1) A graph G is balanced if
e(H)

v(H)
≤ e(G)

v(G)
, H ⊂ G, (2.1)

and strictly balanced if (2.1) holds as a strict inequality for all H ⊊ G.

2) A graph G is strongly balanced if

e(H)

v(H)− 1
≤ e(G)

v(G)− 1
, H ⊂ G, (2.2)

and strictly strongly balanced if (2.2) holds as a strict inequality for all H ⊊ G.

3) A graph G is K2-balanced if

e(H)− 1

v(H)− 2
≤ e(G)− 1

v(G)− 2
, H ⊂ G, v(H) ≥ 3, (2.3)

and strictly K2-balanced if (2.3) holds as a strict inequality for all H ⊊ G.

Remark 2.2 From [ŁR92] we have the following statements.

i) Cycles and complete graphs are strictly K2-balanced.

ii) Trees are K2-balanced, but not strictly K2-balanced.

iii) K2-balanced graph are strongly balanced, except for the unions of disjoint edges, also

called matchings.

iv) Strongly balanced graphs are strictly balanced.

Graphs with endpoints

Throughout this paper, we consider a connected graph G satisfying the following conditions.

Assumption 2.3 Given r ≥ 2 and m ≥ 0, we consider a connected graph G = (VG, EG)

with edge set EG and vertex set VG = {1, . . . , r +m}, such that
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i) the subgraph induced by G on {1, . . . , r} is connected, and

ii) the endpoint vertices r + 1, . . . , r +m are not adjacent to each other in G,

where Condition (ii) is void and VG = {1, . . . , r} in case m = 0.

(a) No endpoint, m = 0. (b) One endpoint (rooted graph). (c) Two endpoints, m = 2.

Figure 1: Examples of triangles with endpoints, r = 3.

In the sequel, we denote [n] := {1, . . . , n} for any n ≥ 1, and write VG = [r +m].

Definition 2.4 We let

am(G) := max
i∈[r]

|Ai| (2.4)

denote the maximum number of endpoint connections to any vertex in [r], where

Ai := {j ∈ {r + 1, . . . , r +m} : {i, j} ∈ EG}, (2.5)

is the neighborhood of vertex i ∈ [r] within the set {r + 1, . . . , r +m} of endpoints.

We note that

am(G) ≤ m, a0(G) = 0, and a1(G) = 1.

In what follows, our main results will hold under the balance condition

e(H)− am(G)

v(H)−m− 1
≤ e(G)− am(G)

r − 1
, H ⊂ G, v(H) ≥ m+ 2. (2.6)

We also note the following points.

Remark 2.5 a) When r = 2 and m ≥ 0, Condition (2.6) is satisfied by all connected

graphs.

b) When r ≥ 3 and m ≥ 0, Condition (2.6) is satisfied by any tree G, if m = am(G). Indeed,

when G is a tree and H is a subgraph of G, we have

e(G)− am(G)

r − 1
=
r − 1 +m− am(G)

r − 1
= 1 +

m− am(G)

r − 1
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and
e(H)− am(G)

v(H)−m− 1
≤v(H)− 1− am(G)

v(H)−m− 1
= 1 +

m− am(G)

v(H)−m− 1
,

hence (2.6) is satisfied if m = am(G).

c) When r ≥ 2 and m = 0, (2.6) is the strong balance condition (2.2) since a0(G) = 0.

d) When r ≥ 2 and m = 1, (2.6) is the K2-balance condition (2.3) since a1(G) = 1. Note

that cycles, trees and complete graphs are K2-balanced by Remark 2.2.

Table 1 presents the counts of (isomorphic) trees (t) vs. graphs (g) satisfying Condition (2.6)

within those (a) satisfying Assumption 2.3 in the format t/g/a, using the R code presented

in Appendix B for different values of r ≥ 2 and m ≥ 0, with m+ r ≤ 8. We check that when

m ≥ 1 the number of trees satisfying Condition (2.6) depends only on r ≥ 3, and that only

trees can satisfy Condition (2.6) as the number m of endpoints becomes large. The first row

(m = 0) refers to strongly balanced graphs.

HHH
HHHm

r 2 3 4 5 6

0 1/1/1 1/2/2 2/5/6 3/14/21 6/53/112
1 1/2/2 2/6/8 4/20/44 9/106/333 20/893/3771
2 2/4/4 2/6/27 4/26/274 9/176/4071 20/2273/94584
3 2/6/6 2/2/73 4/7/1346 9/27/39159
4 3/9/9 2/2/171 4/4/5620
5 3/12/12 2/2/359
6 4/16/16

Table 1: Counts t/g/a of graphs G satisfying Condition (2.6) vs. Assumption 2.3.

3 Main results

Let y1, . . . , ym ∈ Rd be fixed endpoints, or terminal nodes, where m ≥ 0 and by convention

we set {y1, . . . , ym} = ∅ when m = 0. In what follows, we consider the count NG of

subgraphs isomorphic to a given connected graph G in the random-connection model Gφ(η∪
{y1, . . . , ym}) which includes the fixed endpoints y1, . . . , ym as vertices.

Definition 3.1 Let NG denote the count of (labelled) subgraphs H ⊂ Gφ(η ∪ {y1, . . . , ym})
such that there exists a bijection ψ : [r +m] → VH satisfying

{i, j} ∈ EG iff {ψ(i), ψ(j)} ∈ EH

for 1 ≤ i ̸= j ≤ r +m, and ψ(l) = yl, l = 1, . . . ,m.
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We note that the subgraph count NG can be represented as

NG :=
∑

(α1,...,αr)∈[τ ]r̸=

 ∏
{i,j}∈EG

i∈[r], j∈[r]

1{Xαi↔Xαj }


 ∏

{r+j,i}∈EG

i∈[r], j∈[m]

1{yj↔Xαi}


where x ↔ y indicates that x, y ∈ η ∪ {y1, . . . , ym} are connected by an edge in the RCM,

and

[τ ]r̸= := {(i1, . . . , ir) ∈ [τ ]r : ik ̸= ij if k ̸= j}.

When m = 0, NG is the count of graphs isomorphic to the graph G in the Poisson random-

connection model Gφ(η).

Assumption 3.2 i) When m = 0, µ is a finite diffuse measure on Rd, and φ : Rd×Rd →
[0, 1] is a symmetric measurable function.

ii) When m ≥ 1, µ is a diffuse sigma-finite measure on Rd, and φ : Rd × Rd → [0, 1] is a

symmetric measurable function that satisfies

sup
x∈Rd

∫
Rd

φ(x, y) µ(dy) <∞. (3.1)

iii) When m ≥ 1, in addition to (ii), µ is the Lebesgue measure on Rd and φ : Rd × Rd →
[0, 1] is a symmetric measurable function which is translation invariant, i.e.

φ(x, y) = φ(0, y − x), x, y ∈ Rd.

Under Assumption 3.2-(iii), the integrability condition (3.1) reads∫
Rd

φ(0, x) dx <∞. (3.2)

Normal approximation

Recall that by e.g. Theorem 1 in [Jan88], any sequence (Xn)n≥1 of real-valued such that

lim
n→∞

κm(Xn) = 0, for all m ≥ m0,

for some m0 ≥ 3 converges in distribution to the Gaussian distribution N (µ, σ2), provided

that the limits

µ := lim
n→∞

κ1(Xn) and σ2 := lim
n→∞

κ2(Xn)

exist. Theorem 3.3, which is a consequence of Propositions 6.4 and 7.5, provides sufficient

conditions for the asymptotic vanishing of higher order cumulants in (3.3). This will further

enable us to apply the method of cumulant for normal approximation in Theorem 3.5.
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Theorem 3.3 Let G be a connected graph with VG = [r + m] for r ≥ 2 and m ≥ 0, and

suppose that Assumptions 3.2-(i)-(iii) are satisfied and the balance condition (2.6) holds.

