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Abstract

We consider the limiting behavior of the count of subgraphs isomorphic to a graph
G with m > 0 fixed endpoints (or roots) in the random-connection model, as the
intensity A of the underlying Poisson point process tends to infinity. When connection
probabilities are of order A~ we identify a phase transition phenomenon depending
on a critical decay rate o}, (G) > 0 such that normal approximation for subgraph
counts holds when o € (0,¢},(G)), and a Poisson limit result holds if @ = «,(G).
Our approach relies on cumulant growth rates derived by the convex analysis of planar
diagrams that enumerate the partitions involved in cumulant identities. As a result, by
the cumulant method we obtain normal approximation results with convergence rates
in the Kolmogorov distance, and a Poisson limit theorem, for subgraph counts.
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1 Introduction

The first instance of a threshold phenomenon in random graphs was observed in the Erd&s-
Rényi model for the containment of balanced graphs, see [ER61]. In [Bol81b, Theorem 1],
a Poisson limit theorem for the counting of strictly balanced subgraphs was proved at
the threshold. Poisson approximation under the total variation distance has been proved
in [Bar82| via the Stein-Chen method, see also [BHJ92, Chapter 5|. Phase transition phe-
nomena for inhomogeneous random graphs have been studied for the growth rate of the giant

component in [BJRO7|, and for connectivity thresholds in [DF14].
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Consider an Erdés-Rényi random graph on n vertices, with independent connection prob-
ability p, such that p, = ¢/n® for some ¢ > 0 and @ > 0. Necessary and sufficient conditions
for the asymptotic normality of the (normalized) count N¢ of subgraphs isomorphic to a
fixed graph G were obtained in [Ruc88|, as follows.

e When

. v(H)
0 < a< min ——=, 1.1
HcG e(H) (1.1)
the normalized subgraph count N converges to a normal random variable, where v(H )
and e(H) respectively denote the counts of vertices and edges of any subgraph H of

G.

e When
. v(H)
o = min ——=,
HCG e(H)
the rescaled subgraph count converges to a Poisson distribution provided that the

graph G is strictly balanced, see Definition 2.1-(1), and

Vo — >0, (1.2)

lim np,;

n—oo

see [Bol81a], [KR83|, and Theorem 3.19 in [JELROO].

More recently, explicit convergence rates in the Wasserstein distance for subgraph counts
have been obtained in [BKR89|, see also [PS20] and references therein for rates in the Kol-

mogorov distance using the discrete Malliavin calculus.

Poisson and compound Poisson approximation of subgraph counts were obtained together
with convergence rates in [CGR16] and [CGR18| for the stochastic block model, which
can be viewed as a special case of the graphon-based random-connection model. Normal
approximation results for subgraph counts in graphon-based random graphs were obtained
in [KR21|, [Zha22|, [BCJ23|, and [LP25a] via the determination of quantitative bounds and

higher order fluctuations.

This paper considers the counting of subgraphs isomorphic to a fixed graph in the Poisson
random-connection model (RCM) G, (n), which is a random graph whose vertex set is given
by a Poisson point process 1 with intensity A on RY, d > 1, and where every pair of vertices
is randomly connected with a location-dependent probability given by a connection function
¢ : R4 x R? — [0,1]. The random-connection model can be regarded as a unified framework

containing several classical random graph models as particular cases.
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In particular, when ¢ is a function of the distance between pairs of points of 7, i.e.
o(x,y) = ¢(||lx—y||) for some measurable function ¢ : R, — [0, 1], the resulting graph is also
known as a soft random geometric graph, see [Pen91|, [Penl6], and [LNS21]. When ¢ takes
the form ¢(u) = 1{u<cy, for some € > 0, the random-connection model becomes a random
geometric graph, c.f. the monograph [Pen03], in which a pair of vertices is connected by an
edge if and only if the distance between them is less than the fixed threshold €. For another
example, when the underlying point process 7 is a binomial point process and the connection
function ¢(x,y) = p is constant for some p € (0,1), the resulting graph is the Erdés-Rényi
random graph, c.f. [ER59| and [Gil59]. When the connection function ¢(z,y) is symmetric
on [0, 1] x [0, 1] it is also called a graphon, and the corresponding random-connection model

arises as a limit of dense graph sequences, see |LS06|, [Lov12], [Zha22]|, [BCJ23|.

In the Poisson random-connection model, phase transition phenomena have been ob-
served in [MR96], where a critical point Poisson intensity parameter has been identified
for the occurrence of percolation. Poisson approximation results for edge counts and for
subgraphs of the same order were established in [Penl8|, and normal approximation result
have been obtained for subgraph counts in [CT22]. In [LP24], normal approximation for the
subgraph counts in the Poisson random-connection model as the intensity of the underly-
ing Poisson point process goes to infinity has been established, together with convergence
rates under the Kolmogorov distance, through combinatorial arguments and the cumulant
method, see also [GT18|, [Jan19], and [DE13|, [ST24], [HHO25] for moderate deviations. By
expressing the cumulants of subgraph counts as sums over non-flat and connected partition
diagrams, cumulant growth has been analyzed under different limiting regimes, leading to
the asymptotic normality of connected subgraph counts in the dilute case, and for trees in

the sparse case.

In this paper, we derive convergence rates in the Kolmogorov distance for the normal
approximation of subgraph counts in the Poisson random-connection model, and we identify
a critical threshold at which Poisson convergence occurs. To the best of our knowledge,
this is the first time that such a phase transition, from normal to Poisson limit theorems
for subgraph counts, has been observed in the Poisson random-connection model. In ad-
dition, we include the counting of subgraphs containing one or more endpoints, defined as
roots placed as arbitrary deterministic locations. This extends previous approaches to the

counting of rooted subgraphs in the Erdgs-Rényi and inhomogeneous random graph models,



see [RV86] and [Mau24|. In applications to e.g. wireless networks, endpoints can model

physical devices placed at given fixed locations, such as roadside units in vehicular networks,

see, e.g., [INZZT11|, [ZCY"12|, and [KGKLN23]|.

We investigate the asymptotic behavior of subgraph counts in a Poisson random-connection
model. By allowing the connection probability to vary as the intensity of the underlying
Poisson point process tends to infinity, we identify a phase transition where the limiting
distribution shifts between normal and Poisson, whenever the graph G satisfies a balance
condition (2.6). Similar to the Erdés-Rényi graph, while this balance condition (2.6) may
not be necessary for asymptotic normality, we believe it is essential for the emergence of a

Poisson limit, see Remark 6.6.

The counting of subgraphs containing one or more fixed endpoints, which covers the
counting of rooted subgraphs [RV86], [Mau24]| in the case of a single endpoint, has been
considered in [LP25b| in the random-connection model. However, the analyses of cumulant
growths in [LP24| and |[LP25b]|, were constrained by the use of partitions of maximal cardi-
nality, which resulted in an incomplete characterization of the limiting regimes that ensure
asymptotic normality. In the present paper, we overcome those restrictions via a detailed
analysis of the behavior of the count Ng of subgraphs isomorphic to a given connected graph

G in the random-connection model with and without fixed endpoints.

In comparison with [LP24] and [LP25b], the present paper provides a unified analysis of
normal approximation for subgraph counts in terms of a single threshold and in the presence
of endpoints, without restriction to specific dilute and sparse regimes, see Theorem 3.3 and
Corollary 3.4. This analysis is performed in terms of subgraph densities, and it covers
the Poisson convergence regime which is shown to hold at the parameter threshold, see

Theorem 3.6.

For this, we develop new combinatorial tools in the random-connection model, based
on the convex analysis of subgraph plots introduced for the Erdés-Rényi model in [JER00],
which we use to analyse the partitions involved in the representation of subgraph count
cumulants. This yields an exhaustive analysis of asymptotic normalized cumulant growth
on a random-connection model G, (n U {y1,...,Yn}) including endpoints yi, ..., ym, with
intensity measure of the form A-u, A > 0, in Proposition 7.1, where p is a diffuse sigma-finite
measure on R? and the connection function ¢ : R? x R — [0, 1] is rescaled as oy = cy - ¢,

A > 0.



