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1 Introduction

The Malliavin calculus was originally designed as a tool to establish the regularity

of the solution of certain parabolic partial differential equations via probabilistic ar-

guments. Over the years, it has been developed into an indispensible tool in many

research areas such as anticipating stochastic calculus and stochastic calculus for frac-

tional Brownian motion, see for example [21]. Malliavin’s approach relies on a heavy

functional analytic apparatus, such as the Ornstein-Uhlenbeck operator and the defi-

nition of suitable Sobolev spaces, to which the diffusion processes belong.

A central tool for the unification of the Malliavin calculus in the Brownian and jump

cases is the use of chaos expansions based on multiple stochastic integrals. When

applied in the Poisson case, this approach is known to yield finite difference operators

instead of derivation operators, as was noted in [13] and [23]; there also exists an

alternative approaches to the Malliavin calculus for the standard Poisson process that

use derivation operators, for instance, see e.g. [10], [25]. In the case of jump processes,

the development of the stochastic calculus of variations was also initiated in [4], via

the use of the Girsanov theorem; this approach was further developed in [3] with

applications to the smoothness of the density of the solution to stochastic differential

equations with jumps. This approach relies on the differentiation of quasi-invariance

identities leading to integration by parts formulas for diffusion processes, which where

obtained by Malliavin in an alternative way.

Still based on integration by parts, in the seminal paper [28], Stein proposed an al-

ternative derivation of Berry-Essen’s bounds for the error incurred in normal approx-

imation, through the use of the Stein equation. This approach was further extended

and enhanced by Chen [5] to obtain similar results for Poisson approximation. More

recently, new developments combining the integration by parts in the Malliavin Cal-

culus and in the Chen-Stein method have appeared [18], [22], [30], together with a

growing number of applications in probability and statistics, including the discovery

of a universal normality result, called the fourth moment theorem, for sequences of

multiple stochastic integrals. Since then, popularity in combining the Malliavin calcu-

lus with Stein’s method has been widely observed, and this has provided asymptotic
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statistical analysis tools for the normal approximation of Wiener chaoses, see [18],

and [6]. Furthermore, [19] studied the approximation of Gamma distribution by a

sequence of Wiener chaoses. [9] provided a technique to compare the tail of a given

random variable to that of Pearson distributions. [15] considered the measurement of

the distance between the law of a Malliavin differentiable random variable and a cer-

tain regular continuous probability distribution; however, the previous works did not

provide a systematic study on approximating the distributions of any general Wiener

functionals and by no means for the rates of these estimations. Our present work

aims to fill this gap in the very first time.

On the other hand the study of the convergence of the Poisson Malliavin structure and

operators to their Brownian counterparts has been left idle, though it seems quite nat-

ural question. See nevertheless the recent work [2] which considers the convergence of

discretized Malliavin gradient and divergence using rescaled Bernoulli random walks.

In this paper we address this issue under a suitable renormalization of the underlying

compensated Poisson process.

Let {Nt}t≥0 be the standard Poisson process with a unit intensity. It is well known

that the distribution of Brownian motion can be approximated by that of a normalized

sequence of renormalized compensated Poisson processes Ñλ
t := (Nλt−λt)

√
λ, t ∈ R+,

with intensity λ approaching infinity. In particular, we have

Iλ1 (1[0,t)) :=

∫ ∞
0

1[0,t)(s)dÑ
λ
s

d−→ Bt, as λ→∞ ,

where {Bt}t≥0 is the standard Brownian motion. In the case of higher order func-

tionals, the convergence in distribution of symmetric statistics to products of Hermite

polynomials in Gaussian random variables has been treated in [27]. Such results have

been extended to the convergence of symmetric statistics of series of multiple Wiener

integrals in [8], see also the survey [29].

In this paper we consider a different type of convergence for series of multiple stochas-

tic integrals. Namely, given a Wiener functional F written in the form of its chaos

expansion:

F = E[F ] +
∞∑
n=1

In(fn),
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where In(fn) is the multiple Wiener integral to be defined in (2.2) and the kernel

function fn(t1, ..., tn) is a symmetric deterministic one in L2(dt1 × · · · × dtn). We

define the discretization F
λ

of F at the level λ > 0 as

F
λ

= E[F ] +
∞∑
n=1

Iλn(fn),

where Iλn(fn) is the multiple Poisson stochastic integral to be defined in (2.3). In

Theorem 3.2 and Proposition 4.2, we shall consider the convergence in distribution of

discretized Malliavin gradient and divergence operators. As a consequence we obtain

a discretization of integration by parts formulas on the Wiener space, by using Poisson

functionals, and the related sensitivity analysis, see (3.9) below.

Next, by combining the multivariate Stein method with the Malliavin Calculus on

the Poisson space, in Theorem 5.1 we establish the convergence in distribution of

the discretized Poisson approximation F
λ

to the Wiener functional F as λ tends to

infinity, assuming summability and smoothness conditions on the symmetric kernel

functions fn, n ≥ 1, and we provide examples of Wiener functionals satisfying the

conditions of Theorem 5.1.

Furthermore, we identify the universal rate of convergence of F
λ

to F to be of order

O(λ−1/4) in the Wasserstein-type distance d(·, ·) to be defined in (5.1), i.e.

d
(
F
λ
, F
)

= O(λ−1/4), [λ→∞].

Since the multiple stochastic integral In(fn) may not follow a normal distribution,

it could be challenging to derive its associated Stein equation. To circumvent this

difficulty we use an off-diagonal discretization fα,λn of fn as defined in (5.12), which

allows us to formulate a proxy multivariate Stein equation for In(fα,λn ).

We illustrate the effectiveness of our approach via examples of error bounds obtained

for path-dependent Wiener functionals such as solutions of stochastic differential equa-

tions.

Despite several studies on the approximation of the solutions of SDEs, see e.g. [7],

[14] and [24], a systematic discretization for general Wiener functionals and the corre-

sponding universal convergence rate have long been absent in the literature, and the

goal of the present work is to fill this gap.
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This paper is organized as follows. In Section 2 we start with preliminaries on the uni-

fying framework used in this paper, namely the Wiener and Poisson multiple stochastic

integrals and polynomials, and the tools of the corresponding Malliavin calculi. In

Section 3 we deal with the weak convergence of Malliavin operators and we obtain a

discretization of the Malliavin integration by parts formulas using Poisson finite differ-

ence operators. In Section 4, we also consider the convergence of derivation operators

on the Poisson space. In Section 5 we deal with the rate of weak convergence from

Poisson discretized functionals to Wiener functionals; in addition, two applications on

the numerical approximation of path-dependent Wiener functionals are provided to il-

lustrate the effectiveness of our proposed method. The proof of the main Theorem 5.1

relies on a sequence of lemmas which are given in Section 6.

2 Preliminaries and notations

Consider a probability space (Ω,F ,P) on which a standard Wiener process (Bt)t∈R+

and a (not necessarily independent) standard Poisson process (Nt)t∈R+ with unit in-

tensity are defined. The renormalized compensated Poisson process with intensity

λ > 0 is defined by Ñλ
t = (Nλt − λt)/

√
λ.

2.1 Normal martingales, chaos and orthogonal polynomials

More thorough introduction on the topic in this section can be found in [26]. A

real-valued square integrable martingale {Mt}t≥0 such that

E
[
(Mt −Ms)

2
]

= t− s , for all 0 ≤ s ≤ t ,

is called a normal martingale. Clearly, both Wiener process {Bt}t≥0 and renormalized

compensated Poisson process {Ñλ
t }t≥0 are representative examples of normal martin-

gales. For any (deterministic) symmetric function fn ∈ L2(Rn) with n ≥ 1, and a

normal martingale (Mt)t∈R+ , the multiple Wiener-Itô integral of degree n with respect

to (Mt)t∈R+ , denoted by IMn (fn), is defined as:

IMn (fn) := n!

∫ ∞
0

∫ tn−1

0

· · ·
∫ t2

0

fn(t1, . . . , tn)dMt1 · · · dMtn ,
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satisfying the isometry property:

E[(IMn (fn))2] = n!‖fn‖2
L2(Rn+), n ≥ 1. (2.1)

Furthermore, both the Wiener process {Bt}t≥0 and the renormalized compensated

Poisson process {Ñλ
t }t≥0 have the chaos representation property, in the sense that

for any F ∈ L2 it can be shown that there exists a sequence (fm)m∈N of symmetric

functions fm ∈ L2(Rm
+ ) such that

F = E[F ] +
∞∑
m=1

IMm (fm).

In particular, if Mt = Bt, for simplicity, we denote

In(fn) := IMn (fn)
∣∣∣
M=B

, (2.2)

as a Wiener chaos of degree n. On the other hand, if Mt = Ñλ
t , we also denote

Iλn(fn) := IMn (fn)
∣∣∣
M=Ñλ

, (2.3)

as a Poisson chaos of degree n. For any n ∈ N, define En := Zn+ and let

E = {(pk)k≥1 : pk ∈ Z+, k ≥ 1}

be the set of sequences in Z+ in which each element has all components vanishing

except for finitely many of them. For p = (pk)k≥1 ∈ E, let

|p| :=
∞∑
i=1

pi and p! :=
∞∏
i=1

pi!.