Then, the cumulant κn(NG) of order n ≥ 1 of the normalized subgraph count

NG :=
NG − κ1(NG)√

κ2(NG)

satisfies the cumulant bound

|κn(NG)| ≤
n!r

∆n−2
λ

, (3.3)

where

∆λ ≍

{
λr/2c

e(G)/2
λ if cλ ≲ λ−(r−1)/(e(G)−am(G)),

λ1/2c
am(G)/2
λ if 1 ≳cλ ≳ λ−(r−1)/(e(G)−am(G)),

(3.4)

as λ tends to infinity. In particular, when G has no endpoints (m = 0), we have, as λ tends

to infinity,

∆λ ≍

{
λv(G)/2c

e(G)/2
λ if cλ ≲ λ−(v(G)−1)/e(G),

λ1/2 if 1 ≳cλ ≳ λ−(v(G)−1)/e(G),

and (2.6) becomes the strong balance condition.

Theorem 3.3 extends Corollaries 6.4 and 6.6 of [LP24] without restriction to the dilute and

sparse regimes considered therein. When G is a tree with v(G) = r vertices and no endpoints

(m = 0), Theorem 3.3 yields

∆λ ≍


λv(G)/2c

(v(G)−1)/2
λ if cλ ≲

1

λ
,

λ1/2 if 1 ≳cλ ≳
1

λ
,

which recovers Corollaries 6.4 and 6.6-1) of [LP24] as particular cases.

Corollary 3.4 (Normal approximation). Let G be a connected graph with VG = [r + m]

for r ≥ 2 and m ≥ 0, suppose that Assumptions 3.2-(i)-(iii) are satisfied and the balance

condition (2.6) holds. In addition, assume that

1 ≳cλ ≫ λ−min(r/e(G),1/am(G)). (3.5)

Then, the normalized subgraph count NG converges in distribution to a standard normal

random variable as λ tends to infinity. In particular, when m = 0 or m = 1, Condition (3.5)

reduces to

1 ≳cλ ≫ λ−r/e(G),

i.e. 1 ≳cλ ≫ λ−v(G)/e(G) when G has no endpoints (m = 0).
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Proof. It suffices to note that under (3.5), in both cases

i) 1 ≳cλ ≫ λ−r/e(G) if am(G)r < e(G), and

ii) 1 ≳cλ ≫ λ−1/am(G) if am(G)r ≥ e(G),

we have limλ→∞∆λ = ∞ in Theorem 3.3, and to apply Theorem 1 in [Jan88]. □

When am(G) = 0, and in particular if m = 0, we have 1/am(G) = ∞, and therefore

min(r/e(G), 1/am(G)) = r/e(G)

in (3.5). When cλ ≍ λ−α, the normal approximation result of Corollary 3.4 holds provided

that

0 < α < min

(
r

e(G)
,

1

am(G)

)
. (3.6)

When m = 0 or m = 1, Condition (3.6) is equivalent to

0 < α <
r

e(G)
,

which also reads

0 < α <
r

e(G)
=
v(G)

e(G)

in the absence of endpoints (m = 0).

Theorem 3.5 follows from Theorem 3.3 and the “main lemmas” in Chapter 2 of [SS91] and

in [DJS22]. When m = 0, the Kolmogorov rate in (3.7) with cλ ≳ λ−(v(G)−1)/e(G) is consistent

with the rate in Corollary 4.6 of [PS20] in the Erdős-Rényi model, up to an additional power

1/(2r − 1).

Theorem 3.5 (Normal approximation). Let G be a connected graph with VG = [r + m]

for r ≥ 2 and m ≥ 0. Suppose that Assumptions 3.2-(i)-(iii) are satisfied, that the balance

condition (2.6) holds, that

1 ≳cλ ≫ λ−min(r/e(G),1/am(G)),

and let ∆λ be defined in (3.4).

i) (Kolmogorov bound, [SS91, Corollary 2.1] and [DJS22, Theorem 2.4]) One has

sup
x∈R

|Pλ(NG ≤ x)− Φ(x)| ≤ C

(∆λ)1/(2r−1)
, (3.7)

where C > 0 is a constant depending only on r ≥ 2.
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ii) (Moderate deviation principle, [DE13, Theorem 1.1] and [DJS22, Theorem 3.1]). Let

(aλ)λ>0 be a function of λ tending to infinity as λ tends to infinity, and such that

lim
λ→∞

aλ
(∆λ)1/(2r−1)

= 0.

Then, (a−1
λ NG)λ>0 satisfies a moderate deviation principle with speed a2λ and rate func-

tion x2/2.

iii) (Concentration inequality, corollary of [SS91, Lemma 2.4] and [DJS22, Theorem 2.5]).

For any x ≥ 0 and sufficiently large λ,

Pλ(|NG| ≥ x) ≤ 2 exp

(
−1

4
min

(
x2

2r
, (x∆λ)

1/r

))
.

iv) (Normal approximation with Cramér corrections, [SS91, Lemma 2.3] and [DJS22, Theo-

rem 2.3]). There exists a constant c > 0 such that for all λ ≥ 1 and x ∈ (0, c(∆λ)
1/(2r−1))

we have
Pλ(NG ≥ x)

1− Φ(x)
=

(
1 +O

(
x+ 1

(∆λ)1/(2r−1)

))
exp

(
L̃(x)

)
and

Pλ(NG ≤ −x)
Φ(−x)

=

(
1 +O

(
x+ 1

(∆λ)1/(2r−1)

))
exp

(
L̃(−x)

)
,

where L̃(x) := (x/c)3(∆λ)
−3/(2r−1)θ, for some θ ∈ [−1, 1] depending on x ∈ (0, c(∆λ)

1/(2r−1)).

Poisson approximation

In what follows, |Aut•(G)| stands for the number of automorphisms of the induced subgraph

H ⊂ G with VH = [r]. For example, taking G in Figure 3, the induced graph of G is a path

H with vertex set [4] and edge set EH = {{1, 2}, {1, 3}, {3, 4}}, which gives |Aut•(G)| = 2.

The condition am(G)r≤e(G) in the Poisson limit Theorem 3.6 always holds when m = 0,

and it holds for trees, cycles and complete graphs when m = 1.

Theorem 3.6 (Poisson approximation). Let G be a connected graph with VG = [r + m]

for r ≥ 2 and m ≥ 0, suppose that Assumptions 3.2-(i)-(ii) are satisfied. If the balance

condition (2.6) holds together with am(G)r ≤ e(G) and

lim
λ→∞

λc
e(G)/r
λ = c > 0,
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then the subgraph count N̂G := NG/|Aut•(G)| converges in distribution to a Poisson random

variable with mean

µφ :=
cr

|Aut•(G)|

∫
(Rd)r

∏
{i,j}∈EG

φ(xi, xj) µ(dx1) · · ·µ(dxr),

where xr+i := yi for i = 1, . . . ,m.

The proof of Theorem 3.6 is postponed to the end of Section 7.

By the first and second moment methods, see [JŁR00, Page 54], we have

(Eλ[X])2

Eλ[X2]
≤ Pλ(X > 0) ≤ Eλ[X] (3.8)

for any non-negative integer-valued random variable X, which yields the following threshold

result for subgraph containment as a consequence of Corollary 7.3.

Theorem 3.7 (Threshold for subgraph containment). Let G be a connected graph with VG =

[r + m] for r ≥ 2 and m ≥ 0, and suppose that Assumptions 3.2-(i)-(ii) are satisfied. If

the balance condition (2.6) holds together with am(G)r ≤ e(G), then we have the following

threshold results:

a) limλ→∞ Pλ(NG = 0) = 1 if cλ ≪ λ−r/e(G),

b) limλ→∞ Pλ(NG = 0) = e−νφ if cλ ∼ λ−r/e(G), with

νφ :=
1

|Aut•(G)|

∫
(Rd)r

∏
{i,j}∈EG

φ(xi, xj) µ(dx1) · · ·µ(dxr),

where xr+i := yi for i = 1, . . . ,m,

c) limλ→∞ Pλ(NG = 0) = 0 if 1 ≳ cλ ≫ λ−r/e(G).

Proof. (a) Since Eλ[NG] ≍ λrc
e(G)
λ , if cλ ≪ λ−r/e(G), we know that limλ→∞ Eλ[NG] = 0, and

we conclude by the first moment method in (3.8).

(b) Since cλ ∼ λ−r/e(G), we have c = limλ→∞ λc
e(G)/r
λ = 1, and we conclude by Theorem 3.6.