Growth rates for the cumulants of normalized subgraph counts are then obtained on the
random-connection model G,(nU {91, ...,¥n}) in Theorem 3.3 under Assumptions 3.2-(i)-

(iii) and the balance condition (2.6). Given two functions f(A) and g(A) > 0, we write
o f(A) =0(g(N), or f(A) S g(A), if limsup,_,, f(A)/g(A) < oo,
o f(A) =Q(g(N)), or f(A) Z g(A), if liminfyo f(A)/g(A) > 0,
o f(A) = g(A)if f(A) =O(g(N)) and f(A) = Q(g(N)),
o f(A) ~g(A) if limy,o f(A)/9(A) =1,
o f(x) <yg(x), or g(x) > f(x),if f(z) >0 and f(x)/g(x) = 0.

with the convention 0/0 = 0. For G a graph with v(G) = r + m vertices including m

endpoints, we have the following consequences of Theorem 3.3.
e We show in Corollary 3.4 that when

1> ¢y > A~ min(r/e(@).1/am(@)

Y

the normalized subgraph count N converges to a normal random variable as A tends
to infinity, where a,,(G) is defined in (2.4) and depends on endpoint connectivity. As
a consequence, when c, takes the form c, < A™® as A tends to infinity for some o > 0,
we extend the thresholds (1.1)-(1.2) in [JEROO] from the Erdds-Rényi model to the
random-connection model, by showing that, under the balance condition (2.6), normal

approximation holds for the normalized subgraph count N provided that

i.e.

0<a<a,(G)= (1.3)

when m =0 or m = 1.

e In Theorem 3.5, we derive convergence rates under the Kolmogorov distance, together
with a moderate deviation principle, concentration inequalities and a normal approx-
imation result with Cramér correction. In particular, when ¢y, < A™%, we obtain the
Kolmogorov bounds

sup [Py(Ng < 2) — ®(2)|

z€eR



C r—1

f 0l<a< ——————,
_ \(1—aam (@))/(4r—2) ~ e(G) — an(G)
- C . r—1 .
\(r—ae(@)/(4r—2) if e(G) — am(_G) <a<a,(G),

where @ is the cumulative distribution of the standard normal distribution and C' > 0
is a constant depending only on r > 2. When G has no endpoints (m = 0) and is

strongly balanced, we have

C , v(G) —1
B @D << —TG—
sup [Po(Ng < ) — ®()| <
z€R C " v(G) =1 < O = v(Q)
Ne@ae@/m@2 " gy ST (&) = e(G)’

which extends Corollary 7.1 of [LP24] beyond the dilute regime considered there, and

also Corollary 7.2 therein without restriction to trees.

Under the condition a,,(G)r < e(G), Poisson convergence holds for Ng by Theorem 3.6

in the boundary case

e Finally, by Theorem 3.7-(a), N¢g converges to zero in probability if a,,(G)r < e(G) and

r

e(G)’

a>an(G) =

Remark 1.1 a) In the case of rooted subgraph counting, i.e. when m = 1 with a single

b)

endpoint, Condition (1.3) is consistent with the Property (P) page 261 of [RVS86] in the
Erdds-Rényi model, and with the asymptotic normality condition in Theorem 1 of [Mau24]

in inhomogeneous random graphs.

In the absence of endpoints (m = 0), Condition (2.6) means that G should be strongly
balanced, and (1.3) reads

. . v(H) _ v(G)
0<a<ay(@) = min () = ()

which coincides with (1.1), see Definition 2.1-(1).

We note that in the random-connection model, our results require a strong balance con-
dition of the form (2.6), which is not needed in the Erdds-Rényi model, see [Ruc88§],
[Bol81aj, and is stronger than strict balance, see Definition 2.1-(1).
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Our approach relies on partition diagrams introduced in Section 4 and later used in Section 5
to arrange the partitions involved in cumulant expressions into a planar representation.
This planar representation method has been introduced in [LR92| to study the behaviour
of variance of subgraph counts in the Erdés-Rényi model, and is extended here to derive
cumulant growth rates of all orders in the random-connection model. In this paper, it is
used in Section 6 to identify the partition diagrams that play a leading role in cumulant

expressions, and yields cumulant growth rates in Proposition 7.1.

We proceed as follows. After recalling necessary preliminaries on the random-connection
model and balanced graphs in Section 2, we present our main results in Section 3. Sections 4
and 5 focus the planar diagram representation of cumulants, and Section 6 identifies the
leading diagrams appearing in cumulant expressions. Finally, growth rates for cumulants
are derived in Section 7. SageMath and R codes used for the computation of convex hulls

and for partition counting are listed in Appendices A and B.

2 Preliminaries and notation

Random-connection model

Given A > 0 and p a diffuse sigma-finite measure on R, d > 1, we consider a Poisson point

process 17 on R? with intensity measure of the form X -y, which can be almost surely written

n= Z 5Xi
=1

under the probability measure Py, see [LP18, Corollary 6.5], where 7 is a N U {oo}—valued

as

random variable, §, denotes the Dirac measure at x € R? and X, X,,... are random
elements in R?. For fixed m > 0, and yi,...,ym € R? we consider the point process

nU{y1,...,ym} on R? defined by the union of n and yi,. .., ym.

Given ¢ : R? x R? — [0,1] a symmetric measurable function and ¢, € (0,1), we also
let w0y := ¢y -, A > 0, denote the connection function of the random-connection model
Go(mU{y1,...,Ym}). The random-connection model is a random graph denoted by G (nU
{y1,---,Ym}), with vertex set n U {y1,...,ym}, such that any two distinct vertices x,y €
nU{yi,...,ym} are independently connected by an edge with probability ¢, (z,y).



Balanced graphs

In what follows, for any two graphs G, Gy, we write G; >~ Gy when G is isomorphic to Gb.
We also let v(G) := |Vg| > 2 and e(G) := | Eg| be the number of vertices and the number of

edges of any graph G.
Definition 2.1 [LR92/, [JLRO0, pages 64-65]

1) A graph G is balanced if
(H) _ e(G)
v(H) ~ u(G)

and strictly balanced if (2.1) holds as a strict inequality for all H C G.

®

< HCQG, (2.1)

2) A graph G is strongly balanced if

e(H) __e(G)

o -1 we -1 e (22)

and strictly strongly balanced if (2.2) holds as a strict inequality for oll H C G.

3) A graph G is Ky-balanced if

e(H)—1 < e(G)—1
v(H)—2 ~ v(G) -2

HCG, v(H) > 3, (2.3)
and strictly Ky-balanced if (2.3) holds as a strict inequality for all H C G.

Remark 2.2 From [LR92] we have the following statements.
i) Cycles and complete graphs are strictly Ks-balanced.
ii) Trees are Ky-balanced, but not strictly Ks-balanced.

iii) Ky-balanced graph are strongly balanced, except for the unions of disjoint edges, also

called matchings.
iv) Strongly balanced graphs are strictly balanced.
Graphs with endpoints
Throughout this paper, we consider a connected graph G satisfying the following conditions.

Assumption 2.3 Given r > 2 and m > 0, we consider a connected graph G = (Vi, Eg)

with edge set Eg and vertex set Vg = {1,...,r +m}, such that
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i) the subgraph induced by G on {1,...,r} is connected, and

ii) the endpoint vertices v+ 1,... 7 +m are not adjacent to each other in G,
where Condition (ii) is void and Vg = {1,...,7} in case m = 0.
(a) No endpoint, m = 0. (b) One endpoint (rooted graph). (¢) Two endpoints, m = 2.

Figure 1: Examples of triangles with endpoints, r = 3.

In the sequel, we denote [n] := {1,...,n} for any n > 1, and write Vi = [r + m].

Definition 2.4 We let
ay,(G) := max | A;]

i€[r]

denote the mazimum number of endpoint connections to any vertex in [r], where

Ai={jef{r+1,...;r+m} : {i,j} € Eg},

is the neighborhood of vertex i € [r] within the set {r +1,...,7 +m} of endpoints.

We note that
am(G) <m, ay(G)=0, and a(G)=1.

In what follows, our main results will hold under the balance condition

e(H) = an(G) _ e(G) — am(G)
v(H) —m 1 r—1 ’

HcCG, v(H)>m+2.

We also note the following points.

(2.6)

Remark 2.5 a) When r = 2 and m > 0, Condition (2.6) is satisfied by all connected

graphs.

b) Whenr >3 and m >0, Condition (2.6) is satisfied by any tree G, if m = a,,(G). Indeed,

when G is a tree and H is a subgraph of G, we have

e(G) — an(G) :T—1+m—am(G) :1+m—am(G)

r—1 r—1 r—1
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and
e(H) — an(G) _v(H)—1—a,(G) m — a,(G)
o H) —m—1= ol —m-1 T uE —m_1
hence (2.6) is satisfied if m = a,,(Q).

c) Whenr >2 and m =0, (2.6) is the strong balance condition (2.2) since ao(G) = 0.

d) When r > 2 and m = 1, (2.6) is the Ky-balance condition (2.3) since a1(G) = 1. Note
that cycles, trees and complete graphs are Ky-balanced by Remark 2.2.

Table 1 presents the counts of (isomorphic) trees (t) vs. graphs (g) satisfying Condition (2.6)
within those (a) satisfying Assumption 2.3 in the format t/g/a, using the R code presented
in Appendix B for different values of » > 2 and m > 0, with m +r < 8. We check that when
m > 1 the number of trees satisfying Condition (2.6) depends only on r > 3, and that only
trees can satisfy Condition (2.6) as the number m of endpoints becomes large. The first row

(m = 0) refers to strongly balanced graphs.