Definition 2.1. For x ∈ Rk (resp. x ∈ RN) and p ∈ Ek (resp. p ∈ E), the k-

dimensional (resp. generalized) Hermite polynomial Hp(x) is defined as

Hp(x) :=
k∏
k=1

Hpk(xk), resp.

(
∞∏
k=1

Hpk(xk)

)
,

where

Hn(y) := (−1)ney
2/2 d

n

dyn
e−y

2/2, y ∈ R, ∀n ≥ 1, with H0(y) ≡ 1 .
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Definition 2.2. The Charlier polynomial of degree n ∈ N with parameter a ≥ 0 is

defined via the following recursive relations:

Cn+1(x, a) = (x− n− a)Cn(x, a)− naCn−1(x, a) ,

x ∈ R, a ∈ R+, n ≥ 1, with C0(x, a) ≡ 1 and C1(x, a) = x− a.

We have the following relationship between Hermite (resp. Charlier) polynomials and

iterated Wiener (resp. Poisson) integrals, cf. Theorem 7.2 in [12] (resp. Proposition

6.2.9 in [26]).

Proposition 2.3. 1. Let h ∈ L2(R+) such that ‖h‖L2(R+) = 1, and define h⊗m as

the m-fold tensor product of h with itself, where m ∈ N. Then we have

Hm(I1(h)) = Im(h⊗m).

2. Let A1, . . . , Ad be mutually disjoint intervals in R+ and n = k1 + · · ·+ kd, then

Iλn
(
1⊗k1A1

◦ · · · ◦ 1⊗kdAd

)
= λ−n/2

d∏
i=1

Cki

(∫ ∞
0

1AidNλt, λµ(Ai)

)
,

where “◦” denotes the symmetric tensor product defined by:

f1 ◦ · · · ◦ fn :=
1

n!

∑
σ∈Σn

f1(tσ(1)) · · · fn(tσ(n)),

for f1, . . . , fn ∈ L2(R+), and Σn denotes the set of all permutations over {1, . . . , n}.

The following result states an asymptotic relation between Hermite and Charlier poly-

nomials which will be used in the proof of Lemma 3.1.

Lemma 2.4. For any n ∈ N,

a−n/2Cn
(
a+ x

√
a, a
)

= Hn(x) +On

(
a−1/2

)
,

where the convergence rate On

(
a−1/2

)
holds uniformly for all x in an arbitrary compact

interval in R.
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Proof. By Theorem 1 in [17] we have

(2a)n/2 C̃[a+x
√

2a] (n, a) = (−1)nH̃n(x) +On

(
a−1/2

)
,

for a > 0, where C̃n(x, a) := (−a)−nCn(x, a), H̃n(x) := 2n/2Hn(
√

2x), [a + x
√

2a]

denotes the smallest integer larger than a+x
√

2a, and the convergence rate On

(
a−1/2

)
holds uniformly for all x in any compact interval. Our result then follows from the

equation (10.25.7) in [11], which states that C̃n(x, a) = C̃x(n, a). �

2.2 Malliavin calculus for normal martingales

Again, more details on the material introduced in this section can be found in [26].

In the sequel, we denote CM to be the collection of cylindrical functionals:

CM :=

{
F = fn

(
IM1

(
1A1√
µ(A1)

)
, . . . , IM1

(
1An√
µ(An)

))
: fn ∈ P(Rn), n ∈ N,

{Ai}1≤i≤n are mutually disjoint intervals in R+

}
,

where P(Rn) denotes the set of polynomial functions in n variables and µ is the

Lebesgue measure on (R+,B(R+)). Let L2(R+)◦n denote the subspace of L2(R+)⊗n =

L2(Rn
+) made of symmetric functions in n variables. Define

UM :=

{
n∑
k=1

gkGk : gk ∈ L2(R+), Gk ∈ CM , k = 1, . . . , n, n ∈ N

}
.

Note that, the spaces CM and UM are respectively dense in L2(Ω) and L2(Ω×R+). In

addition, since the elements of CM and those of UM can be expressed as linear combi-

nations of multiple Wiener-Itô integrals, the operators DM and δM can be respectively

defined on CM and UM as follows.

Definition 2.5. a) The Malliavin derivative operator DM : CM −→ L2(Ω × R+) is

defined as:

DM
t I

M
m (fm) = mIMm−1(fm(∗, t)), fm ∈ L2(R+)◦m, t ∈ R+, m ∈ N.
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b) The operator δM : UM → L2(Ω), the Skorokhod integral operator, is defined as:

δM
(
IMn (fn+1(∗, ·))

)
:= IMn+1

(
f̃n+1

)
, fn+1 ∈ L2(R+)◦n ⊗ L2(R+),

where f̃n+1 is the symmetrization of fn+1 in n+ 1 variables defined by:

f̃n+1(t1, . . . , tn+1) :=
1

n+ 1

n+1∑
k=1

f(t1, . . . , tk−1, tk+1, . . . , tn+1, tk).

The Malliavin operators DM and δM are both closable, so that DM can be extended

in such a way that:

Dom(DM) :={
F = E[F ] +

∞∑
n=1

IMn (fn) ∈ L2(Ω), fn ∈ L2(R+)◦n :
∞∑
n=1

nn!‖fn‖2
L2(Rn+) <∞

}
,

under the Sobolev norm ‖ · ‖1,2 defined by

‖F‖1,2 := ‖F‖L2(Ω) + ‖DMF‖L2(Ω×R+), F ∈ CM ;

meanwhile δM can be extended to:

Dom(δM) :=

{
u =

∞∑
n=0

IMn (fn+1(∗, ·)) ∈ L2(Ω× R+), fn+1 ∈ L2(R+)◦n ⊗ L2(R+)

:
∞∑
n=1

(n+ 1)!‖f̃n+1‖2
L2(Rn+1

+ )
<∞

}
.

In addition, Dom(δM) contains the space IL1,2 of processes defined as

IL1,2 :=
{
u ∈ L2(Ω× R+) : ‖u‖1,2 := ‖u‖L2(Ω×R+) + ‖DMu‖L2(Ω×R2

+) <∞
}
,

cf. e.g. § 1.3.2 of [21]. Since we are only dealing with normal martingales, we can call

back the duality (or integration by parts formula) relation of DM and δM , where 〈·, ·〉
is the inner product in L2(R+) defined as 〈f, g〉 :=

∫∞
0
f(t)g(t)dt, f, g ∈ L2(R+).

Proposition 2.6. For any F ∈ Dom(DM) and u ∈ Dom(δM), we have

E
[
〈DMF, u〉

]
= E

[
FδM(u)

]
. (2.4)

9



Particularly, if Mt = Bt is the Wiener process, we denote

C := CM
∣∣∣
M=B

, U := UM
∣∣∣
M=B

, Dt(·) := DM
t (·)

∣∣∣
M=B

and δ(·) := δM(·)
∣∣∣
M=B

;

while if Mt = Ñλ
t is the renormalized compensated Poisson process, we denote

Cλ := CM
∣∣∣
M=Ñλ

, Uλ := UM
∣∣∣
M=Ñλ

, Dλ
t (·) := DM

t (·)
∣∣∣
M=Ñλ

and δλ(·) := δM(·)
∣∣∣
M=Ñλ

.

The following proposition provides the probabilistic interpretation of Dλ as a differ-

ence operator, also see Proposition 6.4.7 in [26] for more details.

Proposition 2.7. For every F ∈ Dom(Dλ), we have

Dλ
t F =

√
λ
(
F (N· + 1[t,∞)(·))− F (N·)

)
, t ∈ R+. (2.5)

3 Convergence of (annihilation) Malliavin opera-

tors

Given a square integrable Wiener functional F with the chaos expansion

F = E[F ] +
∞∑
n=1

In(fn), (3.1)

where fk is in the space L2(R+)◦k of symmetric square-integable functions such that

∞∑
n=1

nn!‖fn‖2
L2(Rn+) <∞,

we define the Poisson discretization F
λ

of F at the level λ > 0 as

F
λ

:= E[F ] +
∞∑
n=1

Iλn(fn). (3.2)

We note that the mapping F 7→ F
λ

is an isometry on L2(Ω) as we have

‖F λ‖2
L2(Ω) = (E[F ])2 +

∞∑
n=1

n!‖fn‖2
L2(Rn+) = ‖F‖2

L2(Ω), (3.3)
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and we can further obtain

‖DλF
λ‖2

L2(Ω×R+) =
∞∑
k=1

nn!‖fn‖2
L2(Rn+) = ‖DF‖2

L2(Ω×R+),

from which it follows that

F
λ ∈ Dom(Dλ)⇐⇒ F ∈ Dom(D).

In this section, we shall establish the convergence in distribution of F
λ

and Dλ
t F

λ

respectively to F and DtF as λ tends to infinity.

Lemma 3.1. a) For any F ∈ C with Poisson discretization F
λ

and t ∈ R+, we have

F
λ d−→ F and Dλ

t F
λ d−→ DtF, [λ→∞].

b) For any u ∈ U with Poisson discretization uλ and a.e. t ∈ R+, we have

uλt
d−→ ut and δλ(uλ)

d−→ δ(u), [λ→∞].