(c) From Corollary 7.3 we know that if cλ ≫ λ−(r−1)/(e(G)−am(G)), then

κ2(NG) ≍ λ2r−1c
2e(G)−am(G)
λ ,

and if cλ ≪ λ−(r−1)/(e(G)−am(G)), then

κ2(NG) ≍ λrc
e(G)
λ .
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If am(G) ≤ e(G)/r and cλ ≫ λ−r/e(G), then we have

(Eλ[NG])
2

Eλ[(NG)2]
≍ λ2rc

2e(G)
λ

λ2rc
2e(G)
λ + κ2(NG)

≍ 1

1 +
(
λrc

e(G)
λ

)−1 ∨
(
λc

am(G)
λ

)−1 → 1, (3.9)

and we conclude by the second moment method in (3.8). □

4 Diagram representation of cumulants

This section introduces the diagram framework used for the expansion of cumulants as sums

over partitions in Proposition 4.7 below.

We start with basic notation on set partitions, see e.g. [PT11], [LP24]. For any finite set

b, we let Π(b) denote the collection of set partitions of b. For two set partitions ρ1, ρ2 ∈ Π(b),

we say ρ1 is coarser than ρ2 (i.e. ρ2 is finer than ρ1), and we write it as ρ2 ⪯ ρ1, if and only

if each block of ρ2 is contained in a block of ρ1. We use ρ1 ∨ ρ2 for the finest partition which

is coarser than both ρ1 and ρ2, and denote by ρ1 ∧ ρ2 the coarsest partition which is finer

than both of ρ1 and ρ2. We also let 1̂ := {b} denote the coarsest partition of b, whereas 0̂

stands for the partition made of singletons.

Definition 4.1 Given r ≥ 2 and n ≥ 1 we let π denote the partition π := {π1, . . . , πn} ∈
Π([n]× [r]) of [n]× [r] defined as

πi := {(i, j) : 1 ≤ j ≤ r}, i = 1, . . . , n.

a) A partition ρ ∈ Π([n]× [r]) is said to be non-flat if ρ∧ π = 0̂, and connected if ρ∨ π = 1̂.

b) We let Π1̂([n]× [r]) denote the collection of all connected partitions of [n]× [r], and let

CNF(n, r) :=
{
ρ : ρ ∈ Π1̂([n]× [r]), ρ ∧ π = 0̂

}
denote the set of all connected and non-flat partitions of [n]× [r], for n, r ≥ 1.

Example 4.2 Figure 2 presents an example of non-flat connected partition in CNF(3, 4).

1

2

3
1 2 3 4

Figure 2: Non-flat connected partition of [3]× [4].
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We also note the following lemma.

Lemma 4.3 [LP24, Lemma 2.5] Let n ≥ 2. For any connected partition ρ ∈ Π1̂([n]× [r])

there exists i ∈ {1, . . . , n} such that the set partition {b\πi : b ∈ ρ} of {1, . . . , i − 1, i +

1, . . . , n} × [r] is connected.

In [LP24], a graphical diagram language has been designed for the cumulant representation

of subgraph counts in the random-connection model, and extended to the case of subgraphs

containing fixed endpoints in c.f. [LP25b].

Definition 4.4 [LP25b] Let G be a connected graph of order r + m satisfying Assump-

tion 2.3, and let ρ = {b1, . . . , b|ρ|} ∈ Π([n]× [r]), n ≥ 1, be a partition of [n]× [r]. We let ρG
denote the connected multigraph built on [m] ∪ ([n]× [r]), which is constructed as follows.

1. For all i ∈ [n] and j1, j2 ∈ [r], j1 ̸= j2, an edge links (i, j1) to (i, j2) iff (j1, j2) ∈ EG;

2. For all k ∈ [m], i ∈ [n] and j ∈ [r], an edge links (k) to (i, j) iff (r + k, j) ∈ EG;

3. For all i ∈ [|ρ|], all elements in the same block bi are regarded as one vertex.

In addition, we let ρG be the graph constructed from the multigraph ρG by replacing multiple

edges with simple edges in ρG.

In what follows, the blocks of any given partition ρ = {b1, . . . , b|ρ|} in Π([n]× [r]) are ordered

along the lexicographic order on [n]× [r], by ordering the blocks according to their smallest

elements. From the above construction, the vertices of ρG originate from terminal nodes

[m] and blocks b1, . . . , b|ρ| of ρ. We can further denote the vertex set of the graph ρG as

V (ρG) := [|ρ|+m] according to the rule that the m terminal nodes follows b1, . . . , b|ρ| in

order.

See also [Kho08] for a diagram representation used for lines and cycles in the Erdős-

Rényi model, and [FGY23] for a graphical representation defined for the U -statistics of

determinantal point processes.

Example 4.5 Consider ρ ∈ Π([3]× [4]) as in Figure 2, with

ρ = {{(1, 1), (2, 1), (3, 1)}, {(1, 2)}, {(1, 3), (2, 3)},

{(1, 4)}, {(2, 2), (3, 2)}, {(2, 4), (3, 3)}, {(3, 4)}},

and let G be the connected graph with vertex set VG = [5], represented in Figure 3.
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1 2 3
45

Figure 3: Connected graph G on five vertices including one endpoint, with r = 4 and m = 1.

Figure 4 presents the multigraph ρG and corresponding graph ρG.

(3,1) (3,2) (3,3) (3,4)

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)
1

(a) Multigraph ρG before merging edges and vertices.

8

2

5

4

1 3

76

(b) Graph ρG after merging edges and vertices.

Figure 4: Example of graph ρG with n = 3, r = 4, and m = 1.

The above framework allows us to state moment and cumulant formulas for the subgraph

counts NG.

Definition 4.6 For ρ = {b1, . . . , b|ρ|} ∈ Π([n]× [r]) and j ∈ [m], we denote by

Aρ
j := {k ∈ [|ρ|] : ∃(s, i) ∈ bk s.t. {i, r + j} ∈ EG} (4.1)

the neighborhood of the vertex (|ρ|+ j) in the graph ρG.

From [LP25b], we have the following moment and cumulant representation for NG.

Proposition 4.7 Let n ≥ 1. Then, the n-th moments and n-th cumulants of NG admit the

expressions

Eλ[(NG)
n] =

∑
ρ∈Π([n]×[r])

ρ∧π=0̂
(non−flat)

Fλ(ρ) and κn(NG) =
∑

ρ∈Π
1̂
([n]×[r])

ρ∧π=0̂
(non−flat connected)

Fλ(ρ), (4.2)

where Fλ(ρ), ρ ∈ Π([n]× [r]), is defined as

Fλ(ρ) := λ|ρ|
∫
(Rd)|ρ|

∏
1≤j≤m
i∈Aρ

j

φλ(xi, yj)
∏

1≤k<l≤|ρ|
{k,l}∈E(ρG)

φλ(xk, xl)µ(dx1) · · ·µ(dx|ρ|). (4.3)
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5 Planar representation of partition diagrams

In this section, we introduce a planar representation that will allow us to determine the

leading partition diagrams in the moment and cumulant expressions of Proposition 4.7.

Definition 5.1 Let G be a connected graph with VG = [r +m], for some r ≥ 2 and m ≥ 0.

For n ≥ 2, we let

Σn(G,m) :=
{
(x(ρG), y(ρG)) := (nr +m− v(ρG), ne(G)− e(ρG)) : ρ ∈ CNF(n, r)

}
,

where, for every partition ρ ∈ Π([n]× [r]), ρG is the graph associated to ρ by Definition 4.4.

Example 5.2 Let G = C3 be a triangle with no endpoint, i.e. r = 3 and m = 0. We have
Σ2(C3, 0) = {(3, 3), (2, 1), (1, 0)},

Σ3(C3, 0) = {(6, 6), (5, 4), (4, 3), (5, 3), (4, 2), (4, 1), (3, 1), (3, 0), (2, 0)},

Σ4(C3, 0) = {(9, 9), (8, 7), (7, 6), (8, 6), (7, 5), (7, 4), (6, 4), (6, 3), (5, 3), (7, 3),
(6, 2), (5, 2), (7, 2), (6, 1), (5, 1), (4, 1), (6, 0), (5, 0), (4, 0), (3, 0)},

see Figure 5.

y

x

1
2

4

6

3

5
6

1 2 3 4 5 6

(a) Subgraph plot of Σ3(C3, 0).

y

x

1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9

(b) Subgraph plot of Σ4(C3, 0).