" 2 3 4 5 6
U1/T | 1/2/2 | 2/5/6 3/14/21 6,/53/112
1/2/2 | 2/6/8 | 4/20/44 | 9/106/333 | 20,/893/3771
2/4/4 | 2/6/27 | 4/26/274 | 9/176/4071 | 20/2273 /94584
2/6/6 | 2/2/73 | 4/7/1346 | 9/27/39159
3/9/9 | 2/2/171 | 4/4/5620
3/12/12 | 2/2/359
1/16/16

DO W I~ O

Table 1: Counts t/g/a of graphs G satisfying Condition (2.6) vs. Assumption 2.3.
3 Main results

Let y1,...,ym € R? be fixed endpoints, or terminal nodes, where m > 0 and by convention
we set {y1,...,Ym} = 0 when m = 0. In what follows, we consider the count Ng of
subgraphs isomorphic to a given connected graph G in the random-connection model G,(nU

{y1, .-, Ym}) which includes the fixed endpoints y1,. .., ¥y, as vertices.

Definition 3.1 Let N denote the count of (labelled) subgraphs H C Gu(nU {y1,...,Ym})

such that there exists a bijection v : [r + m| — Vg satisfying

{i.7} € Be iff {v(i),v()} € Enu

for1<i#j<r+m,and )=y, l=1,...,m.
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We note that the subgraph count Ng can be represented as

Ng = Z H 1{Xainaj} H 1{yj<_>Xai}

(041,...,ozr)€[7'];E {i,j}€Ec {r+ji}€Eq
i€lr], jelr] i€lr], j€[m]

where z <> y indicates that x,y € nU {y1,...,ym} are connected by an edge in the RCM,
and

[Tl = {(ir, .. yir) € [7]" tig # 45 if K # 5}
When m = 0, Ng is the count of graphs isomorphic to the graph G in the Poisson random-

connection model G, (7).

Assumption 3.2 i) Whenm =0, u is a finite diffuse measure on R, and ¢ : R4 x R —

[0, 1] is a symmetric measurable function.

i) When m > 1, u is a diffuse sigma-finite measure on R, and o : R x R? — [0,1] is a

symmetric measurable function that satisfies

sup /Rd p(z,y) p(dy) < oo. (3.1)

z€ERY

i) When m > 1, in addition to (i), u is the Lebesque measure on R and ¢ : RY x R —

[0,1] is a symmetric measurable function which is translation invariant, i.e.

o(z,y) =0,y —2), =x,y€RL

Under Assumption 3.2-(iii), the integrability condition (3.1) reads

/Rd (0, z)dz < 0. (3.2)

Normal approximation

Recall that by e.g. Theorem 1 in [Jan88|, any sequence (X,,),>1 of real-valued such that

lim k,,(X,) =0, forall m > my,

n—o0
for some my > 3 converges in distribution to the Gaussian distribution N (u, 0?), provided
that the limits
pi=lim x;(X,) and o?:= lim k(X))

n—oo n—oo

exist. Theorem 3.3, which is a consequence of Propositions 6.4 and 7.5, provides sufficient
conditions for the asymptotic vanishing of higher order cumulants in (3.3). This will further

enable us to apply the method of cumulant for normal approximation in Theorem 3.5.
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Theorem 3.3 Let G be a connected graph with Vi = [r+m] for r > 2 and m > 0, and
suppose that Assumptions 3.2-(1)-(iil) are satisfied and the balance condition (2.6) holds.

Then, the cumulant k,(Ng) of order n > 1 of the normalized subgraph count
V.. Ng — k1(Ng)

G -—

r2(Ng)
satisfies the cumulant bound
— nl”
i (Ne)l < s (3.3)
A
where
)\7‘/2C§\(G)/2 if cy < AD/(EG)=am(G))
Ay = h 3.4
A Al/Qcim(G)/2 Zf 1 ZC}\ Z )\—(T—l)/(e(G)—am(G))7 ( )

as A tends to infinity. In particular, when G has no endpoints (m = 0), we have, as A tends
to infinity,
)\U(G)/QC§\(G)/2 if o < )\—(U(G)—n/e((;)’
. { A2 if 12cy > A (0(@-D/e(@)
and (2.6) becomes the strong balance condition.
Theorem 3.3 extends Corollaries 6.4 and 6.6 of [LP24] without restriction to the dilute and

sparse regimes considered therein. When G is a tree with v(G) = r vertices and no endpoints

(m = 0), Theorem 3.3 yields
AU@/2 ANy < ;
A/\ = 1
AL/2 if 1262

which recovers Corollaries 6.4 and 6.6-1) of [LP24] as particular cases.

Corollary 3.4 (Normal approzimation). Let G be a connected graph with Vi = [r + m]
for v > 2 and m > 0, suppose that Assumptions 3.2-(1)-(iil) are satisfied and the balance

condition (2.6) holds. In addition, assume that
1 >C)\ S A min(r/e(G),l/am(G))' (35)

Then, the normalized subgraph count N¢g converges in distribution to a standard normal
random variable as A tends to infinity. In particular, when m = 0 or m = 1, Condition (3.5)

reduces to

1 >0y > A0,

i.e. 12cy > AU/ when G has no endpoints (m = 0).
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Proof. 1t suffices to note that under (3.5), in both cases
i) 1 2cx > V774G i q,,(G)r < e(G), and
i) 12>c\ > A"V if g, (G)r > e(G),

we have limy_,,, A, = oo in Theorem 3.3, and to apply Theorem 1 in [Jan88|. O

When a,,(G) = 0, and in particular if m = 0, we have 1/a,,(G) = oo, and therefore
min(r/e(G),1/a,(G)) = r/e(G)

in (3.5). When ¢, < A%, the normal approximation result of Corollary 3.4 holds provided
that

. T 1
0 < o < min (E, m) . (36)
When m = 0 or m = 1, Condition (3.6) is equivalent to
r
O<a< @,

which also reads

O<a< T _ v(G)

e(G)  e(G)

in the absence of endpoints (m = 0).

Theorem 3.5 follows from Theorem 3.3 and the “main lemmas” in Chapter 2 of [SS91| and
in [DJS22]. When m = 0, the Kolmogorov rate in (3.7) with ¢y > A~((@=D/e(®) ig consistent
with the rate in Corollary 4.6 of [PS20] in the Erdgs-Rényi model, up to an additional power
1/(2r —1).

Theorem 3.5 (Normal approzimation). Let G be a connected graph with Vg = [r + m)|
forr > 2 and m > 0. Suppose that Assumptions 3.2-(1)-(iii) are satisfied, that the balance

condition (2.6) holds, that
1 >cy > A~ min(r/e(@),1/am(G)

and let Ay be defined in (3.4).

i) (Kolmogorov bound, [SS91, Corollary 2.1] and [DJS22, Theorem 2.4]) One has

sup [PA(Wo < 2) — B(2)] <

zER (Ay)V/@r=1? (3.7)

where C' > 0 s a constant depending only on r > 2.
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ii) (Moderate deviation principle, [DE13, Theorem 1.1] and [DJS22, Theorem 3.1]). Let
(ax)rso0 be a function of \ tending to infinity as \ tends to infinity, and such that

. ay
lim

A agven =

Then, (a;lﬁg),\w satisfies a moderate deviation principle with speed a3 and rate func-
tion x* /2.
iii) (Concentration inequality, corollary of [SS91, Lemma 2.4] and [DJS22, Theorem 2.5]).
For any x > 0 and sufficiently large X,
72

N 1
Py(|[Ng| > x) < 2exp (_Z min <§7 (xA/\)l/r>) .

iv) (Normal approximation with Cramér corrections, [SS91, Lemma 2.3] and [DJS22, Theo-
rem 2.3]). There exists a constant ¢ > 0 such that for all X > 1 and x € (0, c(Ay)Y?=D)

we have %@é;) _ (1 Lo (Wﬁi—l))) exp (L(x))
and PA(;?—?)_:U) _ (1 Lo (WJ/F(;"U)) exp (L(~x)),

where L(x) == (2/¢)3(A)) 3@ =10, for some 6 € [—1,1] depending on z € (0, c(Ay)Y/ D).

Poisson approximation

In what follows, |Aut.(G)| stands for the number of automorphisms of the induced subgraph
H C G with Vg = [r]. For example, taking G in Figure 3, the induced graph of G is a path
H with vertex set [4] and edge set Ey = {{1,2},{1,3},{3,4}}, which gives |Aut.(G)| = 2.
The condition a,,(G)r<e(G) in the Poisson limit Theorem 3.6 always holds when m = 0,

and it holds for trees, cycles and complete graphs when m = 1.