Proof. Note that any function fn ∈ P(Rn) can be represented as

fn(x1, . . . , xn) =

nqn∑
k=0

∑
p∈En
|p|=k

cp(fn)

p!

n∏
i=1

Hpi(xi),

where {cp(fn)}p∈En are constants depending only on fn and qn is the maximum power

index of fn(x1, . . . , xn) in (x1, x2, . . . , xn). For any Wiener functional Fn ∈ C, by

Proposition 2.3, Fn admits the following Itô-Wiener chaotic decomposition:

Fn =

nqn∑
k=0

∑
p∈En
|p|=k

cp(fn)

p!

n∏
i=1

Hpi

(
I1

(
1Ai√
µ(Ai)

))

=

nqn∑
k=0

∑
p∈En
|p|=k

cp(fn)

p!

n∏
i=1

Ipi

((
1Ai√
µ(Ai)

)⊗pi)

=

nqn∑
k=0

Ik (gk) , (3.4)

where

gk :=
∑
p∈En
|p|=k

cp(fn)

p!
µ(A1)−p1/2 · · ·µ(An)−pn/21⊗p1A1

· · ·1⊗pnAn
, (3.5)
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cf. also Lemma 5.1.6 in [26]. From (3.4) and (3.5), we see that any F ∈ C admits the

Itô-Wiener chaos decomposition

F = E[F ] +

nqn∑
k=1

Ik(gk),

for a given n ≥ 1, where

gk =
∑
p∈En
|p|=k

cp(fn)

p!
µ(A1)−p1/2 · · ·µ(An)−pn/21⊗p1A1

⊗ · · · ⊗ 1
⊗pn
An

,

with µ(Ai) > 0, i = 1, . . . , n. By the definition (3.2) of F
λ

and Proposition 2.3-(2),

we have

F
λ

= E[F ] +

nqn∑
k=1

Iλk (gk)

= E[F ] +

nqn∑
k=1

λ−k/2
∑
p∈En
|p|=k

cp(fn)

p!
µ(A1)−p1/2 · · ·µ(An)−pn/2

n∏
i=1

Cpi

(∫ ∞
0

1AidNλt, λµ(Ai)

)
= Jλ(V λ

n ),

where

Jλ(x1, . . . , xn) :=

nqn∑
k=0

λ−k/2
∑
p∈En
|p|=k

cp(fn)

p!
µ(A1)−p1/2 · · ·µ(An)−pn/2

×
n∏
i=1

Cpi
(
λµ(Ai) +

√
µ(Ai)λ · xi, λµ(Ai)

)
,

and

V λ :=
(

(µ(A1))−1/2

∫ ∞
0

1A1dÑ
λ
t , . . . , (µ(An))−1/2

∫ ∞
0

1AndÑ
λ
t

)
, λ > 0.

Similarly, we have

F = E[F ] +

nqn∑
k=1

Ik(gk)

=

nqn∑
k=0

∑
p∈En
|p|=k

cp(fn)

p!
µ(A1)−p1/2 · · ·µ(An)−pn/2

n∏
i=1

Ipi(1
⊗pi
Ai

)
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=

nqn∑
k=0

∑
p∈En
|p|=k

cp(fn)

p!

n∏
i=1

Hpi

(∫ ∞
0

1Ai√
µ(Ai)

dBt

)
= J(V ),

where

J(x1, . . . , xn) :=

nqn∑
k=0

∑
p∈En
|p|=k

cp(fn)

p!

n∏
i=1

Hpi(xi),

and

V :=
(

(µ(A1))−1/2

∫ ∞
0

1A1dBt, . . . , (µ(An))−1/2

∫ ∞
0

1AndBt

)
.

Since the sets {Ai}1≤i≤n are disjoint,
{∫∞

0
1AidÑ

λ
t /
√
µ(Ai)

}
1≤i≤n

is a family of inde-

pendent random variables, hence by the Donsker theorem we have∗

lim
λ→∞

V λ = V,

hence

J(V λ)
d−→ J(V ) = F, [λ→∞]. (3.6)

We next show that

Jλ(V λ)− J(V λ)
P−→ 0. (3.7)

By Chebyshev’s inequality and the fact that ‖V λ‖2
L2(Ω) = ‖V ‖2

L2(Ω) = n, then for any

δ > 0 and Kδ >
√
n/δ we have the bound

P
(
|V λ| > Kδ

)
<

E[|V λ|2]

K2
δ

=
E[|V |2]

K2
δ

< δ, λ > 0.

Accordingly, we see that Jλ converges locally uniformly to J as λ → ∞; indeed, for

any fixed ε > 0, there exists a large enough constant λδ depending on δ, such that for

all λ > λδ,

P
(∣∣Jλ(V λ)− J(V λ)

∣∣ > ε
)

∗Independence of

{∫∞
0

1Ai√
µ(Ai)

dÑλ
t

}
1≤i≤n

is required, because in general, given two weakly con-

vergent random sequences Xλ −→ X and Y λ −→ Y we may not have Xλ + Y λ −→ X + Y .

13



≤ P
(∣∣Jλ(V λ)− J(V λ)

∣∣ > ε, |V λ| ≤ Kδ

)
+ P

(
|V λ| > Kδ

)
≤ lim sup

λ→∞

(
P

(
sup
|x|≤Kδ

∣∣Jλ(x)− J(x)
∣∣ > ε

)
+ P

(
|V λ| > Kδ

))
≤ 0 + δ = δ,

where we applied Lemma 2.4. Since δ can be arbitrarily chosen, we can claim that

(3.7) holds. From the relation

F
λ

= Jλ
(
V λ
)

= Jλ(V λ)− J(V λ) + J(V λ)

and (3.6)-(3.7) we conclude that F
λ d−→ F by Slutsky’s theorem. By using a similar

argument and the relations (DtF )λ = Dλ
t F

λ
, and (δ(u))λ = δλ(uλ), we also obtain

uλt
d−→ ut, D

λ
t F

λ d−→ DtF and δλ(uλ)
d−→ δ(u) as λ tends to infinity. �

Theorem 3.2. a) For any F ∈ Dom(D) and h ∈ L2(R+), we have the weak conver-

gences

F
λ d−→ F and 〈h,DλF

λ〉 d−→ 〈h,DF 〉, [λ→∞].

b) For any u ∈ IL1,2, we have the weak convergence

δλ(uλ)
d−→ δ(u), [λ→∞].

Proof. For any F ∈ Dom(D), there exists a sequence (Fn)n∈N ∈ C such that

‖Fn−F‖1,2 → 0 and ‖F λ

n−F
λ‖1,2 → 0 as n tends to infinity, for any λ > 0. By using

Lemma 3.1, for each Fn ∈ C we have

F
λ

n
d−→ Fn as λ→∞.

Fix ε > 0, for any non-constant bounded and Lipschitz function f : R −→ R there

exists a large enough λ ∈ R+ and n0(ε) ∈ N, such that

‖F − Fn0(ε)‖L2(Ω) ≤
ε

3‖f ′‖∞
,

‖F λ − F λ

n0(ε)‖L2(Ω) ≤
ε

3‖f ′‖∞
,

∣∣∣E [f (F λ

n0(ε)

)
− f(Fn0(ε))

]∣∣∣ < ε

3
,

(3.8a)

(3.8b)

(3.8c)

14



where ‖f ′‖∞ := supx∈R |f ′(x)|, and (3.8c) follows from the limit F λ
n0(ε)

d−→ Fn0(ε) as

guaranteed by Lemma 3.1. By using (3.8a), (3.8b) and (3.8c), for large enough λ, we

can deduce that∣∣∣E [f(F
λ
)− f(F )

]∣∣∣
≤
∣∣∣E [f(F

λ
)− f(F

λ

n0(ε))
]∣∣∣+

∣∣∣E [f(F
λ

n0(ε))− f(Fn0(ε))
]∣∣∣+

∣∣E[f(Fn0(ε))− f(F )]
∣∣

≤
(∥∥∥F λ − F λ

n0(ε)

∥∥∥
L2(Ω)

+
∥∥F − Fn0(ε)

∥∥
L2(Ω)

)
‖f ′‖∞ +

∣∣∣E [f(F
λ

n0(ε))− f(Fn0(ε))
]∣∣∣

≤ 2

3
ε+

1

3
ε = ε,

which justifies F
λ d−→ F . Similarly, for F ∈ Dom(D) and h ∈ L2(R+) there exists

a sequence (Fn)n∈N ∈ C such that ‖〈h,DλF
λ

n〉 − 〈h,DλF
λ〉‖L2(Ω) → 0 as n tends to

infinity, by the inequality

‖〈h,DλF
λ〉 − 〈h,DλF

λ

n〉‖L2(Ω) ≤ ‖h‖L2(R+)‖DλF
λ −DλF

λ

n‖L2(Ω×R+),

and a similar argument can be applied to conclude that 〈h,DλF
λ〉 d−→ 〈h,DF 〉. In the

case of u ∈ IL1,2 we choose a sequence (un)n∈N ∈ U such that ‖un − u‖1,2 → 0 and

‖uλn − uλ‖1,2 → 0 as n tends to infinity, for any λ > 0, and we conclude similarly as

above, since δλ(uλn)
d−→ δ(un) as λ tends to infinity. �

As an example, given (Fζ)z∈R a family of regular enough random variables depending

on a parameter ζ, consider the classical Malliavin calculus argument

∂

∂ζ
E[f(Fζ)] = E

[
f ′(Fζ)

∂Fζ
∂ζ

]
= E

[
〈Df(Fζ), u〉
〈DFζ , u〉

∂Fζ
∂ζ

]
= E

[
f(Fζ)δ

(
u

〈DFζ , u〉
∂Fζ
∂ζ

)]
, f ∈ C1

b (R),

for the computation of the sensitivity ∂E[f(Fζ)]/∂ζ, where u = (ut)t∈R+ is a pro-

cess suitably chosen so that u
∂Fζ
∂ζ
/〈DFζ , u〉 belongs to Dom(δ). This identity can be

discretized into its Poisson version

∂

∂ζ
E[f(Fζ)] ' E

[
f(F

λ

ζ )δ
λ

(
uλ

〈DλF
λ

ζ , u
λ〉

(
∂Fζ
∂ζ

)λ)]
, (3.9)
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due to the weak convergences of F
λ

ζ , D
λF

λ

ζ and δλ(uλ) in Theorem 3.2. In addition,

the rate of convergence of (F
λ

ζ )λ>0 to Fζ can be estimated using a Wasserstein-type

distance according to Theorem 5.1 below.