Figure 5: Set Σn(C3, 0) and upper boundary of its convex hull (in red) for n = 3, 4.

Figure 5 and the following ones can be plotted after loading the SageMath code presented in

the appendix and running the following commands.

G = [[1,2],[2,3],[3,1]]; EP = []; SG3=convexhull(3,G,EP); SG4=convexhull(4,G,EP)
Polyhedron(SG3).plot(color = "pink")+point(SG3,color = "blue",size=20)
Polyhedron(SG4).plot(color = "pink")+point(SG4,color = "blue",size=20)
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Example 5.3 Let G = C4 be a 4-cycle with no endpoint, i.e. r = 4 and m = 0. Here,

Σ2(C4, 0) and Σ3(C4, 0) are plotted in Figure 6.

y

x

1
2
3
4

1 2 3 4

(a) Subgraph plot of Σ2(C4, 0).

y

x

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

(b) Subgraph plot of Σ3(C4, 0).

Figure 6: Set Σn(C4, 0) and upper boundary of its convex hull (in red) for n = 2, 3.

Figure 6 can be plotted via the following commands, after loading the SageMath code listed

in the appendix.

G = [[1,2],[2,3],[3,4],[4,1]]; EP = []; SG2=convexhull(2,G,EP); SG3=convexhull(3,G,EP)
Polyhedron(SG2).plot(color = "pink")+point(SG2,color = "blue",size=20)
Polyhedron(SG3).plot(color = "pink")+point(SG3,color = "blue",size=20)

Example 5.4 Let G = C4 be a rooted 4-cycle with one endpoint, i.e. r = 3 and m = 1, see

Figure 7.

1 2

34

Figure 7: Connected graph G = C4 with r = 3 and m = 1.

The sets Σ3(C4, 1) and Σ4(C4, 1) are plotted in Figure 8.
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(a) Subgraph plot of Σ3(C4, 1).
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(b) Subgraph plot of Σ4(C4, 1).

Figure 8: Set Σn(C4, 1) and upper boundary of its convex hull (in red) for n = 3, 4.

Figure 8 can be plotted via the following commands.

G = [[1,2],[2,3]]; EP = [[1,3]]; SG3=convexhull(3,G,EP); SG4=convexhull(4,G,EP)
Polyhedron(SG3).plot(color = "pink")+point(SG3,color = "blue",size=20)
Polyhedron(SG4).plot(color = "pink")+point(SG4,color = "blue",size=20)

Figures 5-8 also show an upper boundary plotted in red, which is characterized in the next

definition.

Definition 5.5 We let Σ̂n(G,m) denote the upper boundary of the convex hull of Σn(G,m),

with

Σ̂n(G,m) ∩ Σn(G,m) = {(xi, zi) : i = 0, 1, . . . , l}, (5.1)

for some l ≥ 1, where

n− 1 = x0 < x1 < · · · < xl = (n− 1)r < xl+1 := +∞.

In Definition 5.1, x(ρG) = nr+m− v(ρG) = nr−|ρ| stands for the number of vertices being

removed in the process of graph contraction. Later on, in Definition 5.5 x0 and xl will be

used to denote the minimum and the maximum number of vertices being removed. Because

for all ρ ∈ CNF(n, r),

r ≤ |ρ| ≤ n(r − 1) + 1,

we have x0 = n − 1 and xl = (n − 1)r. We note that for any point (xi, zi) in Σ̂n(G,m) ∩
Σn(G,m), i ∈ {0, 1, . . . , l}, there exists a connected non-flat partition ρi ∈ CNF(n, r) such

that the associated graph ρi,G satisfies

v(ρi,G) = nr +m− xi and e(ρi,G) = ne(G)− zi. (5.2)
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We note that the upper boundary Σ̂n(G,m) starts at (x0, y0) := (n− 1, (n− 1)am(G)) and

ends at ((n− 1)r, (n− 1)e(G)), where am(G) is defined in (2.4).

We also recall the following lemma from [LP24, Lemma 2.8], in which the maximality of

connected non-flat partitions refers to maximizing the number of blocks, see also Proposi-

tion 6.1 in [ST24].

Lemma 5.6 a) The cardinality of the set CNF(n, r) of connected non-flat partitions of [n]×
[r] satisfies

|CNF(n, r)| ≤ n!rr!n−1, n, r ≥ 1. (5.3)

b) Let M(n, r) denote the set of maximal connected non-flat partitions of [n] × [r]. Then,

each element of M(n, r) has precisely (n− 1)r + 1 blocks, and we have

|M(n, r)| = rn−1

n−1∏
i=1

(1 + (r − 1)i), n, r ≥ 1,

with the bounds

((r − 1)r)n−1(n− 1)! ≤ |M(n, r)| ≤ ((r − 1)r)n−1n!, n ≥ 1, r ≥ 2. (5.4)

6 Leading diagrams

Based on the convex hull of Σn(G,m) given in Definition 5.1, in this section we identify the

dominant asymptotic order and the leading contribution appearing in the expression (4.2)

of κn(NG), n ≥ 1, which is key to the derivation of normal approximation results via the

cumulant method.

Definition 6.1 Given G a connected graph with VG = [r +m], a diagram ρ ∈ CNF(n, r),

n ≥ 1, is said to be a leading diagram for a given (cλ)λ>0 if, for every σ ∈ CNF(n, r) satisfies

that

λv(σG)c
e(σG)
λ = O

(
λv(ρG)c

e(ρG)
λ

)
, as λ→ ∞.

The characterization of leading diagrams will use the following definition.

Definition 6.2 Let ρ ∈ CNF(n, r) and iρ ∈ {0, . . . , l} be such that

xiρ ≤ x(ρG) < xiρ+1,
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where x(ρG) is given in Definition 5.1. Using the notation (5.1), we define

θ−(ρG) :=


+∞, iρ = 0,

ziρ − ziρ−1

xiρ − xiρ−1

, 1 ≤ iρ ≤ l,
and θ+(ρG) :=


ziρ+1 − ziρ
xiρ+1 − xiρ

, 0 ≤ iρ < l,

0, iρ = l.

We note the inequality

θ−(ρG) ≥ θ+(ρG),

which holds because Σ̂n(G,m) is the upper boundary of the convex hull of Σn(G,m). We also

say that a diagram ρ ∈ CNF(n, r) lies on the boundary Σ̂n(G,m) if the point (x(ρG), y(ρG))

does. Lemma 6.3 states that leading diagrams can only lie on the upper boundary Σ̂n(G,m).

Lemma 6.3 Let G be a connected graph with VG = [r +m], r ≥ 2, m ≥ 0. Let n ≥ 2 and

assume that limλ→∞ cλ = 0.

1) Every leading diagram ρ ∈ CNF(n, r) lies on the upper boundary Σ̂n(G,m), i.e.

(nr +m− v(ρG), ne(G)− e(ρG)) ∈ Σ̂n(G,m).

2) If a diagram ρ ∈ CNF(n, r) lies on the upper boundary Σ̂n(G,m) and

λc
θ−(ρG)
λ = O(1) and λc

θ+(ρG)
λ = Ω(1),

then ρ is a leading diagram.

Proof. 1) Suppose that ρ ∈ CNF(n, r) does not lie on the boundary Σ̂n(G,m), i.e.

(x(ρG), y(ρG)) := (nr +m− v(ρG), ne(G)− e(ρG)) ∈ Σn(G,m)\Σ̂n(G,m).

Using (5.1), if x(ρG) = xl, we know that y(ρG) < zl, as (x(ρG), y(ρG)) is not on the upper

boundary Σ̂n(G,m). Therefore, we have

λv(ρG)−v(ρl,G)c
e(ρG)−e(ρl,G)

λ = c
zl−y(ρG)
λ ≪ 1,

and ρ cannot be a leading diagram.