Theorem 3.6 (Poisson approzimation). Let G be a connected graph with Vg = [r + m)|
for r > 2 and m > 0, suppose that Assumptions 3.2-(1)-(ii) are satisfied. If the balance
condition (2.6) holds together with a,,(G)r < e(G) and

lim A5/ =
A—00 A

c>0,
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then the subgraph count N¢ := Ng/|Aute(G)| converges in distribution to a Poisson random

variable with mean

CT

Mo = Ruta(@)] J. I elws;) u(den) - u(dz,),

dyr

where x,; :==vy; fori=1,... m.
The proof of Theorem 3.6 is postponed to the end of Section 7.

By the first and second moment methods, see [JLR00, Page 54|, we have

(EA[X])?

for any non-negative integer-valued random variable X, which yields the following threshold

result for subgraph containment as a consequence of Corollary 7.3.

Theorem 3.7 (Threshold for subgraph containment). Let G be a connected graph with Vg =
[r+m| for r > 2 and m > 0, and suppose that Assumptions 3.2-(1)-(ii) are satisfied. If
the balance condition (2.6) holds together with a,,(G)r < e(G), then we have the following
threshold results:

CL) lim )y oo P)\(NG = O) =1 Zf o) <K N\ 7/e(G)

b) limy 00 ]P))\(NG = 0) =e " Zf C) ~ /\fr/e(G); with

Vy = |Aut /Rd H o(zi, z;) p(day) - - - p(de,),

{i.j}eEq
where x,; :==vy; fori=1,...,m,
¢) limy oo Py(Ng = 0) = 0 if 1 2 ¢y > A77/e(@)

Proof. (a) Since E)[Ng| < )\Tci(G), if ¢y < A77/44) | we know that limy_,o, Ex[Ng] = 0, and
we conclude by the first moment method in (3.8).
(b) Since ¢y ~ A7/¢9) | we have ¢ = limy_;uo )\ci(G)/T =1, and we conclude by Theorem 3.6.
(¢) From Corollary 7.3 we know that if ¢y 3> A\~("=D/(el@)=an(@) “then

ka(Ng) =< N1 (@meml@)
and if ¢, < A\~ D/((G)=am(G)) " then

ka(Ng) = X5,
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If a,,(G) < e(G)/r and ¢y > A7/¢%) then we have

(]E)\ [NG])2 — >\2TC§\€(G) — 1 — 1 (3 9)
EX((Ne)?] A2 4 ky(Ng) 1+ (N v (g™t '
and we conclude by the second moment method in (3.8). U

4 Diagram representation of cumulants

This section introduces the diagram framework used for the expansion of cumulants as sums

over partitions in Proposition 4.7 below.

We start with basic notation on set partitions, see e.g. [PT11], [LP24]. For any finite set
b, we let TI(b) denote the collection of set partitions of b. For two set partitions py, ps € T1(b),
we say pp is coarser than po (i.e. po is finer than p;), and we write it as py < py, if and only
if each block of p, is contained in a block of p;. We use p; V p, for the finest partition which
is coarser than both p; and ps, and denote by p; A ps the coarsest partition which is finer
than both of p; and p,. We also let 1 := {b} denote the coarsest partition of b, whereas 0

stands for the partition made of singletons.

Definition 4.1 Given r > 2 and n > 1 we let m denote the partition m = {m,...,m,} €
II([n] x [r]) of [n] x [r] defined as

mo={0,7) : 1<j<r} i=1,...,n
a) A partition p € II([n] x [r]) is said to be non-flat if pAw =0, and connected if pN 7 = 1.
b) We let IIx([n] x [r]) denote the collection of all connected partitions of [n] x [r], and let
CNF(n,r):={p : pells([n] x[r]), pAT :6}
denote the set of all connected and non-flat partitions of [n] x [r], for n,r > 1.

Example 4.2 Figure 2 presents an example of non-flat connected partition in CNF(3,4).

Figure 2: Non-flat connected partition of [3] x [4].
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We also note the following lemma.

Lemma 4.3 [LP2/, Lemma 2.5] Let n > 2. For any connected partition p € l;([n] x [r])
there exists i € {1,...,n} such that the set partition {b\m; : b € p} of {1,...,i — 1,1+

1,...,n} x [r] is connected.

In [LP24], a graphical diagram language has been designed for the cumulant representation
of subgraph counts in the random-connection model, and extended to the case of subgraphs

containing fixed endpoints in c.f. [LP25b].

Definition 4.4 [LP25b] Let G be a connected graph of order r + m satisfying Assump-
tion 2.3, and let p = {by,..., by} € H([n] x [r]), n > 1, be a partition of [n] x [r]. We let pa

denote the connected multigraph built on [m] U ([n] x [r]), which is constructed as follows.
1. For alli € [n] and jy, 72 € [r], j1 # j2, an edge links (i, 1) to (i,72) iff (j1,72) € Eg;
2. For all k € [m], 1 € [n] and 5 € [r], an edge links (k) to (i,7) iff (r + k,j) € Eg;
3. For alli € [|p]], all elements in the same block b; are regarded as one verte.

In addition, we let pg be the graph constructed from the multigraph pg by replacing multiple

edges with simple edges in pg.

In what follows, the blocks of any given partition p = {b1, ..., by, } in II([n] x [r]) are ordered
along the lexicographic order on [n] x [r|, by ordering the blocks according to their smallest
elements. From the above construction, the vertices of pg originate from terminal nodes
[m] and blocks by, ...,b, of p. We can further denote the vertex set of the graph p¢ as
V(pe) = [|p| +m] according to the rule that the m terminal nodes follows by,. .., by, in
order.

See also [KhoO8| for a diagram representation used for lines and cycles in the Erdds-
Rényi model, and [FGY23] for a graphical representation defined for the U-statistics of

determinantal point processes.
Example 4.5 Consider p € I1([3] x [4]) as in Figure 2, with
po= {L1),(21),3D}E{1,2)}{(1,3),(2,3)},
{(1L4)},{(2,2),(3,2)},{(2,4), (3,3)},{3,4)}},

and let G be the connected graph with vertex set Vi = [5], represented in Figure 3.

17



et 4

Figure 3: Connected graph G on five vertices including one endpoint, with » = 4 and m = 1.

Figure 4 presents the multigraph pg and corresponding graph pe.

2 4
1 3/
8
r—O
5 6 7

(a) Multigraph pg before merging edges and vertices.  (b) Graph pg after merging edges and vertices.

Figure 4: Example of graph pg with n =3, r =4, and m = 1.

The above framework allows us to state moment and cumulant formulas for the subgraph

counts Ng.
Definition 4.6 For p = {by,... b} € II([n] x [r]) and j € [m], we denote by
A= {kellpl] : 3(s,i) € by s.t. {i,r +j} € Eg} (4.1)
the neighborhood of the vertex (|p| + j) in the graph pgq.
From [LP25b], we have the following moment and cumulant representation for Ng.

Proposition 4.7 Let n > 1. Then, the n-th moments and n-th cumulants of Ng admit the

ETPTressions

EA[(No)" )= Y Falp) and rn(Ne) = > Fap), (4.2)

PEI([n] X [r]) pEIl; ([n]x[r])
pAT=0 AT=0
(non—flat) (non—ﬂit connected)

where F)\(p), p € II([n] x [r]), is defined as

Fy(p) := A [T es@nu) ] exmea)u(dz) - p(dzy,). (4.3)
(R)lpl

1<j<m 1<k<I<]|p|
icAf {k1}eE(pa)
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5 Planar representation of partition diagrams

In this section, we introduce a planar representation that will allow us to determine the

leading partition diagrams in the moment and cumulant expressions of Proposition 4.7.

Definition 5.1 Let G be a connected graph with Vi = [r +m], for some r > 2 and m > 0.
Forn > 2, we let

Sn(Gim) == {(@(p6),y(pa)) == (nr +m — v(pe),ne(G) — epe)) = p € CNF(n, 1)},

where, for every partition p € 1I([n] X [r]), pa is the graph associated to p by Definition /./.

Example 5.2 Let G = C3 be a triangle with no endpoint, i.e. r =3 and m = 0. We have

Zb<c%>0):: {(373)>(271)’(170)}7
233(C%70):: {(676)>(5’4)7(473)7(573)7 4,2), 471)7<3a1 ) 370)7 2,0 }7
§:4(C%7(D = {(979)7(877)a(776)7(876)7< » 95 U 7(67 y V5 9)5 (99 ), 773)7
(67 2)’ (57 2)7 (77 2)7 (6’ ]')7 (57 ) ) ) b b ) ) ) b 37 0)}7
see Figure 5.
Y
9
8
Y 7
6 6
5 5
4 4
3 3
2 2
1 1
1 z 123456789~
(a) Subgraph plot of ¥3(Cs,0). (b) Subgraph plot of 34(C3,0).