4 Convergence of damped gradient operators

There are actually two Malliavin derivative operators in the Poisson space, the first

one is the annihilation operatorDλ
t (·) introduced in the previous section, while another

one is the damped gradient operator D̃λ
t (·), which will be explained in this section;

also see [26]. In particular, the relationship between the damped operator D̃λ
t defined

in the Poisson space and the Malliavin derivative operator Dt defined in the Wiener

space is illustrated as follows.

Consider the set Sλ of smooth Poisson functionals defined as

Sλ :=
{
F = fn

(
T λ1 , . . . , T

λ
n

)
: fn ∈ C∞0

(
Rn
)
, n ∈ N

}
,

where T λi is the ith jump time of (Nλt)t∈R+ .

Definition 4.1. For every F ∈ Sλ, the damped operator D̃λ : L2(Ω) 7→ L2(Ω × R+)

is defined as

D̃λ
t F := − 1√

λ

n∑
k=1

1[0,Tλk ](t)∂kfn(T λ1 , . . . , T
λ
n ), t ∈ R+.

The operator D̃λ is also closable and can be extended to its closed domain Dom(D̃λ)

under the Sobolev norm ‖ · ‖˜1,2 defined by

‖F‖˜1,2 := ‖F‖L2(Ω) + ‖D̃λF‖L2(Ω×R+), F ∈ Sλ.

Consider the set Q of functionals defined as

Q :=

{
F = E[F ] +

∞∑
n=1

Iλn(h⊗nn ) : hn ∈ C1
0

(
R+

)
,

∞∑
n=1

n2n!
(∥∥h′n+1

∥∥2n+2

L2(R+)
+ ‖hn‖2n

L2(R+)

)
<∞

}
,
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which is dense in the space of square-integrable Poisson functionals. In the next propo-

sition, F λ =
∞∑
n=0

Iλn
(
h⊗nn

)
denotes the Poisson discretization of F ∈ Q of the form

F = E[F ] +
∞∑
n=1

In(h⊗nn ). Recall that by Theorem 3.2 we have the weak convergence

F λ −→ F .

Proposition 4.2. For any F ∈ Q and t ∈ R+ we have the weak convergence

D̃λ
t F

λ d−→ DtF, [λ→∞].

Proof. By e.g. § 4.8 and § 7.7 in [26], the annihilation operator Dλ and the operator

D̃λ satisfy the relation

D̃λ
t I

λ
n(h⊗nn ) = Dλ

t I
λ
n(h⊗nn )− n√

λ
Iλn
((
h′n1[t,∞)

)
◦ h⊗(n−1)

n

)
, hn ∈ C1

0

(
R+

)
.

Hence by the definition of F λ we have

D̃λF λ = DλF λ −
∞∑
n=1

n√
λ
Iλn
((
h′n1[t,∞)

)
◦ h⊗(n−1)

n

)
.

Fix m ∈ N, since ‖f̃n‖L2(Rn+) ≤ ‖fn‖L2(Rn+) for any fn ∈ L2(Rn
+), we have

E

( m∑
n=1

n√
λ
Iλn
((
h′n1[t,∞)

)
◦ h⊗(n−1)

n

)2
 =

1

λ

m∑
n=1

n2n!
∥∥(h′n1[t,∞)

)
◦ h⊗(n−1)

n

∥∥2

L2(Rn+)

≤ 1

λ

∞∑
n=1

nn!‖h′n‖2n
L2(R+) +

1

λ

∞∑
n=1

n2n!‖hn‖2n
L2(R+), (4.1)

where (4.1) follows from Young’s inequality, so that the last term converges to zero

as λ→∞ since F λ ∈ Q. Together with Theorem 3.2 we deduce that

D̃λ
t F

λ d−→ DtF, t ∈ R+,

as λ tends to infinity. �

For example, for the single Poisson integral

F λ =

∫ ∞
0

h(t)dÑλ
t =

1√
λ

∞∑
k=1

h(T λk )−
√
λ

∫ ∞
0

h(t)dt,
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where h ∈ C1
0

(
R
)
, we note that

D̃λ
t F

λ = −1

λ

∑
Tλk >t

h′(T λk )

= − 1√
λ

∫ ∞
t

h′(s)dÑλ
s −

∫ ∞
t

h′(s)ds

= h(t)− 1√
λ

∫ ∞
t

h′(s)dÑλ
s ,

which converges weakly to h(t) = DtF as λ tends to infinity since

E

[(
1√
λ

∫ ∞
t

h′(s)dÑλ
s

)2
]

=
1

λ

∫ ∞
t

h′(s)2ds
λ→∞−−−→ 0.

5 Convergence rate of discretized Wiener function-

als

In this section we establish the convergence rate of the discretized Poisson functionals

F
λ

to the Wiener functional F when the intensity parameter λ tends to infinity. For

measuring this closeness, we use the Wasserstein-type distance

d(F,G) := sup
g∈G
|E [g(F )− g(G)]| , (5.1)

which is the distance dH2 in [18] between two random variables F and G in L2(Ω),

where

G :=
{
g ∈ C2(R) : max(‖g‖∞, ‖g′‖∞, ‖g′′‖∞) ≤ 1

}
. (5.2)

Although this distance differs from the common Wasserstein distance by the addi-

tional requirement that ‖g′′‖∞ ≤ 1, it is clear that d(Fn, G) → 0 implies Fn
d−→ G as

n tends to infinity.

In the rest of this paper, we consider symmetric functions fn : [0, T ]n → R with a

compact support in the hypercube [0, T ]n, n ≥ 1, where 0 < T < ∞ is fixed. Theo-

rem 5.1 below provides the convergence rate of O(λ−1/4) from Poisson discretizations

to the corresponding Wiener functionals, up to a constant depending on the chaos
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expansion of the functional F . In the sequel, we let H1,2 denote the standard Sobolev

space on Rn
+ with the norm

‖h‖2
H1,2(Rn+) := ‖h‖2

L2(Rn+) + ‖∇h‖2
L2(Rn+;Rn), h ∈ H1,2(Rn

+),

where ∇h denotes the weak gradient of h.

Theorem 5.1. Let F be a Wiener functional with Wiener chaos expansion (3.1) such

that for all n ≥ 1 the symmetric function fn belongs to H1,2(Rn
+), which also satisfies

∞∑
n=1

n · n!‖∇fn‖2
L2(Rn+;Rn) <∞, (5.3)

and ∫ T

0

E
[
(DtDtF )2

]
dt =

∞∑
n=2

n(n− 1)n!

∫ ∞
0

‖fn(·, t, t)‖2
L2(Rn−2

+ )
dt <∞. (5.4)

Then we have the universal rate of convergence:

d
(
F
λ
, F
)

= O(λ−1/4), [λ→∞], (5.5)

for the Poisson discretization F
λ

to F .

Before proceeding to the proof of Theorem 5.1, we consider two examples of applica-

tion.

Example - Time average of geometric Brownian motion

Given σ : R+ → R+ a bounded deterministic function and b ∈ C1
b such that

‖b‖∞, ‖b′(t)‖∞, ‖σ‖∞, ‖σ′‖∞ < C,

where C > 0 is a finite constant, consider the geometric Brownian motion

Xt = X0 exp

(∫ t

0

b(s)ds+

∫ t

0

σ(s)dBs −
1

2

∫ t

0

σ2(s)ds

)
= X0 exp

(∫ t

0

b(s)ds

) ∞∑
n=0

1

n!
In(σ◦n1[0,t]n).
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Given h a bounded deterministic function with ‖h‖∞ < C, the time integral F :=∫ T

0

h(t)Xtdt, admits the chaos expansion

F = E[F ] +
∞∑
n=1

In(fn),

with the kernels

fn(t1, . . . , tn) =
1

n!

∫ T

tn

h(s)e
∫ s
0 b(r)drds ·

n∏
i=1

σ(ti), 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn.