If x(ρG) < xl, we choose iρ ∈ {0, . . . , l−1} such that xiρ ≤ x(ρG) < xiρ+1. Since Σ̂n(G,m)

is the upper boundary of a convex hull, by (5.2) if iρ < l we have

ν :=
ziρ+1 − y(ρG)

xiρ+1 − x(ρG)
> θ+(ρG) =

ziρ+1 − ziρ
xiρ+1 − xiρ

=
e(ρiρ,G)− e(ρiρ+1,G)

v(ρiρ,G)− v(ρiρ+1,G)
,

i.e. λcνλ ≪ λc
θ+(ρG)
λ because limλ→∞ cλ = 0, and we consider three cases.
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i) If 1 ≪ λcνλ, we have

λv(ρG)−v(ρiρ+1,G)c
e(ρG)−e(ρiρ+1,G)

λ = (λcνλ)
v(ρG)−v(ρiρ+1,G)

≪
(
λc

θ+(ρG)
λ

)v(ρG)−v(ρiρ+1,G)

≤
(
λc

θ+(ρG)
λ

)v(ρiρ,G)−v(ρiρ+1,G)

= λv(ρiρ,G)−v(ρiρ+1,G)c
e(ρiρ,G)−e(ρiρ+1,G)

λ ,

which implies λv(ρG)c
e(ρG)
λ ≪ λv(ρiρ,G)c

e(ρiρ,G)

λ as limλ→∞ cλ = 0, hence the diagram ρ is

not leading.

ii) If limλ→∞ λcνλ = c > 0, we have

λv(ρG)−v(ρiρ+1,G)c
e(ρG)−e(ρiρ+1,G)

λ = (λcνλ)
v(ρG)−v(ρiρ+1,G)

≪
(
λc

θ+(ρG)
λ

)v(ρG)−v(ρiρ+1,G)

≍
(
λc

θ+(ρG)
λ

)v(ρiρ,G)−v(ρiρ+1,G)

= λv(ρiρ,G)−v(ρiρ+1,G)c
e(ρiρ,G)−e(ρiρ+1,G)

λ ,

and we conclude as above.

iii) If λcνλ ≪ 1, we have

λv(ρG)−v(ρiρ+1,G)c
e(ρG)−e(ρiρ+1,G)

λ ≪ 1,

hence

λv(ρG)c
e(ρG)
λ ≪ λv(ρiρ+1,G)c

e(ρiρ+1,G)

λ .

As a consequence of the above, we find

λv(ρG)c
e(ρG)
λ ≪ λv(ρiρ,G)c

e(ρiρ,G)

λ or λv(ρG)c
e(ρG)
λ ≪ λv(ρiρ+1,G)c

e(ρiρ+1,G)

λ ,

hence ρ is not a leading diagram.

2) Suppose that ρ does lie on the boundary Σ̂n(G,m). Then, there exists iρ ∈ {0, . . . , l}
such that (x(ρG), y(ρG)) = (xiρ , ziρ), and it holds that

λc
θ−(ρG)
λ = O(1) and λc

θ+(ρG)
λ = Ω(1).
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i) If j < iρ, then xj − xiρ < 0 and

ziρ − zj

xiρ − xj
≥
ziρ − ziρ−1

xiρ − xiρ−1

= θ−(ρG).

Hence,

λc
(ziρ−zj)/(xiρ−xj)

λ = O
(
λc

θ−(ρG)
λ

)
= O(1). (6.1)

Now, since

λnr+m−xiρc
ne(G)−yiρ
λ

λnr+m−xjc
ne(G)−zj
λ

= λxj−xiρc
zj−ziρ
λ =

(
λc

(zj−ziρ )/(xj−xiρ )

λ

)xj−xiρ , (6.2)

we find
λv(ρG)c

e(ρG)
λ

λv(ρj,G)c
e(ρj,G)
λ

= Ω(1).

ii) If j > iρ, then xj − xiρ > 0 and

zj − ziρ
xj − xiρ

≤ θ+(ρG),

therefore

λc
(ziρ−zj)/(xiρ−xj)

λ = Ω
(
λc

θ+(ρG)
λ

)
= Ω(1), (6.3)

and (6.2) shows that
λv(ρG)c

e(ρG)
λ

λv(ρj,G)c
e(ρj,G)
λ

= Ω(1).

This ensures that ρ is a leading diagram. □

Proposition 6.4 provides a sufficient condition ensuring that the upper boundary Σ̂n(G,m)

is a line segment, a property used in the proof of Corollary 7.3.

Proposition 6.4 Let G be a connected graph with VG = [r +m], r ≥ 2, m ≥ 0, such that

the balance condition (2.6) holds. Then, the upper boundary Σ̂n(G,m) is a line segment for

all n ≥ 1.

Proof. To present the result in a more compact form, we will first show that the requirement

that the upper boundary Σ̂n(G,m) is a line segment is equivalent to

e(G)− am(G)

r − 1
≤ e(ρG)− am(G)

v(ρG)−m− 1
, ρ ∈ CNF(n, r). (6.4)
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Because the upper boundary Σ̂n(G,m) starts at (x0, z0) := (n− 1, (n− 1)am(G)) and ends

at (xl, zl) := ((n− 1)r, (n− 1)e(G)), the requirement that the upper boundary Σ̂n(G,m) is

a line segment is equivalent to that for any (x, z) ∈ Σn(G,m),

zl − z

xl − x
≥ zl − z0
xl − x0

=
e(G)− am(G)

r − 1
. (6.5)

Considering the Definition 5.1, we obtain that the requirement itself is further equivalent to

for any diagram ρ ∈ CNF(n, r),

e(ρG)− e(G)

v(ρG)−m− r
≥ e(G)− am(G)

r − 1
, (6.6)

and, after reorganizing, the above inequality becomes equivalent to (6.4). It remains to show

that the balance condition (2.6) ensures that (6.4) is satisfied. Here, we apply an induction

argument to see this. When n = 1, the claim is trivial as the only element in CNF(1, r) is

isomorphic to G. Suppose now that (6.4) holds up to the rank n ≥ 1. Let ρ ∈ CNF(n+1, r)

be a non-flat connected partition of [n+1]× [r] with associated graph ρG. By Lemma 4.3, up

to reordering of {1, . . . , n+1} there exists a partition σ ∈ CNF(n, r) obtained by restriction

of ρ to [n]× [r]. Let σ′ denote the partition obtained by restriction of ρ to {n+1}× [r], see

Figure 9.

1

2

3

1 2 3 4

(a) Partition ρ of [n+ 1]× [r].

1

2

3

1 2 3 4

(b) Splitting of [n+ 1]× [r].

1

2

3

1 2 3 4

(c) Partitions σ and σ′.

Figure 9: Splitting of a partition ρ into σ and σ′ with n = 3 and r = 4.

Given a graph G with r vertices, let ρG denote the graph with vertex set V (ρG) built on

ρ as in Definition 4.4, see Figure 10 for an example with G a graph on r +m = 6 vertices

including two endpoints.
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(a) Vertex set V (ρG). (b) Graph ρG.

Figure 10: Splitting of ρG into σG and σ′
G with n = 3, r = 4 and two endpoints m = 2.

Next, we consider the graphs σG and σ′
G obtained from Definition 4.4 on the vertex sets

V (σG) :=
{
b ∈ ρ : b ∩ (π1 ∪ · · · ∪ πn) ̸= ∅

}
∪ [m]

and

V (σ′
G) :=

{
b ∈ ρ : b ∩ πn+1 ̸= ∅

}
∪ [m],

with σ′
G ≃ G because ρ is non-flat, see Figure 11.

(a) Vertex set V (σG). (b) Vertex set V (σ′
G). (c) Vertex set V (σ′′

G).

Figure 11: Splitting of V (ρG) into V (σG), V (σ′
G) with n = 3, r = 4 and two endpoints m = 2.

Let now σ′′
G denote the graph induced by ρG on V (σ′′

G) := V (σG) ∩ V (σ′
G), see Figure 12.

(a) Graph σG. (b) Graph σ′
G. (c) Graph σ′′

G.