Figure 5: Set ¥,(C3,0) and upper boundary of its convex hull (in red) for n = 3, 4.

Figure 5 and the following ones can be plotted after loading the SageMath code presented in

the appendiz and running the following commands.

G = [[1,2],[2,3],[3,1]1]1; EP = []; SG3=convexhull(3,G,EP); SG4=convexhull(4,G,EP)
Polyhedron(SG3) .plot(color = "pink")+point(SG3,color = "blue",size=20)
Polyhedron(SG4) .plot(color = "pink")+point(SG4,color = "blue",size=20)
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Example 5.3 Let G = Cy be a 4-cycle with no endpoint, i.e. r = 4 and m = 0. Here,
¥9(C4,0) and X3(Cy,0) are plotted in Figure 6.

N W

12345678%
(a) Subgraph plot of ¥9(Cy,0). (b) Subgraph plot of 33(Cl4,0).

Figure 6: Set ¥,,(Cy,0) and upper boundary of its convex hull (in red) for n = 2, 3.

Figure 6 can be plotted via the following commands, after loading the SageMath code listed
wmn the appendiz.

G =[[1,2]1,[2,3],[3,4],[4,11]; EP = []; SG2=convexhull(2,G,EP); SG3=convexhull(3,G,EP)
Polyhedron(SG2) .plot(color = "pink")+point(SG2,color = "blue",size=20)
Polyhedron(SG3) .plot(color = "pink")+point(SG3,color = "blue",size=20)

Example 5.4 Let G = Cy be a rooted 4-cycle with one endpoint, i.e. ¥ =3 and m = 1, see

Figure 7.

1 2

Figure 7: Connected graph G = C; with r =3 and m = 1.

The sets ¥3(Cy, 1) and 34(Cy, 1) are plotted in Figure 8.
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12 +
11 ¢
10 -
Yy 9 -
8 81
7 71 A
6 6 - .
5 51 .o
4 ° 4 - e o o
3 ° ° 31 o o o
2 ° ° 21 o o o o
1 ° ° ° 1- o o o
& 3 — O ——+————+——+——
1 2 3 4 5 6 7 1234567897
(a) Subgraph plot of ¥3(Cy,1). (b) Subgraph plot of 34(C4,1).

Figure 8: Set 3,,(C4, 1) and upper boundary of its convex hull (in red) for n = 3, 4.

Figure 8 can be plotted via the following commands.

G = [[1,2],[2,3]]1; EP = [[1,3]]; SG3=convexhull(3,G,EP); SG4=convexhull(4,G,EP)
Polyhedron(SG3) .plot(color = "pink")+point(SG3,color = "blue",size=20)
Polyhedron(SG4) .plot(color = "pink")+point(SG4,color = "blue",size=20)

Figures 5-8 also show an upper boundary plotted in red, which is characterized in the next

definition.
Definition 5.5 We let in(G, m) denote the upper boundary of the convex hull of ¥,(G,m),
with
Sn(Gm) NS (Gyom) = {(z5,2) 1i=0,1,...,1}, (5.1)
for some | > 1, where
n—l=xy<z < - <z=Mnm-—1)r <xzpy = +o0.

In Definition 5.1, x(pg) = nr+m —v(pg) = nr — |p| stands for the number of vertices being
removed in the process of graph contraction. Later on, in Definition 5.5 zy and x; will be
used to denote the minimum and the maximum number of vertices being removed. Because
for all p € CNF(n,r),
r<lp| <n(r—1)+1,

we have zg = n — 1 and z; = (n — 1)r. We note that for any point (z;, z;) in in(G, m) N
Yo (G,m), i € {0,1,...,1}, there exists a connected non-flat partition p; € CNF(n,r) such
that the associated graph p; ¢ satisfies

v(pig) =nr+m—uz; and e(p;q)=ne(G)— z. (5.2)
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We note that the upper boundary 3, (G, m) starts at (zo,y0) := (n — 1, (n — 1)an(G)) and
ends at ((n — 1)r, (n — 1)e(G)), where a,,(G) is defined in (2.4).

We also recall the following lemma from [LP24, Lemma 2.8|, in which the maximality of
connected non-flat partitions refers to maximizing the number of blocks, see also Proposi-

tion 6.1 in [ST24].

Lemma 5.6 a) The cardinality of the set CNF(n,r) of connected non-flat partitions of [n] x
[r] satisfies

|ICNF(n,r)| < nl"rl" 1, n,r > 1. (5.3)
b) Let M(n,r) denote the set of mazximal connected non-flat partitions of [n] x [r]. Then,
each element of M(n,r) has precisely (n — 1)r + 1 blocks, and we have

n—1

|IM(n,r)| :7“"_11_[(1—1-(7“—1)@'), n,r>1,

=1

with the bounds

(r=1r)" Y n—=1D! < [ M(n,r)| < ((r=Dr)"'nl, n>1,r>2 (5.4)

6 Leading diagrams

Based on the convex hull of ¥,,(G, m) given in Definition 5.1, in this section we identify the
dominant asymptotic order and the leading contribution appearing in the expression (4.2)
of k,(Ng), n > 1, which is key to the derivation of normal approximation results via the

cumulant method.

Definition 6.1 Given G a connected graph with Vo = [r +m], a diagram p € CNF(n,r),
n > 1, is said to be a leading diagram for a given (cx)xso if, for every o € CNF(n,r) satisfies

that

)\v(ac)c‘j\(UG) _ O(/\”(”G)ci(pc)), as A — oo.

The characterization of leading diagrams will use the following definition.

Definition 6.2 Let p € CNF(n,r) and i, € {0,...,1} be such that

z, < x(pa) < Tip41,
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where x(pe) is given in Definition 5.1. Using the notation (5.1), we define

. _ Z J— Z
+007 Zp — 07 /LP+1 Lp , 0 S Zp < l7
0_(pa) =14 =z, — 2i,—1 . and 0+ (pg) = Tietl = Tip
——, 1<, <, ,
:vz-p — .CL’iP,I O, 1y = l.

We note the inequality
0-(pc) = 0+(pc),

which holds because in(G ,m) is the upper boundary of the convex hull of ¥, (G, m). We also
say that a diagram p € CNF(n,7) lies on the boundary 3, (G, m) if the point (z(pg), y(pc))

does. Lemma 6.3 states that leading diagrams can only lie on the upper boundary i\]n(G ,1M).

Lemma 6.3 Let G be a connected graph with Vg = [r+ml|, r > 2, m > 0. Let n > 2 and

assume that limy_,., ¢y = 0.
1) Every leading diagram p € CNF (n,r) lies on the upper boundary in(G, m), i.e.

(nr +m — v(pa), ne(G) — e(pc)) € En(G,m).

2) If a diagram p € CNF(n,r) lies on the upper boundary in(G, m) and
AP = 0(1) and AP = Q(1),

then p 1s a leading diagram.

Proof. 1) Suppose that p € CNF(n,r) does not lie on the boundary 3,,(G,m), i.c.

(2(p6),y(pc)) = (nr +m = v(pc),ne(G) = e(pc)) € Ta(G,m)\En (G, m).

Using (5.1), if 2(pg) = 21, we know that y(pg) < z, as (z(pa), y(pe)) is not on the upper
boundary i]n(G, m). Therefore, we have

)\v(ﬂc)—v(pz,c)Cf\(ﬂc)*e(m,c) _ Ciz—y(pc) <1,

and p cannot be a leading diagram.

If 2(pg) < 21, we choose i, € {0,...,l—1} such that z;, < 2(pg) < xi,41. Since S (G, m)

is the upper boundary of a convex hull, by (5.2) if ¢, < [ we have

U= Rip+1 — y(,OG) >0 (pG) - Rip+l — i, _ e(pipaG) - e(pip-f-l,G)
= >0 = = :
T, 41 — 2(pa) Tip1— 1,  v(pi,a) — v(pi+1a)

. 0 . .
le. Ak < )\c/\+(pG) because lim,_,., ¢y = 0, and we consider three cases.
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i) If 1 < Ac, we have

/\U(PG)—’U(MPH,G)Ci(pG)_e(pipﬂﬂ) _ (Acl)/\)v(pG)_v(pip-Fl,G)

pzp+1 G)

<< ()\CG+ PG )

()\ 9+ oc ) sz G) U(ﬂzp+1 G)
C

_)\v Pip,G)— U(Pzp+1c) (plp c)=epip+1,6)

which implies X’(”G)Cf\(p c) < /\“(piﬂ’c)ci(pi”’G) as limy_,. cx = 0, hence the diagram p is

not leading.
i) If limy 00 Ac¥ = ¢ > 0, we have

)\U(PG)_U(Pip+1,G)Ci(pG)_e(piPJrl’G) o

()\CK)”(PG)*U(MPH,G)

0+(pc)
<< ()\C)\+ PG

= <)\ca+(ﬂc)>v(pimc)_v(pip'*'lvc)
- A

>v(pc)—v(pip+1,c)

__ \(pi,,c)—v(pi G e(pip,G)_e(pip+1,G)
— )\ ( ip ) ( ip+1 )C>\ ,

and we conclude as above.

iii) If Ac§ < 1, we have
AU(PG)_”(Pierl,G)Ci(pc)ie(pi/)*l’c) <1

Y

hence
)\U(PG)Ci(PG‘) < )\U(pip+1,G)ci(pip+1,G)'

As a consequence of the above, we find

Aol Se) Av(pip,mci(ﬂw) or AUPe)£le) Av(pz-pﬂ,c)Ci(pipﬂG)?

hence p is not a leading diagram.