We have

∂tifn(t1, . . . , tn) = 1{1≤i<n}
1

n!
σ′(ti)

∫ T

tn

h(s)e
∫ s
0 b(r)drds ·

n∏
i=1
i 6=j

σ(tj)

+1{i=n}
1

n!

n−1∏
j=1

σ(tj)

(
σ′(tn)

∫ T

tn

h(s)e
∫ s
0 b(r)drds− σ(tn)h(tn)e

∫ tn
0 b(r)dr

)
,

i = 1, 2, . . . , n, and therefore

|fn(t1, . . . , tn)| ≤ T
cn+1

n!
ecT and |∂tifn(t1, . . . , tn)| ≤ (T + 1)

cn+1

n!
ecT ,

i = 1, . . . , n, from which it follows that

‖fn‖2
L2([0,T ]n) ≤ T n+2 c

2n+2

(n!)2
e2cT and ‖∇fn‖2

L2([0,T ]n;Rn) ≤ n(T + 1)2 c
2n+2

(n!)2
e2cT .

On the other hand, we also check that
∞∑
n=1

nn!‖∇fn‖2
L2(Rn) <∞,∫ T

0

E[(DtDtF )2]dt =
∞∑
n=2

n!n(n− 1)

∫
[0,T ]n−1

f 2
n(t1, . . . , tn−1tn−1)dt1 · · · dtn−1 <∞,

which shows that the conditions of Theorem 5.1 are satisfied. In this case, the Poisson

discretization F
λ

of F =

∫ T

0

h(t)Xtdt is given by

F
λ

= X0

∫ T

0

h(t) exp

(∫ t

0

b(s)ds− λ
∫ t

0

σ2(s)ds

) Nλ
t∏

k=1

(1 + σ(Tk))dt,

where (Nλ
t )t∈R+ is a standard Poisson process with intensity λ > 0, and sequence of

jump times (Tk)k≥1. The time average F :=

∫ T

0

h(t)Xtdt can be used for e.g. the

pricing of Asian options.
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Example - Stochastic differential equations

Consider the SDE

dXt = b(Xt)dt+ σdBt, (5.6)

where b ∈ C2(R) with ‖b′‖∞, ‖b′′‖∞ < C <∞, and σ is a positive constant.

We note that

Dt1Xt =

∫ t∨t1

t1

b′(Xs)Dt1Xsds+ σ, ∂t1Dt1Xt =

∫ t∨t1

t1

b′(Xs)∂t1Dt1Xsds− σb′(Xt1),

0 ≤ t1 ≤ t, which implies, by using Gronwall’s inequality:

sup
t1∈[0,T ]

|Dt1XT | < σeCT , sup
t1∈[0,T ]

|∂t1Dt1XT | < CσeCT , (5.7)

for some constant C > 0. Furthermore we have

Dt1Dt2Xt =

∫ t

t1∨t2
b′(Xs)Dt1Dt2Xsds+

∫ t

t1∨t2
b′′(Xs)Dt1XsDt2Xsds, 0 ≤ t1, t2 ≤ t,

hence

a) for 0 ≤ t1 ≤ t2 ≤ t,

∂t2Dt1Dt2Xt = −σb′′(Xt2)Dt1Xt2+

∫ t

t2

b′(Xs)(∂t2Dt1Dt2Xs)ds+

∫ t

t2

b′′(Xs)(Dt1Xs)(∂t2Dt2Xs)ds

b) for 0 ≤ t2 ≤ t1 ≤ t,

∂t2Dt1Dt2Xt =

∫ t

t1

b′(Xs)(∂t2Dt1Dt2Xs)ds+

∫ t

t1

b′′(Xs)(Dt1Xs)(∂t2Dt2Xs)ds.

By using (5.7) and Gronwall’s inequality, we find that

sup
t1,t2∈[0,T ]

E[|∂t2Dt1Dt2XT |2] <
(
Cσ2eCT + C2T · σ2e2CT

)
eCT <∞. (5.8)

Now, if

F := XT = X0 +

∫ T

0

b(Xs)ds+ σBT
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has the chaos expansion

XT =
∞∑
n=0

In(fn),

we have

∂t2Dt1Dt2XT =
∞∑
n=2

n(n− 1)In−2(∂t2fn(∗, t1, t2)),

hence by (5.8) we deduce that

∞∑
n=1

nn!‖∇fn‖2
L2([0,T ]n;Rn) =

∞∑
n=2

nn!

∫ T

0

· · ·
∫ T

0

‖∇fn(t3, . . . , tn, t1, t2)‖2
Rndt1 · · · dtn

≤ 2
∞∑
n=2

(n− 1)n!

∫ T

0

· · ·
∫ T

0

‖∇fn(t3, . . . , tn, t1, t2)‖2
Rndt1 · · · dtn

= 2
∞∑
n=2

n(n− 1)n!

∫ T

0

· · ·
∫ T

0

|∂t2fn(t3, . . . , tn, t1, t2)|2dt1 · · · dtn

= 2

∫ T

0

∫ T

0

E
[
|∂t2Dt1Dt2XT |2

]
dt1dt2

≤ 2
(
Cσ2eCT + C2T · σ2e2CT

)
eCTT 2,

where we applied the symmetric property of fn for the second equality, i.e.

∂t2f(t2, t1, . . . , tn) = ∂t2f(t1, t2, . . . , tn) = · · · = ∂t2f(t1, t3, . . . , tn, t2).

Similarly, by using Gronwall’s inequality, we find

E
[
|Dt1Dt1XT |2

]
≤ CTσ2e3CT <∞, 0 ≤ t1 ≤ T,

hence ∫ T

0

E[(DtDtF )2]dt ≤ CT <∞,

showing that the conditions of Theorem 5.1 are satisfied. In this case, the Poisson

discretization of Xt is given by solving the SDE

dXλ
t = b(Xλ

t )dt+
σ√
λ

(dNλ
t − λdt), for 0 ≤ t ≤ T,

where (Nλ
t )t∈R+ is a standard Poisson process with intensity λ > 0. Diffusion equa-

tions with non-constant diffusion coefficient dYt = c(Yt)dt+σ(Yt)dBt such that 1/σ(y)
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is locally integrable can also be considered by writing Yt as a deterministic function

Yt = ϕ(t,Xt) of Xt by the Lamperti transformation, depending on the regularity of

ϕ(t, x).

Proof of Theorem 5.1. For a given α ∈ (0, 1), let

Mλ := dλαe, Tλ :=
T

Mλ

=
T

dλαe
, (5.9)

where dxe denotes the smallest integer greater than x, and

Aλk := [tλk−1, t
λ
k), where tλk := kTλ, k = 1, . . . ,Mλ. (5.10)

Next, for n ≥ 1, letting

ci1,...,in :=
1

(Tλ)n

∫
Aλi1
×···×Aλin

fn(t1, . . . , tn)dt1 · · · dtn, (5.11)

1 ≤ i1, . . . , in ≤Mλ, we define the off-diagonal discretization fα,λn of fn as

fα,λn (t1, . . . , tn) :=

Mλ∑
i1,...,in=1
i1 6=···6=in

ci1,...,in1Aλi1×···×A
λ
in

(t1, . . . , tn), (5.12)

where i1 6= · · · 6= in means il 6= ik, 1 ≤ l 6= k ≤ n, so that

‖fα,λn ‖L2([0,T ]n) ≤ ‖fn‖L2([0,T ]n) and lim
λ→∞
‖fα,λn − fn‖L2([0,T ]n) = 0. (5.13)

The multiple Wiener integral In(fα,λn ) of fα,λn can be written as the sum

In(fα,λn ) =

Mλ∑
i1,...,in=1
i1 6=···6=in

ci1,...,inIn
(
1Aλi1×···×A

λ
in

)
=

Mλ∑
i1,...,in=1
i1 6=···6=in

ci1,...,in

n∏
k=1

I1

(
1Aλik

)
(5.14)

of products of mutually independent first order Wiener integrals. Similarly, for the

multiple Poisson integral Iλn(fα,λn ), we have

Iλn(fα,λn ) =

Mλ∑
i1,...,in=1
i1 6=···6=in

ci1,...,inI
λ
n

(
1Aλi1×···×A

λ
in

)
=

Mλ∑
i1,...,in=1
i1 6=···6=in

ci1,...,in

n∏
k=1

Iλ1
(
1Aλik

)
. (5.15)
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Letting, for any m ≥ 1,

Fm := E[F ] +
m∑
n=1

In(fn), Fα,λ
m := E[F ] +

m∑
n=1

In(fα,λn ) and Fα,λ := E[F ] +
∞∑
n=1

In(fα,λn ),

for any g ∈ G, by a Taylor series expansion and the definition (5.2) of G, we have∣∣E [g (Fα,λ
m

)
− g (Fm)

]∣∣ =

∣∣∣∣∣E
[
g

(
m∑
n=1

In(fα,λn )

)
− g

(
m∑
n=1

In(fn)

)]∣∣∣∣∣
≤ E

[∣∣∣∣∣g′
(

m∑
n=1

In(fα,λn )

)∣∣∣∣∣
∣∣∣∣∣
m∑
n=1

(In(fn)− In(fα,λn ))

∣∣∣∣∣
]

+
1

2
E

∣∣g′′(ξ)∣∣ ∣∣∣∣∣
m∑
n=1

(In(fn)− In(fα,λn ))

∣∣∣∣∣
2


≤ E

[∣∣∣∣∣
m∑
n=1

(In(fn)− In(fα,λn ))

∣∣∣∣∣
]

+
1

2
E

∣∣∣∣∣
m∑
n=1

(In(fn)− In(fα,λn ))

∣∣∣∣∣
2


≤

√√√√√E

∣∣∣∣∣
m∑
n=1

In(fn − fα,λn )

∣∣∣∣∣
2
+

1

2
E

∣∣∣∣∣
m∑
n=1

In(fn − fα,λn )

∣∣∣∣∣
2


≤

√√√√ m∑
n=1

n!‖fn − fα,λn ‖2
L2([0,T ]n) +

1

2

m∑
n=1

n!‖fn − fα,λn ‖2
L2([0,T ]n),

where ξ lies on the line joining the random numbers Fα,λ
m and Fm. Hence we have, by

considering a.s. convergent subsequences,

d
(
Fα,λ, F

)
= sup

g∈G

∣∣E [g (Fα,λ
)
− g (F )

]∣∣
= sup

g∈G
lim
m→∞

∣∣E [g (Fα,λ
m

)
− g (Fm)

]∣∣
≤

√√√√ ∞∑
n=1

n!‖fn − fα,λn ‖2
L2([0,T ]n) +

1

2

∞∑
n=1

n!
∥∥fn − fα,λn

∥∥2

L2([0,T ]n)
,

and by Lemma 6.1 in Section 5, we get

d
(
Fα,λ, F

)
= O

(
λ−α/2

)
, [λ→∞].