Figure 12: Splitting of ρG into σG and σ′
G with n = 3, r = 4 and two endpoints m = 2.

Then, σ′′
G contains m endpoints in addition to at least one non-endpoint vertex due to the

connectedness of ρ, hence we have v(σ′′
G) ≥ m + 1. Since σ′′

G ⊂ σ′
G and v(σ′′

G) ≥ m + 1, by

the balance condition (2.6) we have

e(σ′′
G)− am(G)

v(σ′′
G)−m− 1

≤ e(G)− am(G)

r − 1
,
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with the convention 0/0 = 0. Hence, by the induction hypothesis (6.4) applied at the rank

n ≥ 1 to σG, we have

e(ρG)− am(G)

v(ρG)−m− 1
=

(e(σG)− am(G)) + (e(σ′
G)− am(G))− (e(σ′′

G)− am(G))

v(σG) + v(σ′
G)− v(σ′′

G)−m− 1

=
(e(σG)− am(G)) + (e(G)− am(G))− (e(σ′′

G)− am(G))

v(σG) + v(G)− v(σ′′
G)−m− 1

≥
(v(σG)−m− 1) e(G)−am(G)

r−1
+ (e(G)− am(G))− (v(σ′′

G)−m− 1) e(G)−am(G)
r−1

v(σG) + v(G)− v(σ′′
G)−m− 1

=
e(G)− am(G)

r − 1
.

□

The balance condition (2.6) turns out to be necessary in order to ensure the upper boundary

Σ̂n(G,m) to be a line segment, as shown in the following counterexample.

Counterexample 6.5 Consider the graph G of Figure 13, which is not strongly balanced,

with r = 4 and m = 0.

Figure 13: Not strongly balanced graph G.

Figure 14 shows that the upper boundary Σ̂n(G,m) is not a line segment for n = 2 and

n = 3. Σ̂2(G, 0) and Σ̂3(G, 0).

y

x

1
2
3
4

1 2 3 4

(a) Subgraph plot of Σ2(G, 0) with Σ̂2(G, 0).

y

x
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7
8

1 2 4 6 7 8

(b) Subgraph plot of Σ3(G, 0) and Σ̂3(G, 0).

Figure 14: Set Σn(G, 0) and upper boundary of its convex hull (in red) for n = 2, 3.

Figure 14 can be plotted via the following commands.

G = [[1,2],[2,3],[3,4],[1,3]]; EP = []; SG2=convexhull(2,G,EP); SG3=convexhull(3,G,EP)
Polyhedron(SG2).plot(color = "pink")+point(SG2,color = "blue",size=20)
Polyhedron(SG3).plot(color = "pink")+point(SG3,color = "blue",size=20)28



Remark 6.6 We note that the balance condition (2.6) is not necessary for asymptotic nor-

mality of normalized subgraph counts. Consider the graph G in Figure 15 for example, where

r = 5, e(G) = 7, m = am(G) = 0, which is not strongly balanced, and not even balanced.

(a) graph G. (b) subgraph H ⊂ G.

Figure 15: A (not balanced) graph G and subgraph H.

Since (2.6) is not satisfied, the upper boundary Σ̂n(G,m) is not a line segment, which leads to

more potential candidates for leading diagram, beyond λ1+(r−1)nc
ne(G)−(n−1)am(G)
λ and λrce(G)

λ .

Precisely, we have

κn(NG) ≍ max
{
λnr−(n−1)c

ne(G)
λ , λnr−(n−1)v(H)c

ne(G)−(n−1)e(H)
λ , λrc

e(G)
λ

}
= max

{
λ4n+1c7nλ , λ

n+4cn+6
λ , λ5c7λ

}
=


λ4n+1c7nλ if cλ ≫ λ−1/2,

λn+4cn+6
λ if λ−1 ≪ cλ ≲ λ−1/2,

λ5c7λ if cλ ≲ λ−1.

Therefore, when cλ ≫ λ−2/3 we have κn(NG) → 0, n ≥ 3, as λ tends to infinity, which

implies asymptotic normality of NG by Theorem 1 in [Jan88]. On the other hand, when

cλ ≲ λ−1 we have κn(NG) → 0, n ≥ 1, therefore NG does not have a Poisson limit.

7 Cumulant growth rates for subgraph counts

Under Assumptions 3.2-(i)-(ii), Fλ(ρ) defined in (4.3) satisfies

Fλ(ρ) ≍ λ|ρ|c
e(ρG)
λ . (7.1)

In this section, we investigate the asymptotic behaviour of the cumulants κn(NG) in (4.2)

as cλ → 0 and the intensity λ tends to infinity, by identifying the leading diagrams ρ ∈
CNF(n, r) which, from (4.2) and Definition 6.1, satisfy

κn(NG) ≍ λv(ρG)−mc
e(ρG)
λ . (7.2)
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Proposition 7.1 Let G be a connected graph with VG = [r+m] for r ≥ 2 and m endpoints,

m ≥ 0. Suppose that Assumptions 3.2-(i)-(ii) are satisfied and that the upper boundary

Σ̂n(G,m) is a line segment linking (n− 1, (n− 1)am(G)) to ((n− 1)r, (n− 1)e(G)).

a) If 1 ≳ cλ ≳ λ−(r−1)/(e(G)−am(G)), we have

κn(NG) ≍ λ1+(r−1)nc
ne(G)−(n−1)am(G)
λ , n ≥ 2. (7.3)

b) If cλ ≍ λ−(r−1)/(e(G)−am(G)), we have

κn(NG) ≍ λc
am(G)
λ , n ≥ 2. (7.4)

c) If cλ ≲ λ−(r−1)/(e(G)−am(G)), we find

κn(NG) ≍ λrc
e(G)
λ , n ≥ 2. (7.5)

Proof. As in (5.1), we write

Σ̂n(G,m) ∩ Σn(G,m) = {(x0, z0), (x1, z1), . . . , (xl, zl)},

with x0 := n − 1 < x1 < · · · < xl := (n − 1)r. According to Definition 5.1, we can find a

corresponding partition ρi,G ∈ CNF(n, r) such that

v(ρi,G) = nr +m− xi, e(ρi,G) = ne(G)− zi.

Also, we write the (connected non-flat) set partition associated with ρi,G as ρi, and from

(7.1) we obtain that each ρi contributes

Fλ(ρi) ≍ λv(ρi,G)−mc
e(ρi,G)
λ ≍ λnr−xic

ne(G)−zi
λ . (7.6)

Because the upper boundary is a line segment with endpoints (n − 1, (n − 1)am(G)) and

((n − 1)r, (n − 1)e(G)), the slope of this line segment is θ := (e(G) − am(G))/(r − 1). By

Lemma 6.3-(1) the leading diagram ρ must lie on Σ̂n(G,m).

a) For any j = 1, . . . , l, by (5.2) we have

λv(ρ0,G)−mc
e(ρ0,G)
λ

λv(ρj,G)−mc
e(ρj,G)
λ

=
λ1+(r−1)nc

ne(G)−(n−1)am(G)
λ

λnr−xjc
ne(G)−zj
λ

=
λnr−x0c

ne(G)−z0
λ

λnr−xjc
ne(G)−zj
λ
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= λxj−x0c
zj−z0
λ

= λxj−x0c
θ(xj−x0)
λ

=
(
λc

(e(G)−am(G))/(r−1)
λ

)xj−x0 ,

hence if λc(e(G)−am(G))/(r−1)
λ ≳1, we find

λv(ρ0,G)−mc
e(ρ0,G)
λ

λv(ρj,G)−mc
e(ρj,G)
λ

≳1,

therefore any ρG such that

(v(ρG)−m, e(ρG)) = (v(ρ0,G)−m, e(ρ0,G)) = (1 + (r − 1)n, ne(G)− (n− 1)am(G))

is a leading diagram, and this yields (7.3) by (7.2).

b) If λc(e(G)−am(G))/(r−1)
λ ≍ 1 then any diagram ρi, i = 0, 1, . . . , l on the segment Σ̂n(G,m) is

a leading diagram by Lemma 6.3-(2). Furthermore, by choosing j = l with

(v(ρG)−m, e(ρG)) = (v(ρl,G)−m, e(ρl,G)) = (r, e(G)),

we find that (7.2) yields (7.4), i.e.