2) Suppose that p does lie on the boundary EA]n(G,m). Then, there exists i, € {0,...,{}
such that (z(pc),y(pa)) = (4, 2;,), and it holds that

)\ci’(pG) =O0(1) and )\ciJr(pG) = Q(1).

24



i) If j <i,, then z; — x;, <0 and

Ri, — % > Zip, T Rip—1 _ 9_(pG)-
Li, — j Li, — Lij,—1
Hence,
AT ) o (A ) = o(1). (6.1)
Now, since
—z, ne(G)—y;
At leC)\ i 2j—zi (zj—2i,)/(®j—xi, )\ Tj—2;
— )\mjfxi J p — )\ J ip J tp J ip 62
\nr+m—z; CZG(G)*ZJ' o) ( 1) ) ) ( )
we find o)
\vlpa) LlPe
s =0
Av(p1.6) (2P36)
ii) If j > i,, then 2; — x;, > 0 and
2 — %
’ s < 0+(pG>a
Xy — ip
therefore
A7) (b)) = (1), (6.3)
and (6.2) shows that
)\v(pc) e(pc)
B W—T)
Av(23.0) (P30
This ensures that p is a leading diagram. ([l

Proposition 6.4 provides a sufficient condition ensuring that the upper boundary in(G, m)

is a line segment, a property used in the proof of Corollary 7.3.

Proposition 6.4 Let G be a connected graph with Vg = [r +m], r > 2, m > 0, such that
the balance condition (2.6) holds. Then, the upper boundary in(G, m) is a line segment for
alln > 1.

Proof. To present the result in a more compact form, we will first show that the requirement

that the upper boundary in(G ,m) is a line segment is equivalent to

e(pc) = “”‘(Gl), p € CNF(n,r). (6.4)

€(C) —an(G) _

r—1 v(pg) —m —
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Because the upper boundary &, (G, m) starts at (zo, 20) := (n — 1, (n — 1)a,(G)) and ends
at (x;,2) := ((n — 1)r,(n — 1)e(G@)), the requirement that the upper boundary in(G,m) is
a line segment is equivalent to that for any (z,z) € ¥,(G,m),

A=z AT e(G) — an(G)

= . 6.9
T —x X — g r—1 (65)

Considering the Definition 5.1, we obtain that the requirement itself is further equivalent to
for any diagram p € CNF(n,r),
elpe) —e(C) _ e(C) — an(C)

v(pg) —m—r — r—1 ’

(6.6)

and, after reorganizing, the above inequality becomes equivalent to (6.4). It remains to show
that the balance condition (2.6) ensures that (6.4) is satisfied. Here, we apply an induction
argument to see this. When n = 1, the claim is trivial as the only element in CNF(1,r) is
isomorphic to G. Suppose now that (6.4) holds up to the rank n > 1. Let p € CNF(n+1,r)
be a non-flat connected partition of [n+ 1] x [r] with associated graph pg. By Lemma 4.3, up
to reordering of {1,...,n+ 1} there exists a partition 0 € CNF(n,r) obtained by restriction
of p to [n] x [r]. Let o’ denote the partition obtained by restriction of p to {n + 1} x [r], see

Figure 9.
1 [ ° 1 [] ° o] 1 H ° ° o]
2 ] 2 0// ° 2 ° ° °
3 e ° 3 (e é ° °) 3 (e ° ° D)
1 2 3 4 1 2 3 4 1 2 3 4
(a) Partition p of [n + 1] x [r]. (b) Splitting of [n 4 1] x [r]. (c) Partitions o and o”.

Figure 9: Splitting of a partition p into o and ¢’ with n =3 and r = 4.

Given a graph G with r vertices, let pg denote the graph with vertex set V(pg) built on
p as in Definition 4.4, see Figure 10 for an example with G a graph on r +m = 6 vertices

including two endpoints.
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(a) Vertex set V(pg). (b) Graph pg.
Figure 10: Splitting of pg into o¢ and o, with n = 3, r = 4 and two endpoints m = 2.
Next, we consider the graphs og and oy, obtained from Definition 4.4 on the vertex sets
Vieg):={bep : bN(muU---Um,) #0}U[m
and
Viog):={bep : bNm1 #0}Um

with o ~ G because p is non-flat, see Figure 11.

(a) Vertex set V(og). (b) Vertex set V(oy;). (c) Vertex set V(o).
Figure 11: Splitting of V(p¢) into V' (0¢), V(oy;) with n = 3, r = 4 and two endpoints m = 2.

Let now of, denote the graph induced by pg on V(o) := V(og) NV (o), see Figure 12.

i el

(a) Graph o¢. (b) Graph oy.. (c) Graph (..

Figure 12: Splitting of pg into o¢ and of, with n = 3, r = 4 and two endpoints m = 2.

Then, of. contains m endpoints in addition to at least one non-endpoint vertex due to the
connectedness of p, hence we have v(o.) > m + 1. Since of. C oy, and v(o,) > m+ 1, by

the balance condition (2.6) we have

e(og) — () e(G) = am(G)

v(of) — 1= r—1 ’




with the convention 0/0 = 0. Hence, by the induction hypothesis (6.4) applied at the rank
n > 1 to og, we have

e(pc) — am(G) _ (e(og) — am(G)) + (e(0g) — am(G)) — (6(08) — am(G))

v(pg) —m—1 0(0a) + vlots) — (o) —m—1
(e(oc) — am(G)) + (e(G) — am(G)) — (e(og) — am(G))

v(og) +v(G) —v(og) —m —1

_ (0(0g) = m = D4 | ((G) — () - (v(oh) — m — 1)@
- ( ¢) +v(G) —v(og) —m—1

O

The balance condition (2.6) turns out to be necessary in order to ensure the upper boundary

in(G, m) to be a line segment, as shown in the following counterexample.

Counterexample 6.5 Consider the graph G of Figure 13, which is not strongly balanced,

with r =4 and m = 0.

Figure 13: Not strongly balanced graph G.

Figure 14 shows that the upper boundary in(G,m) s not a line segment for n = 2 and
n=3. 3(G,0) and =3(G,0).

F W OO0 R

N W

1 2 3 4 12 4 678%
(a) Subgraph plot of $5(G,0) with S5(G, 0). (b) Subgraph plot of £3(G, 0) and S3(G, 0).

Figure 14: Set 3,,(G,0) and upper boundary of its convex hull (in red) for n = 2, 3.

Figure 1/ can be plotted via the following commands.

G = [[1,2],[2,3],[3,4],[1,3]1]; EP = []; SG2=convexhull(2,G,EP); SG3=convexhull(3,G,EP)
Polyhedron(SG2) .plot(color = "pink")+point(SG2,color = "blue",size=20)
Polyhedron(SG3) .plot(color = "pink")+point(3G3,color = "blue",size=20)
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Remark 6.6 We note that the balance condition (2.6) is not necessary for asymptotic nor-
mality of normalized subgraph counts. Consider the graph G in Figure 15 for example, where

r="5,e(G) =17, m=a,(G) =0, which is not strongly balanced, and not even balanced.

(a) graph G. (b) subgraph H C G.
Figure 15: A (not balanced) graph G and subgraph H.

Since (2.6) is not satisfied, the upper boundary in(G, m) is not a line segment, which leads to
more potential candidates for leading diagram, beyond )\H(T_l)”cze(g)f(nfl)am(G) and )\’“ci(G).

Precisely, we have
kn(Ng) = max {)\"T_(”_l)cze((;),/\”’”_(”_1)”(H)cze(c)_("_1)e(m,/\ch\(G)}

— max {)\4n+10§\n’ )\n-i-4c7)’\t-§—67 )\561
/\4n+1cz\n Zf ey > /\71/27

_ /\n+4ct\L+6 Zf AL < ey S )\—1/27
Nocl if o SATL

Therefore, when cy > A~%3 we have k,(Ng) — 0, n > 3, as \ tends to infinity, which
implies asymptotic normality of Ng by Theorem 1 in [Jan88]. On the other hand, when

cx S A7 we have k,(Ng) — 0, n > 1, therefore Ng does not have a Poisson limit.