Similarly, we can also obtain:

Fα,λ
λ

:= E[F ] +
∞∑
n=1

Iλn(fα,λn ), λ > 0,
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by using the isometry (3.3) and Lemma 6.1, we can show that

d(Fα,λ
λ
, F

λ
) = O

(
λ−α/2

)
, [λ→∞],

In addition, by Lemma 6.2 in Section 5, we have

d(Fα,λ
λ
, Fα,λ) = O

(
λ(α−1)/2

)
, [λ→∞],

hence by the triangle inequality we find

d
(
F
λ
, F
)
≤ d

(
F
λ
, Fα,λ

λ)
+ d
(
Fα,λ

λ
, Fα,λ

)
+ d
(
Fα,λ, F

)
= O

(
λ−α/2

)
+O

(
λ(α−1)/2

)
.

We conclude by taking α = 1/2, which yields the optimal rate. �

6 Key lemmas

In this section we prove the main Lemmas 6.1, 6.2, 6.3 and 6.4, which were used in

the proof of Theorem 5.1. In Lemma 6.1, we first start by showing the convergence

of Fα,λ to F (resp. Fα,λ
λ

to F
λ
) with a rate O(λ−α/2) under the L2(Ω) norm.

Lemma 6.1. Let α ∈ (0, 1) and consider F a Wiener functional with Wiener chaos

expansion (3.1) satisfying the conditions (5.3)-(5.4) of Theorem 5.1. Then we have

‖Fα,λ − F‖2
L2(Ω) = ‖Fα,λ

λ
− F λ‖2

L2(Ω) =
∞∑
m=1

n!‖fα,λn − fn‖2
L2([0,T ]n) = O

(
λ−α

)
, (6.1)

as λ tends to infinity.

Proof. Recall that

fα,λn (t1, . . . , tn) :=

Mλ∑
i1,...,in=1
i1 6=···6=in

ci1,...,in1Aλi1×···×A
λ
in

(t1, . . . , tn),

where

ci1,...,in :=
1

(Tλ)n

∫
Aλi1
×···×Aλin

fn(t1, . . . , tn)dt1 · · · dtn, 1 ≤ i1, . . . , in ≤Mλ.
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Let now

f̄α,λn (t1, . . . , tn) :=

Mλ∑
i1,...,in=1

ci1,...,in1Aλi1×···×A
λ
in

(t1, . . . , tn),

with the triangle inequality

‖fn − fα,λn ‖2
L2([0,T ]n) ≤ 2‖fn − f̄α,λn ‖2

L2([0,T ]n) + 2‖f̄α,λn − fα,λn ‖2
L2([0,T ]n). (6.2)

By definition, we have

‖fn − f̄α,λn ‖2
L2([0,T ]n) =

Mλ∑
i1,...,in=1

∫
Aλi1
×···×Aλin

(fn − f̄α,λn )2dt1 · · · dtn

=

Mλ∑
i1,...,in=1

∫
Aλi1
×···×Aλin

(fn(t1, . . . , tn)− ci1,...,in)2dt1 · · · dtn

≤n(Tλ)
2

π2

∫
[0,T ]n

‖∇fn(t1, . . . , tn)‖2
Rndt1 · · · dtn, (6.3)

where the last inequality holds is due to the fact that the domain Aλi1 × · · · × A
λ
in is

convex with diameter
√
nTλ, and∫

Aλi1
×···×Aλin

(fn(t1, . . . , tn)− ci1,...,in)dt1 · · · dtn = 0.

Next, an application of the Poincaré inequality, cf. e.g. Theorem 3.2 of [1] shows the

upper bound ∫
Aλi1
×···×Aλin

(fn(t1, . . . , tn)− ci1,...,in)2dt1 · · · dtn

≤ n · (Tλ)2

π2

∫
Aλi1
×···×Aλin

‖∇fn(t1, . . . , tn)‖2
Rndt1 · · · dtn,

1 ≤ i1, . . . , in ≤Mλ. For the second term in (6.2), we have

‖f̄α,λn − fα,λn ‖2
L2([0,T ]n)

=

Mλ∑
i1,...,in=1

il=ik for some i 6=k

∫
Aλi1
×···×Aλin

c2
i1,...,in

dt1 · · · dtn

= (Tλ)
n

Mλ∑
i1,...,in=1

il=ik for some i 6=k

(
1

(Tλ)n

∫
Aλi1
×···×Aλin

fn(t1, . . . , tn)dt1 · · · dtn

)2
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≤
Mλ∑

i1,...,in=1
il=ik for some i 6=k

∫
Aλi1
×···×Aλin

f 2
n(t1, . . . , tn)dt1 · · · dtn.

Therefore we deduce that
∞∑
n=1

n!‖f̄α,λn − fα,λn ‖2
L2([0,T ]n)

≤
∞∑
n=1

n!

Mλ∑
i1,...,in=1

il=ik for some i 6=k

∫
Aλi1
×···×Aλin

f 2
n(t1, . . . , tn)dt1 · · · dtn

=
∞∑
n=1

n!

(
n

2

) Mλ∑
in−1=1

∫
[0,T ]n−2×Aλin−1

×Aλin−1

f 2
n(t1, . . . , tn−1, tn)dt1 · · · dtn−2dtn−1dtn

=
∞∑
n=1

n!

(
n

2

) Mλ∑
in−1=1

∫
Aλin−1

×Aλin−1

f̃n(tn−1, tn)dtn−1dtn,

where the first equality follows by symmetry of fn, and

f̃n(x, y) :=

∫
[0,T ]n−2

f 2
n(t1, . . . , tn−2, x, y)dt1 · · · dtn−2, x, y ∈ R.

By the fundamental theorem of calculus, we have∫
Aλin−1

×Aλin−1

f̃n(tn−1, tn)dtn−1dtn (6.4)

=

∫
Aλin−1

(∫
Aλin−1

f̃n(tn−1, tn−1)dtn−1

)
dtn +

∫
Aλin−1

×Aλin−1

(∫ tn

tn−1

∂sf̃n(tn−1, s)ds

)
dtn−1dtn

= Tλ ·
∫

[0,T ]n−2×Aλin−1

f 2
n(t1, . . . , tn−2, tn−1, tn−1)dt1 · · · dtn−1

+ 2

∫
Aλin−1

×Aλin−1

(∫ tn

tn−1

∫
[0,T ]n−2

fn(t1, . . . , tn−2, tn−1, s)

· ∂sfn(t1, . . . , tn−2, tn−1, s)dt1 · · · dtn−2ds

)
dtn−1dtn.

Next, using Young’s inequality 2ab ≤ a2/2 + 4b2, we can deduce that

2

∫
Aλin−1

×Aλin−1

(∫ tn

tn−1

∫
[0,T ]n−2

fn(t1, . . . , tn−2, tn−1, s)

× ∂sfn(t1, . . . , tn−2, tn−1, s)dt1 · · · dtn−2ds

)
dtn−1dtn
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≤ Tλ
2

∫
Aλin−1

×Aλin−1

f̃n(tn−1, tn)dtn−1dtn

+ 4Tλ

∫
[0,T ]n−2×Aλin−1

×Aλin−1

|∂tnfn(t1, . . . , tn−1, tn)|2dt1 · · · dtn−1dtn.

Substituting the last inequality back into (6.4), after rearrangement, we further de-

duce that∫
Aλin−1

×Aλin−1

f̃n(tn−1, tn)dtn−1dtn

≤ 2 · Tλ ·
∫

[0,T ]n−2×Aλin−1

f 2
n(t1, . . . , tn−2, tn−1, tn−1)dt1 · · · dtn−1

+ 8 · Tλ
∫

[0,T ]n−2×Aλin−1
×Aλin−1

|∂tnfn(t1, . . . , tn−1, tn)|2dt1 · · · dtn−1dtn.