κn(NG) ≍ λrc
e(G)
λ ≍ λc

am(G)
λ .

c) For any j = 0, . . . , l − 1, by (5.2) we have

λv(ρl,G)−mc
e(ρl,G)

λ

λv(ρj,G)−mc
e(ρj,G)
λ

=
λrc

e(G)
λ

λnr−xjc
ne(G)−zj
λ

=
λnr−xlc

ne(G)−zl
λ

λnr−xjc
ne(G)−zj
λ

= λxj−xlc
zj−zl
λ

= λxj−xlc
θ(xj−xl)
λ

=
(
λc

(e(G)−am(G))/(r−1)
λ

)xj−xl ,

hence if λc(e(G)−am(G))/(r−1)
λ ≲1, we find

λv(ρl,G)−mc
e(ρl,G)

λ

λv(ρj,G)−mc
e(ρj,G)
λ

≳1.

Therefore, any ρG such that

(v(ρG)−m, e(ρG)) = (v(ρl,G)−m, e(ρl,G)) = (r, e(G))

is a leading diagram, and this yields (7.5) by (7.2).31



□

We note from Lemma 6.3 and Proposition 6.4 that as long as a connected graph G satisfies

the balance condition (2.6), the leading asymptotic order in the expression (4.2) of κn(NG)

is fully determined by either the maximal or the minimal connected non-flat partition. Here,

maximality, resp. minimality, of partitions refers to the maximality, resp. minimality, of

their block counts. As a consequence of Remark 2.5, we have the following.

Remark 7.2 When m = 1 with a1(G) = 1, Proposition 7.1 holds for trees, cycles and

complete graphs as they are all K2-balanced and the balance condition (2.6) coincides with

the K2-balance condition (2.3).

By Propositions 6.4 and 7.1, we have the following result.

Corollary 7.3 Let G be a connected graph with VG = [r + m], r ≥ 2, and m endpoints,

m ≥ 0. Suppose that Assumptions 3.2-(i)-(ii) and the balance condition (2.6) are satisfied.

Then, the cumulant κn(NG) of order n ≥ 1 of the subgraph count NG satisfies the following.

a) If 1 ≳ cλ ≳ λ−(r−1)/(e(G)−am(G)), we have

κn(NG) ≍ λ1+(r−1)nc
ne(G)−(n−1)am(G)
λ .

b) If cλ ≍ λ−(r−1)/(e(G)−am(G)), we have

κn(NG) ≍ λc
am(G)
λ .

c) If cλ ≲ λ−(r−1)/(e(G)−am(G)), we find

κn(NG) ≍ λrc
e(G)
λ .

In addition, by Remark 2.5-a) we have the following consequence of Corollary 7.3.

Corollary 7.4 Let G be a strongly balanced connected graph with v(G) = r vertices, r ≥ 2,

and no endpoints, i.e. m = 0, and suppose that Assumptions 3.2-(i)-(ii) are satisfied.

a) If 1 ≳ cλ ≳ λ−(v(G)−1)/e(G), we have

κn(NG) ≍ λ1+(v(G)−1)nc
ne(G)
λ .
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b) If cλ ≍ λ−(v(G)−1)/e(G), we have

κn(NG) ≍ λ.

c) If cλ ≲ λ−(v(G)−1)/e(G), we find

κn(NG) ≍ λv(G)c
e(G)
λ .

Proposition 7.5 deals with the cumulant growth of normalized subgraph counts, for use in

normal approximation. In the particular case of (r+1)-hop counting with cλ = 1 and m = 2,

(7.7) is consistent with the normalized cumulant bound (8.2) in [Pri24].

Proposition 7.5 Let G be a connected graph with VG = [r + m] for r ≥ 2 and m ≥ 0.

Suppose that Assumptions 3.2-(i)-(iii) are satisfied and that the upper boundary Σ̂n(G,m) is

a line segment linking (n− 1, (n− 1)am(G)) to ((n− 1)r, (n− 1)e(G)). Denoting by

NG :=
NG − κ1(NG)√

κ2(NG)

the normalized subgraph count, we have

|κn(NG)| ≤
n!r

∆n−2
λ

, n ≥ 3, (7.7)

where

∆λ ≍


λ1/2c

am(G)/2
λ if 1 ≳cλ ≳ λ−(r−1)/(e(G)−am(G)),

λ(e(G)−ram(G))/(2(e(G)−am(G))) if cλ ≍ λ−(r−1)/(e(G)−am(G)),

λr/2c
e(G)/2
λ if λ−r/e(G) ≪ cλ ≲ λ−(r−1)/(e(G)−am(G)).

(7.8)

Proof. We start by assuming that m ≥ 1. We only focus on the case when n ≥ 3, as cases

n = 1, 2 are trivial.

a) When 1 ≳cλ≳λ−(r−1)/(e(G)−am(G)), since the balance condition (2.6) holds, from Proposi-

tion 7.1-a), we know that the leading diagrams belong to the set M(n, r) of maximal

connected non-flat partitions of [n]× [r], see Lemma 5.6. Therefore, given (4.2) and (5.3),

we can bound κn(NG) from above

κn(NG) ≤ |CNF(n, r)|λ1+(r−1)nc
ne(G)−(n−1)am(G)
λ C1,n

≤ n!rr!n−1λ1+(r−1)nc
ne(G)−(n−1)am(G)
λ C1,n (7.9)
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where

C1,n := max
ρ∈M(n,r)

∫
(Rd)|ρ|

∏
1≤j≤m
i∈Aρ

j

φ(xi, yj)
∏

1≤k<l≤|ρ|
{k,l}∈E(ρG)

φ(xk, xl) dx1 · · · dx|ρ|. (7.10)

Because the function φ : Rd ×Rd → [0, 1] is symmetric and translation invariant, we can

further bound C1,n as follows. From Definition 4.4, we know that for any ρ ∈ M(n, r),

ρG is a connected graph with V (ρG) = [m + 1 + n(r − 1)], as |ρ| = 1 + n(r − 1). Let

ρ̃G be the subgraph of ρG induced by V (ρ̃G) = [n(r − 1) + 2]. And we also denote ρG a

spanning tree of ρ̃G. Therefore,∫
(Rd)|ρ|

∏
1≤j≤m
i∈Aρ

j

φ(xi, yj)
∏

1≤k<l≤|ρ|
{k,l}∈E(ρG)

φ(xk, xl) dx1 · · · dx|ρ|

≤
∫
(Rd)|ρ|

∏
i∈Aρ

1

φ(xi, y1)
∏

1≤k<l≤|ρ|
{k,l}∈E(ρ̃G)

φ(xk, xl) dx1 · · · dx|ρ|

≤
∫
(Rd)|ρ|

∏
1≤k<l≤|ρ|+1
{k,l}∈E(ρG)

φ(xk, xl) dx1 · · · dx|ρ|

=

(∫
Rd

φ(0, x) dx

)1+n(r−1)

, (7.11)

where x|ρ|+1 := y1, and the last equality is obtained by integrating successively on the

variables which correspond to leaves of ρG as in the proofs of e.g. Theorem 7.1 of [LNS21]

or Lemma 3.1 of [CT22] since φ is translation invariant by Assumption 3.2-(iii). Hence,

C1,n is bounded by ζ1+n(r−1)
φ , where

ζφ := max

(
1,

∫
Rd

φ(0, x) dx

)
.