7 Cumulant growth rates for subgraph counts
Under Assumptions 3.2-(i)-(ii), Fx(p) defined in (4.3) satisfies
Fa(p) = Alleslee), (7.1)

In this section, we investigate the asymptotic behaviour of the cumulants x,(Ng) in (4.2)
as ¢y — 0 and the intensity A tends to infinity, by identifying the leading diagrams p €
CNF(n,r) which, from (4.2) and Definition 6.1, satisfy

kin(Ng) = AVlPa)=mslea) (7.2)
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Proposition 7.1 Let G be a connected graph with Vg = [r+m]| for r > 2 and m endpoints,
m > 0. Suppose that Assumptions 3.2-(i)-(ii) are satisfied and that the upper boundary
S, (G,m) is a line segment linking (n — 1, (n — 1)am(G)) to ((n — 1)r, (n — 1)e(G)).

a) If 1 > ¢y > A== D/(e(G)=an(@) " qpe have

kn(Ng) =< )\H(T_I)"CT(G)_("_UGT”(G), n > 2. (7.3)

b) If cy < A== D/(e(G)=am(@) e have

kin(Ng) =A™ D > 2, (7.4)

C) [f C/\ S A_(T_l)/(e(G)_am(G))’ we ﬁnd
kin(Ng) < N9 > 2. (7.5)
Proof. Asin (5.1), we write

S0 (G,m) N S (G,m) = {(w0, 20), (1, 21), - .., (21, 2)

with zg :=n—1 <z < .-+ < x;:= (n— 1)r. According to Definition 5.1, we can find a

corresponding partition p; ¢ € CNF(n,r) such that
U(pi,G) =nr+m— Z, e(pi,G) - ne(G) — Z;.

Also, we write the (connected non-flat) set partition associated with p; ¢ as p;, and from

(7.1) we obtain that each p; contributes
F(py) s Xo(ps)=m 0ie) o ynr—s, ne(@)== (7.6)

Because the upper boundary is a line segment with endpoints (n — 1, (n — 1)a,,(G)) and
((n — 1)r,(n — 1)e(G)), the slope of this line segment is 6§ := (e(G) — a,,(G))/(r —1). By
Lemma 6.3-(1) the leading diagram p must lie on £, (G, m).

a) Forany j=1,...,, by (5.2) we have

)\v(po,a)—mcf\(PovG) )\1+('r—1)ncze(G)*(n*1)Cbm(G)
Av(ps.6)=m S Pi) B N G2

nr—xo ne(G)—zo
A cy

AT CZG(G)f‘ZJ'

30



_ T;—x0 Fi T *0
= A\Y"cy
o 0(z;—x0)
x xo J
AT ey

Y

= (OO r=Dy w0

hence if A\ @m0 >1 we find

)\v(pog)—mci(Po,G) -
Av(ps@)=m i) ™

therefore any pg such that
(v(pa)=m, e(pa)) = (v(poa) —melpoc)) = (14 (r = Dn,ne(G) = (n = 1)an(G))
is a leading diagram, and this yields (7.3) by (7.2).

b) If /\cg\e(G)_am(G))/(r_l) = 1 then any diagram p;, i = 0,1,...,[ on the segment in(G, m) is

a leading diagram by Lemma 6.3-(2). Furthermore, by choosing j = [ with
(v(pc) —mse(pe)) = (v(pLe) —m,e(pe)) = (1 e(G)),
we find that (7.2) yields (7.4), i.e.
kn(Ng) =< )\Tci(G) = )\ci’"(G).

c) Forany j =0,...,l —1, by (5.2) we have

)\U(Pz,c)*mci(plvc) )\rci(G)

)\v(pj’g)fmci(pjﬂ) AT C;LQ(G)*ZJ'

nr—mz; ne(G)—2z
A cy

A= CZE(G)_ZJ'
_ T;—x R TRl
AT

i~y O(@;—xr)
_ x x J

_ (Acg\e(G)*am(G))/(T*I))zj—iz

Y

hence if A\ @7 <] we find

)\U(PZ,G)*mCi(plvG) -

)\U(Pj,c)*mci(pj’G) ~

Therefore, any pg such that

(v(pa) —m. e(pa)) = (v(pa) —m,e(pa)) = (r,e(G))

is a leading diagram, and this yields (7.5)ghy (7.2).



0

We note from Lemma 6.3 and Proposition 6.4 that as long as a connected graph G satisfies
the balance condition (2.6), the leading asymptotic order in the expression (4.2) of x,(Ng)
is fully determined by either the maximal or the minimal connected non-flat partition. Here,
maximality, resp. minimality, of partitions refers to the maximality, resp. minimality, of

their block counts. As a consequence of Remark 2.5, we have the following.

Remark 7.2 When m = 1 with a1(G) = 1, Proposition 7.1 holds for trees, cycles and
complete graphs as they are all Ky-balanced and the balance condition (2.6) coincides with

the Ks-balance condition (2.3).
By Propositions 6.4 and 7.1, we have the following result.

Corollary 7.3 Let G be a connected graph with Vg = [r +m], r > 2, and m endpoints,
m > 0. Suppose that Assumptions 3.2-(1)-(ii) and the balance condition (2.6) are satisfied.
Then, the cumulant k,(Ng) of order n > 1 of the subgraph count N¢ satisfies the following.

a) If 1 > ¢y > A== D/(e(G=anl@) e have

kn(Ng) < )\1+(rf1)ncze(G)f(nfl)am(G)'

b) ]f c) < )\_(T_l)/(e(G)_am(G)); we have

kn(Ng) =< )\cim(G).

C) ]f C) 5 )\—(r—l)/(e(G)—am(G’))7 we ﬁnd

kn(Ng) =< )\Tci(G).

In addition, by Remark 2.5-a) we have the following consequence of Corollary 7.3.

Corollary 7.4 Let G be a strongly balanced connected graph with v(G) = r vertices, r > 2,

and no endpoints, i.e. m =0, and suppose that Assumptions 3.2-(1)-(ii) are satisfied.
a) If 1 > ¢y 2 A\~WO=D/eE) ye have
kn(Ng) =< )\H(”(G)_D”CT;E(G).
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b) If cy < \~@EO=D/eG) e have
/{n(Ng) = A\

) If cx S A~WEO=D/eG) e find
kn(Ng) =< )\“(G)ci(G).
Proposition 7.5 deals with the cumulant growth of normalized subgraph counts, for use in

normal approximation. In the particular case of (r+1)-hop counting with ¢y = 1 and m = 2,

(7.7) is consistent with the normalized cumulant bound (8.2) in [Pri24].

Proposition 7.5 Let G be a connected graph with Vg = [r +m] for r > 2 and m > 0.
Suppose that Assumptions 3.2-(1)-(iii) are satisfied and that the upper boundary in(G, m) is
a line segment linking (n — 1, (n — 1)a,,(G)) to ((n — 1)r, (n — 1)e(G)). Denoting by

N, = Yo~ k1(Ne)
r2(Ne)
the normalized subgraph count, we have
— n!”
[En(Ne)l < =gy 1m0 23, (7.7)
A
where
/\1/2C§m(G)/2 if 12e0 > )\—(r—1)/(e(c)—am(c))7
Ay = A €(G)=ram(G))/(2(e(G) —am (G))) if oy =< )\f(rfl)/(e(G)fam(G))’ (7.8)
N2 if ATC) & oy < A-rD/(E(O)—am(@)

Proof. We start by assuming that m > 1. We only focus on the case when n > 3, as cases

n = 1,2 are trivial.

a) When 1 2cy >\~ D/(e(@)=am(®)) “gince the balance condition (2.6) holds, from Proposi-
tion 7.1-a), we know that the leading diagrams belong to the set M(n,r) of maximal
connected non-flat partitions of [n] x [r], see Lemma 5.6. Therefore, given (4.2) and (5.3),

we can bound k,(Ng) from above

kin(Ng) < |CNF(n,r) ‘>\1+(T_I)HCZB(G)_(TL_Dam(G)Cl,n

< nlrypin—1 )\l—i—(r—l)ncze(G)*(nfl)am(G) Cl,n (79)
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where

Cin = max / H o(x;,yj) H (T, 2) day - - - da). (7.10)
R

eM(n,r d
P ) NPl <i<m 1<k<I<|p|
€A {kI}EE(pc)

Because the function ¢ : R? x R? — [0, 1] is symmetric and translation invariant, we can
further bound C},, as follows. From Definition 4.4, we know that for any p € M(n,r),
pe is a connected graph with V(pg) = [m + 1+ n(r — 1)], as [p| = 1+ n(r — 1). Let
pc be the subgraph of pg induced by V(pg) = [n(r — 1) + 2]. And we also denote pg a

spanning tree of pg. Therefore,

/ H 2 ajzayj H 30<$k>xl) dxldx\p\
R2)lpl

1<j<m 1<k<I<]|p|
iear (k1€ (pc)

/ H ()0 xzayl H SD(ZCk,Il> dxldxm
(Rl 5 1<k<I<]p)

{kl}eE(pa)

< T, xy)dry---dx
—/<Rd>|p T el ) da o

1<k<I<|p|+1
{k1}eE(pc)
1+n(r—1)
- (/ (0, 7) dx) | (7.11)
R4
where z|,41 := y1, and the last equality is obtained by integrating successively on the

variables which correspond to leaves of p¢ as in the proofs of e.g. Theorem 7.1 of [LNS21|

or Lemma 3.1 of [CT22| since ¢ is translation invariant by Assumption 3.2-(iii). Hence,

C1 . is bounded by ¢, Lnr=1  where

(p = max (1, /Rd (0, ) dx) .