Then

Mλ∑
in−1=1

∫
Aλin−1

×Aλin−1

f̃n(tn−1, tn)dtn−1dtn

≤ 2Tλ

∫
[0,T ]n−1

f 2
n(t1, . . . , tn−2, tn−1, tn−1)dt1 · · · dtn−1

+ 8
Tλ
n

∫
[0,T ]n

‖∇fn(t1, . . . , tn)‖2dt1 · · · dtn,

where the last inequality follows from the symmetric property of fn. Now we can

obtain

∞∑
n=1

n!‖f̄α,λn − fα,λn ‖L2([0,T ]n)

≤ Tλ

∞∑
n=1

(n− 1)!n2(n− 1)

∫
[0,T ]n−1

f 2
n(t1, . . . , tn−2, tn−1, tn−1)dt1 · · · dtn−1

+ 4Tλ

∞∑
n=1

(n− 1) · n!

∫
[0,T ]n

‖∇fn(t1, . . . , tn)‖2dt1 · · · dtn

< Tλ

∫ T

0

E[(DtDtF )2]dt

+ 4Tλ

∞∑
n=1

n · n!

∫
[0,T ]n

‖∇fn(t1, . . . , tn)‖2dt1 · · · dtn. (6.5)
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Combining (6.2), (6.3) and (6.5), we conclude that

∞∑
n=1

n!‖fn − fα,λn ‖2
L2([0,T ]n)

≤ 2

π2
(Tλ)

2

∞∑
n=1

n · n!

∫
[0,T ]n

‖∇fn(t1, . . . , tn)‖2dt1 · · · dtn

+ 2Tλ

∫ T

0

E[(DtDtF )2]dt+ 8Tλ

∞∑
n=1

n · n!

∫
[0,T ]n

‖∇fn(t1, . . . , tn)‖2dt1 · · · dtn < C̃Tλ,

where

C̃ := 9
∞∑
n=1

n · n!

∫
[0,T ]n

‖∇fn‖2 + 2

∫ T

0

E[(DtDtF )2]dt <∞

is independent of λ and partition, and it yields (6.1). �

The proof of Lemma 6.2 relies on the multivariate Stein method and the Malliavin

calculus on the Poisson space.

Lemma 6.2. For any α > 0 we have

d
(
Fα,λ

λ
, Fα,λ

)
= O

(
λ(α−1)/2

)
, [λ→∞]. (6.6)

Proof. Let

V λ =
(
V λ

1 , . . . , V
λ
Mλ

)>
:=
(
Iλ1
(
1Aλ1

)
, Iλ1
(
1Aλ2

)
, . . . , Iλ1

(
1AλMλ

))>
and

Uλ =
(
Uλ

1 , . . . , U
λ
Mλ

)>
:=
(
I1

(
1Aλ1

)
, I1

(
1Aλ2

)
, . . . , I1

(
1AλMλ

))>
,

where Aλ1 , . . . , A
λ
Mλ

are defined in (5.10). We note that

Iλn(fα,λn ) =

Mλ∑
i1,...,in=1
i1 6=···6=in

ci1,...,inI
λ
n

(
1Aλi1×···×A

λ
in

)

=

Mλ∑
i1,...,in=1
i1 6=···6=in

ci1,...,in

n∏
k=1

Iλ1 (1Aλik
),

=

Mλ∑
i1,...,in=1
i1 6=···6=in

ci1,...,in

(
Iλ1 (1Aλ1 )

)∑n
k=1 1{ik=1}

· · ·
(
Iλ1 (1AλMλ

)
)∑n

k=1 1{ik=Mλ}
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= hα,λn (V λ),

where ci1,i2,...,in is defined in (5.11) and

hα,λn (x1, . . . , xMλ
) :=

Mλ∑
i1,...,in=1
i1 6=···6=in

ci1,...,inx
∑n
k=1 1{ik=1}

1 x
∑n
k=1 1{ik=2}

2 · · ·x
∑n
k=1 1{ik=Mλ}

Mλ
. (6.7)

Similarly, we can also obtain:

In(fα,λn ) = hα,λn (Uλ).

Hence, letting

Fα,λ
m

λ

:= E[F ] +
m∑
n=1

Iλn(fα,λn ) and Fα,λ
m := E[F ] +

m∑
n=1

In(fα,λn ),

we have ∣∣∣∣E [g(Fα,λ
m

λ)
− g

(
Fα,λ
m

)]∣∣∣∣ =
∣∣E [gα,λ (V λ

)
− gα,λ

(
Uλ
)]∣∣ , (6.8)

where

gα,λ(x) := g

(
m∑
n=1

hα,λn (x)

)
, x ∈ RMλ .

We shall estimate (6.8) by the multiple Stein method combined with the Malliavin

calculus. We use the representation (5.14) of In(fα,λn ) as a series of products of mutu-

ally independent first order Wiener chaos random variables whose joint distribution

is multivariate Gaussian, which allows us to apply the multivariate Stein method in

order to quantify the Wasserstein-type distance between F
α,λ

m and Fα,λ
m for all m ≥ 1,

therefore allowing us to bound d
(
Fα,λ

λ
, Fα,λ

)
.

Given that Uλ ∼ N (0, TλId) is Gaussian with diagonal covariance matrix TλId, where

Id denotes the identity matrix on RMλ and Mλ is defined in (5.9), by Lemma 3.3 in

[20] the function

g̃h,λ(x) :=
1

2

∫ 1

0

E
[
gα,λ

(
x
√
s+ Uλ

√
1− s

)
− gα,λ(Uλ)

] ds
s
, x ∈ RMλ , (6.9)

satisfies the multivariate Stein equation

E
[
gα,λ

(
V λ
)
− gα,λ

(
Uλ
)]

= E
[
TλTr (Hess g̃h,λ(V

λ))− 〈V λ,Og̃h,λ(V
λ)〉RMλ

]
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= E

[
TλTr (Hess g̃h,λ(V

λ))−
Mλ∑
j=1

〈
Lλ(Lλ)−1V λ

j ,
∂g̃h,λ
∂xj

(V λ)

〉
RMλ

]

= E
[
TλTr (Hess g̃h,λ( V

λ))
]
−

Mλ∑
j=1

E
[〈

Dλ
(
Lλ
)−1

V λ
j , D

λ

(
∂g̃h,λ
∂xj

(
V λ
))〉

RMλ

]
,

(6.10)

where V λ
j is the jth component of V λ, Lλ := δλDλ is the Ornstein-Uhlenbeck operator

on the Poisson space, and the last equality follows by the duality (2.4) between Dλ

and δλ.

Next, by the finite difference property (2.5) in Proposition 2.9 of the Poisson Malliavin

derivative operator and the mean value theorem we find that

Dλ
t

(
∂g̃h,λ
∂xj

(
V λ
))

=
√
λ

(
∂g̃h,λ
∂xj

(
V λ(N· + 1[t,∞)(·))

)
− ∂g̃h,λ

∂xj

(
V λ
))

=

Mλ∑
i=1

∂2g̃h,λ
∂xi∂xj

(
V λ
)
Dλ
t V

λ
i +

1

2
√
λ

(Dλ
t V

λ)>
(

Hess
∂g̃h,λ
∂xj

(
Ψλ
t

))
Dλ
t V

λ,

(6.11)

for every t ∈ [0, T ], where Ψλ
t lies on the line joining V λ(N·) and V λ

(
N· + 1[t,∞)(·)

)
.

Given that

(Lλ)−1V λ
j = Iλ1 (1Aλj ) = V λ

j , j = 1, . . . ,Mλ, (6.12)

cf. also Section 4.4 in [26], applying (6.11) to (6.10) we get

E
[
gα,λ(V λ)− gα,λ(Uλ)

]
= E

[
TλTr (Hess g̃h,λ(V

λ))
]

−
Mλ∑
j=1

Mλ∑
i=1

E
[〈

Dλ
·
(
Lλ
)−1

V λ
j ,

∂2g̃h,λ
∂xi∂xj

(
V λ
)
Dλ
· V

λ
i

〉
RMλ

]
(6.13)

− 1

2
√
λ

Mλ∑
j=1

E
[〈

Dλ
·
(
Lλ
)−1

V λ
j , (D

λ
· V

λ)>
(

Hess
∂g̃h,λ
∂xj

(
Ψλ
·
))

Dλ
· V

λ

〉
RMλ

]
(6.14)

= − 1

2
√
λ

Mλ∑
k=1

E
[〈

1Aλk
(·),1Aλk (·)

(
∂3g̃h,λ
∂x3

k

(
Ψλ
·
))〉

R

]
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= − 1

2
√
λ

Mλ∑
k=1

∫ tλk

tλk−1

E
[
∂3g̃h,λ
∂x3

k

(
Ψλ
t

)]
dt, (6.15)

where the second equality follows by (6.12), while (6.14) becomes the expression in

the next line by using (6.12) again, and (6.13) vanishes as

TλE
[
Tr (Hess g̃h,λ(V

λ))
]

−
Mλ∑
j=1

Mλ∑
i=1

E
[〈

Dλ
·
(
Lλ
)−1

V λ
j ,

∂2g̃h,λ
∂xi∂xj

(
V λ
)
Dλ
· V

λ
i

〉
RMλ

]

= Tλ

Mλ∑
i=1

E
[
∂2g̃h,λ
∂x2

i

(
V λ
)]
−

Mλ∑
j=1

Mλ∑
i=1

E
[〈

1Aλj (·), ∂
2g̃h,λ

∂xi∂xj

(
V λ
)
1Aλi (·)

〉
RMλ

]

= Tλ

Mλ∑
i=1

E
[
∂2g̃h,λ
∂x2

i

(
V λ
)]
− Tλ

Mλ∑
i=1

E
[
∂2g̃h,λ
∂x2

i

(
V λ
)]

= 0.