In the other direction, as in (4.2), the cumulants of NG are written as a summation of

some non-negative terms. Therefore, we can bound κn(NG) from below, as follows:

κn(NG) ≥ |M(n, r)|λ1+(r−1)nc
ne(G)−(n−1)am(G)
λ C2,n

≥ ((r − 1)r)n−1(n− 1)!λ1+(r−1)nc
ne(G)−(n−1)am(G)
λ C2,n, (7.12)

where the last inequality comes from (5.4), and

C2,n := min
ρ∈M(n,r)

∫
(Rd)|ρ|

∏
1≤j≤m
i∈Aρ

j

φ(xi, yj)
∏

1≤k<l≤|ρ|
{k,l}∈E(ρG)

φ(xl, xk) dx1 · · · dx|ρ|. (7.13)
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Combining (7.9) and (7.12), we have, for n ≥ 3

κn(NG) =
κn(NG)

κ2(NG)n/2

≤ n!rr!n−1λ1+(r−1)nc
ne(G)−(n−1)am(G)
λ C1,n(

(r − 1)rλ1+2(r−1)c
2e(G)−am(G)
λ C2,2

)n/2
= n!r

r!n−1

((r − 1)r)n/2
(
λc

am(G)
λ

)−(n−2)/2 C1,n

C
n/2
2,2

≤ n!r((r − 2)!)n−1((r − 1)r)n/2−1
(
λc

am(G)
λ

)−(n−2)/2 ζ
1+n(r−1)
φ

C
n/2
2,2

≤ n!r(
C3

√
λc

am(G)
λ

)n−2
, (7.14)

where C3 is a constant depending on r and φ.

b) When cλ ≲ λ−(r−1)/(e(G)−am(G)), from Proposition 7.1-b), the leading diagrams are ρ ∈
CNF(n, r) such that ρG ≃ G, which allows us to bound κn(NG) as follows:

κn(NG) ≤ |CNF(n, r)|λrce(G)
λ

∫
(Rd)r

∏
1≤k<l≤r+m
{k,l}∈EG

φ(xk, xl) dx1 · · · dxr

≤ n!rr!n−1λrc
e(G)
λ ζrφ, (7.15)

where xr+i := yi for i = 1, . . . ,m. What’s more, we can also bound κ2(NG) from below

κ2(NG) ≥ λrc
e(G)
λ

∫
(Rd)r

∏
1≤k<l≤r+m
{k,l}∈EG

φ(xk, xl) dx1 · · · dxr

=: λrc
e(G)
λ C4. (7.16)

Combining (7.15) and (7.16), we get

κn(NG) ≤
n!rr!n−1λrc

e(G)
λ ζrφ(

λrc
e(G)
λ C4

)n/2
≤ n!r

(
λrc

e(G)
λ

)−(n−2)/2 r!
n−1ζrnφ

C
n/2
4

≤ n!r(
C5

√
λrc

e(G)
λ

)n−2
, (7.17)

where C5 is a constant depending only on r and φ.

Whenm = 0 the above arguments apply by replacing the upper bound (7.11) with µ(Rd)1+(r−1)n.

□
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We are now ready to prove Theorem 3.6.

Proof of Theorem 3.6. Since limλ→∞ λc
e(G)/r
λ = c > 0 and am(G)r ≤ e(G), we have cλ ≲

λ−(r−1)/(e(G)−am(G)). Hence, as in the proof of Corollary 7.3-(c), by (4.2) we obtain

lim
λ→∞

κn(NG) = |Aut•(G)|n−1 lim
λ→∞

λr
∫
(Rd)r

( ∏
{i,j}∈EG

cλφ(xi, xj)

)
µ(dx1) · · ·µ(dxr)

= |Aut•(G)|n−1cr
∫
(Rd)r

( ∏
{i,j}∈EG

φ(xi, xj)

)
µ(dx1) · · ·µ(dxr), n ≥ 1,

since the count of connected non-flat set partitions ρ ∈ CNF([n]× [r]) such that |ρ| = r and

e(ρG) = e(G) is |Aut•(G)|n−1. We conclude from Theorem 6.14 in [JŁR00]. □

A Convex hull code

The following SageMath code determines the convex hull of Σn(G,m) and its upper boundary

Σ̂n(G,m), see Figures 5-6 and 14. This code and the following one are available for download

at https://github.com/nprivaul/convex-hull.

 def partitions(points):
if len(points) == 1:

 yield [ points ]
return

 first = points[0]
for smaller in partitions(points[1:]):

 for m, subset in enumerate(smaller):
yield smaller[:m] + [[ first ] + subset] + smaller[m+1:]

 yield [ [ first ] ] + smaller

 def nonflat(partition,r):
p = []

 for j in partition:
seq = list(map(lambda x: (x-1)//r,j))

 p.append(len(seq) == len(set(seq)))
return all(p)



def connected(partition,n,r):
 q = []; c = 0

if n == 1: return all([len(j)==1 for j in partition])
 for j in partition:

jk = list(set(map(lambda x: (x-1)//r,j)))
 if(len(jk)>1):

if c == 0:
 q = jk; c += 1

elif(set(q) & set(jk)):
 d=[y for y in (q+jk) if y not in q]

q = q + d
 return n == len(set(q))

 def connectednonflat(n,r):
points = list(range(1,n*r+1))

 randd = []
for m, p in enumerate(partitions(points), 1):
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 randd.append(sorted(p))
for rou in range(r,(r-1)*n+2):

 rs = [d for d in randd if (nonflat(d,r) and len(d)==rou)]
rss = [e for e in rs if connected(e,n,r)]

 print("Connected non-flat partitions with",rou,"blocks:",len(rss))
cnfp = [e for e in randd if (connected(e,n,r) and nonflat(e,r))]

 print("Connected non-flat set partitions:",len(cnfp))
return cnfp



def graphs(G,EP,setpartition,n):
 r=len(set(flatten(G)));rhoG = []

for j in range(n):
 for hop in G: rhoG.append([r*j+hop[0],r*j+hop[1]])

for l in range(len(EP)):
 F=EP[l]

for i in F: rhoG.append([j*r+i,n*r+l+1]);
 for i in setpartition:

if(len(i)>1):
 b = []

for j in rhoG:
 b.append([i[0] if ele in i else ele for ele in j])

rhoG = b
 for i in rhoG: i.sort()

return rhoG


def convexhull(n,G,EP):
 r=len(set(flatten(G)));m=len(EP)

cnfp=connectednonflat(n,r)
 L=[]

le=sum(len(EP[j]) for j in range(len(EP)))
 for setpartition in cnfp:

rhoG=graphs(G,EP,setpartition,n)
 edgesrhoG = [i for n, i in enumerate(rhoG) if i not in rhoG[:n]]

vertrhoG = set(flatten(edgesrhoG));
 L.append((n*r-(len(vertrhoG)-m),n*(len(G)+le)-len(edgesrhoG)))

return sorted(set(L))

B Graph counting code

The following R code uses the graph6 and sparse6 formats for undirected graphs and the

data files available at https://users.cecs.anu.edu.au/~bdm/data/graphs.html.

 library(rgraph6); library(igraph); library(matrixStats)
 r=3; m=2; graphs=read_file6("graph5c.g6") # m+r=5

# r=5; m=3; graphs=read_file6("graph8c.g6") # m+r=8
 count=0; total=0; trees=0; treesam=0; nontreesr=0;

for (mat in graphs) {g=as.undirected(graph_from_adjacency_matrix(mat))
 endpoints=combn(1:(m+r),m); lst = c();

for (k in 1:choose(m+r,m)) {
 V(g)$color <- c(7, 2)[1 + V(g) %in% endpoints[,k]]

complement=setdiff(c(1:(m+r)),endpoints[,k])
 if(sum(degree(subgraph(g,endpoints[,k])))==0 && is.connected(subgraph(g, complement)))

{if (all(sapply(lst, function(gg) !graph.isomorphic.vf2(g,gg)$iso))) {lst=c(lst,list(g));
 count=count+1; a=0; exit=0;

for (ii in complement) {a=max(a,sum(g[ii,endpoints[,k]]))}
 for (i in (m+2):(m+r)){ for (j in 1:choose(m+r,i)){

h=subgraph(g, combn(1:(m+r),i)[,j])
 if (((ecount(g)-a)/(vcount(g)-m-1))<((ecount(h)-a)/(vcount(h)-m-1))) {

exit=1;break;}}
 if (exit==1) {break;}}
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if (exit==0) {print(g); cat("a =",a,"\n"); total=total+1
 trees=trees+is_tree(g)*(a==m); treesam=treesam+is_tree(g)

nontreesr=nontreesr+!is_tree(subgraph(g, complement))
 plot(g); print("Working ...");}}}}}

cat("Tree with a<>m count = ",treesam, ";Tree count = ",trees,"out of total =",total,"out of", count,
"\n");
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