In the other direction, as in (4.2), the cumulants of Ng are written as a summation of
some non-negative terms. Therefore, we can bound &, (Ng) from below, as follows:
[M(n )N @O e @,

> ((r—1)r)" Hn — DINFE D@ Han @ ) (7.12)

kin(Ng)

Vv

V

where the last inequality comes from (5.4), and

Cypn = min /d| H o(xi,yj) H (g, ox) day - - - day). (7.13)
(Re)le

peEM(n,T) .
1<j<m 1<k<i<|p|
i€ AP {k,l}eE(pc)

34



Combining (7.9) and (7.12), we have, for n > 3

3 o /in(Ng)
l{n(NG) - /@(Nc;)"/z
_ n!rr!n—l)\l—l—(r—l)nCze(G)*(”*l)am(G)CLn
- ((r _ 1)T)\1+2(T—1)C§\6(G)_am(G)02’2)n/2
it on —n-2)/2 C1
S ) gL — VU -
o )
o 72)/2<1+n(r—1)
<l ((r=2))" N (r = D) () TR
o
2,2
|r
< AL (7.14)

(Cg )\cim(G))

where (5 is a constant depending on r and .

b) When ¢y, < A~0=D/(e(G)=an(@) " from Proposition 7.1-b), the leading diagrams are p €
CNF(n,r) such that pg ~ G, which allows us to bound &, (Ng) as follows:

kin(Ng) < |CNF(n,r)| ¢S / T el w)de - ds,
RY)™ | <p<i<r+m
{k}eEG
< e o (7.15)
where z,,; :=y; for i = 1,...,m. What’s more, we can also bound ky(Ng) from below
ko(Ng) > X"cf\(G) / H o(xy, 1) day - - - de,
(RE)" 1<k<I<r+m
{k,l}EEG
— N9y (7.16)

Combining (7.15) and (7.16), we get

n!rr!nfl/\rci(G)C;
()

~-22 G

cr?

Kln(NG >~

< n!” ()\rci(G))

nl”

S n—2 "
<C5 )\TCi(G) )

where Cj is a constant depending only on r and ¢.

(7.17)

When m = 0 the above arguments apply by replacing the upper bound (7.11) with p(R4)! =1,
[
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We are now ready to prove Theorem 3.6.

Proof of Theorem 3.6. Since limy_, )\ci(G)/r =c¢ > 0 and a,(G)r < e(G), we have ¢, <
A~ (r=1)/(e(@)=am(@) - Hence, as in the proof of Corollary 7.3-(c), by (4.2) we obtain

lim x,(Ng) = |Aut,(G)]"* lim X’/ H exe(xi, xj) | p(dey) - - - p(da,)
(R)

A—r00 A—r00 -
{i.i}€Eq

Aun@re [ TT el | o) optdn), 01

(Rd)T {i,j}EEG

since the count of connected non-flat set partitions p € CNF([n] x [r]) such that |p| = r and
e(pa) = e(G) is |Aute(G)|"~!. We conclude from Theorem 6.14 in [JLROO]. O

A Convex hull code

The following SageMath code determines the convex hull of ¥, (G, m) and its upper boundary
in(G, m), see Figures 5-6 and 14. This code and the following one are available for download

at https://github.com/nprivaul/convex-hull.

I | def partitions(points):

if len(points) ==

3 yield [ points ]

return

5 first = points[0]

for smaller in partitions(points[1:]):

7 for m, subset in enumerate(smaller):

yield smaller[:m] + [[ first ] + subset] + smaller[m+1:]
9 yield [ [ first ] ] + smaller

11 | def nonflat(partition,r):

p=10

13 for j in partition:

seq = list(map(lambda x: (x-1)//r,j))
15 p.append(len(seq) == len(set(seq)))
return all(p)

def connected(partition,n,r):

19 qg=0;c=0

if n == 1: return all([len(j)==1 for j in partition])
21 for j in partition:

jk = list(set(map(lambda x: (x-1)//r,j)))
23 if (len(jk)>1):

iw @ =

25 q=jk; c+=1

elif (set(q) & set(jk)):

27 d=[y for y in (g+jk) if y not in q]
q=q+d

29 return n == len(set(q))

31 | def connectednonflat(n,r):

points = list(range(1,n*r+1))

33 randd = []

for m, p in enumerate(partitions(points), 1):

36


https://github.com/nprivaul/convex-hull

35 randd. append(sorted(p))

for rou in range(r, (r-1)*n+2):

37 rs = [d for 4 in randd if (nonflat(d,r) and len(d)==rou)]

rss = [e for e in rs if connected(e,n,r)]

39 print("Connected non-flat partitions with",rou,"blocks:",len(rss))
cnfp = [e for e in randd if (connected(e,n,r) and nonflat(e,r))]

A1 print("Connected non-flat set partitions:",len(cnfp))

return cnfp

def graphs(G,EP,setpartition,n):

5 r=len(set(flatten(G)));rhoG = []

for j in range(n):

17 for hop in G: rhoG.append([r*j+hop[0],r*j+hop[11])
for 1 in range(len(EP)):

19 F=EP[1]
for i in F: rhoG.append([j*r+i,n*r+1+1]);
51 for i in setpartition:
if (len(i)>1):
53 b =[]

for j in rhoG:

55 b.append([i[0] if ele in i else ele for ele in j])
rhoG = b

57 for i in rhoG: i.sort()

return rhoG

59
def convexhull(n,G,EP):

61 r=len(set(flatten(G))) ;m=len(EP)

cnfp=connectednonflat(n,r)

63 L=[]

le=sum(len(EP[j]) for j in range(len(EP)))

65 for setpartition in cnfp:

rhoG=graphs (G,EP,setpartition,n)

67 edgesrhoG = [i for n, i in enumerate(rhoG) if i not in rhoG[:n]]
vertrhoG = set(flatten(edgesrhoG));

69 L.append ((n*r-(len(vertrhoG)-m) ,n*(len(G)+le)-len(edgesrhoG)))
return sorted(set(L))

B Graph counting code

The following R code uses the graph6 and sparse6 formats for undirected graphs and the

data files available at https://users.cecs.anu.edu.au/ bdm/data/graphs.html.

1 | library(rgraph6); library(igraph); library(matrixStats)

r=3; m=2; graphs=read_file6("graph5c.g6") # mt+r=5

# r=5; m=3; graphs=read_file6("graph8c.g6") # m+r=8

i | count=0; total=0; trees=0; treesam=0; nontreesr=0;

for (mat in graphs) {g=as.undirected(graph_from_adjacency_matrix(mat))

6 | endpoints=combn(1: (m+r),m); 1st = c();

for (k in 1l:choose(m+r,m)) {

8 | V(g)$color <- c(7, 2)[1 + V(g) %in¥% endpoints[,k]]

complement=setdiff (c(1:(m+r)),endpoints[,k])

10 | if (sum(degree (subgraph(g,endpoints[,k])))==0 && is.connected(subgraph(g, complement)))
{if (all(sapply(lst, function(gg) !graph.isomorphic.vf2(g,gg)$iso))) {lst=c(lst,list(g));
12 | count=count+1; a=0; exit=0;

for (ii in complement) {a=max(a,sum(g[ii,endpoints[,k]]1))}

14 | for (i in (m+2):(m+r)){ for (j in 1:choose(m+r,i)){

h=subgraph(g, combn(1:(m+r),i)[,jl)

16 | if (((ecount(g)-a)/(vcount(g)-m-1))<((ecount(h)-a)/(vcount(h)-m-1))) {
exit=1;break;}}

18 | if (exit==1) {break;}}

N
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if (exit==0) {print(g); cat("a =",a,"\n"); total=total+l
20 | trees=trees+is_tree(g)*(a==m); treesam=treesamt+is_tree(g)
nontreesr=nontreesr+!is_tree(subgraph(g, complement))

22 | plot(g); print("Working ...");}}}}}
cat("Tree with a<>m count = ",treesam, ";Tree count = ",trees,"out of total =",total,"out of", count,
"\a");
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