By applying Lemma 6.4 below to (6.15) we conclude that∣∣∣∣E [g(Fα,λ
m

λ)
− g

(
Fα,λ
m

)]∣∣∣∣ =
∣∣E [gα,λ(V λ)− gα,λ(Uλ)

]∣∣
≤ π

4

√
dλαe
λT
‖g′′‖∞

Mλ∑
k=1

∫ tλk

tλk−1

m∑
n=1

nn!‖fn(·, t)‖2
L2(Rn−1

+ )
dt

=
π

4

√
dλαe
λT
‖g′′‖∞

m∑
n=1

nn!‖fn‖2
L2([0,T ]n), g ∈ U ,

from which (6.6) follows as

d
(
Fα,λ

λ
, Fα,λ

)
= sup

g∈G

∣∣∣E [g(Fα,λ
λ
)
− g

(
Fα,λ

)]∣∣∣
= sup

g∈G
lim
m→∞

∣∣∣∣E [g(Fα,λ
m

λ)
− g

(
Fα,λ
m

)]∣∣∣∣
≤ π

4

√
dλαe
λT

∞∑
n=1

nn!‖fn‖2
L2([0,T ]n).

�

The proof of Lemma 6.4 below relies on the next Lemma 6.3. Define an i.i.d. copy of

V λ as

V̂ λ :=

(∫ ∞
0

1Aλ1 (s)dN̂λ
s , . . . ,

∫ ∞
0

1AλMλ
(s)dN̂λ

s

)>
,
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where N̂λ
s := (N ′λs−λs)/

√
λ is a renormalized compensated standard Poisson process

with intensity λ, independent of both (Bt)t∈R+ and (Ñλ
t )t∈R+ .

Lemma 6.3. Let Ψ̂λ
t denote an i.i.d. copy of Ψλ

t as defined in the proof of Lemma

6.2, lying on the line joining V̂ λ(N̂λ
· ) to V̂ λ

(
N̂λ
· + 1[t,∞)

)
. We have the relation

∂hα,λn
∂xk

(Ψ̂λ
√
s+ Uλ

√
1− s) = nIλ,sn−1(fα,λn (·, t)), t ∈ Aλk , (6.16)

where Iλ,sn (·) : L2(R)◦n → R is the operator defined as

Iλ,sn (fn) := n!
√
s

∫ ∞
0

· · ·
∫ s−2

0

fn(s1, . . . , sn)dN̂λ
s1
· · · dN̂λ

sn (6.17)

+n!
√

1− s
∫ ∞

0

· · ·
∫ s2

0

fn(s1, . . . , sn)dBs1 · · · dBsn ,

with the isometry property

‖Iλ,sn (fn)‖2
L2(Ω) = n!‖fn‖2

L2([0,T ]n), fn ∈ L2(R)◦n. (6.18)

Proof. Given that

V̂ λ(N· + 1[t,∞)(·))

=

(∫ ∞
0

1Aλ1 (s)dÑλ
s +

1Aλ1 (t)
√
λ

, . . . ,

∫ ∞
0

1AλMλ
(s)dÑλ

s +
1AλMλ

(t)
√
λ

)
,

for any j = 1, . . . ,Mλ with j 6= k and t ∈ Aλk we have

V̂ λ
j (N· + 1[t,∞)(·)) =

∫ ∞
0

1Aλj (s)dÑλ
s +

1Aλj (t)
√
λ

=

∫ ∞
0

1Aλj (s)dÑλ
s = V̂ λ

j .

Consequently, since Ψ̂λ
t lies on the line joining V̂ λ(N·) to V̂ λ

(
N· + 1[t,∞)(·)

)
, we have

Ψ̂λ
t,j =

∫ ∞
0

1Aλj (s)dÑλ
s , t ∈ Aλk , j = 1, . . . ,Mλ, j 6= k, (6.19)

for every component of Ψ̂λ = (Ψ̂λ
1 , . . . , Ψ̂

λ
Mλ

). Given that the sum in (6.7) is over

distinct ik’s, the power
∑n

l=1 1{il=k} of xk in hα,λn (x) is either 1 or 0, cf. (6.7). Therefore

we have

∂hα,λn
∂xk

(x) =

Mλ∑
i1,...,in=1
i1 6=···6=in

ci1,...,in

(
n∑
l=1

1{il=k}

)
(6.20)

33



× x
∑n
l=1 1{il=1}

1 · · ·x
∑n
l=1 1{il=k−1}

k−1 x
∑n
l=1 1{il=k+1}

k+1 · · ·x
∑n
l=1 1{il=Mλ}

Mλ
.

By (6.19), (6.20), and the definition (6.17) of Iλ,sn (fn) we find

∂hα,λn
∂xk

(Ψ̂λ
√
s+ Uλ

√
1− s) =

∂hα,λn
∂xk

(V̂ λ
√
s+ Uλ

√
1− s)

=

Mλ∑
i1,...,in=1
i1 6=···6=in

ci1,...,in

n∑
l=1

1{il=k}
(
Iλ,s1 (1Aλ1 )

)∑n
l=1 1{il=1} · · ·

(
Iλ,s1 (1Aλk−1

)
)∑n

l=1 1{il=k−1}

×
(
Iλ,s1 (1Aλk+1

)
)∑n

l=1 1{il=k+1} · · ·
(
Iλ,s1 (1AλMλ

)
)∑n

l=1 1{il=Mλ}

=

Mλ∑
i1,...,in=1
i1 6=···6=in

ci1,...,in

n∑
l=1

1{il=k}
(
Iλ,s1 (1Aλi1

)
)1{i1=1} · · ·

(
Iλ,s1 (1Aλin

)
)1{in=1}

×
(
Iλ,s1 (1Aλi1

)
)1{i1=2} · · ·

(
Iλ,s1 (1Aλin

)
)1{in=2}

· · ·

×
(
Iλ,s1 (1Aλi1

)
)1{i1=k−1} · · ·

(
Iλ,s1 (1Aλin

)
)1{in=k−1}

×
(
Iλ,s1 (1Aλi1

)
)1{i1=k+1} · · ·

(
Iλ,s1 (1Aλin

)
)1{in=k+1}

· · ·

×
(
Iλ,s1 (1Aλi1

)
)1{i1=Mλ} · · · (Iλ,s1 (1Aλin

)
)1{in=Mλ}

=

Mλ∑
i1,...,in=1
i1 6=···6=in

ci1,...,in

n∑
l=1

1{il=k}
(
Iλ,s1 (1Aλi1

)
)1{i1 6=k}) · · · (Iλ,s1 (1Aλin

)
)1{in 6=k}

=

Mλ∑
i2,i3,...,in=1
i1 6=···6=in

ck,i2...,inI
λ,s
1 (1Aλi2

)Iλ,s1 (1Aλi3
) · · · Iλ,s1 (1Aλin

) (6.21)

+

Mλ∑
i1,i3...,in=1
i1 6=···6=in

ci1,k,...,inI
λ,s
1 (1Aλi1

)Iλ,s1 (1Aλi3
) · · · Iλ,s1 (1Aλin

)

+ · · ·

+

Mλ∑
i1,i2...,in−1=1

i1 6=···6=in

ci1,...,in−1,kI
λ,s
1 (1Aλi1

) · · · Iλ,s1 (1Aλin−1
)

= n

Mλ∑
i1,i2...,in−1=1

i1 6=···6=in

ci1,...,in−1,kI
λ,s
1 (1Aλi1

) · · · Iλ,s1 (1Aλin−1
) (6.22)
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= nIλ,sn−1(fα,λn (·, t)), t ∈ Aλk ,

where (6.21) holds because ck,i2,...,in = 0 if ij = k for some j ∈ {2, . . . , n}, and (6.22)

follows from the symmetry relation

ci1,...,im−1,k,im+1,...,in = ci1,...,in−1,k, m = 1, . . . , n.

�

Lemma 6.4. For all α ∈ (0, 1) and k = 1, . . . ,Mλ, we have∣∣∣∣ ∫ tλk

tλk−1

E
[
∂3g̃h,λ
∂x3

k

(
Ψλ
t

)]
dt

∣∣∣∣ ≤ π

2

√
dλαe
T
‖g′′‖∞

m∑
n=1

nn!

∫ tλk

tλk−1

‖fn(·, t)‖2
L2(Rn−1

+ )
dt,

where g̃h,λ is defined in (6.9).

Proof. For any g ∈ G, since ‖g′′‖∞ ≤ 1 and Uλ ∼ N (0, TλId), we have

g̃h,λ(x) =
1

2

∫ 1

0

E
[
gα,λ(x

√
s+ Uλ

√
1− s)− g(Uλ)

] ds
s

=
1

2(2πTλ)Mλ/2

∫ 1

0

∫
RMλ

gα,λ (z) exp

(
−‖x
√
s− z‖2

2(1− s)Tλ

)
dzds

s
√

1− s

− 1

2(2πTλ)Mλ/2

∫ 1

0

∫
RMλ

gα,λ (y) exp

(
−‖y‖

2

2Tλ

)
dy
ds

s
. (6.23)

By differentiation of (6.23) with respect to xk, we obtain

∂g̃h,λ
∂xk

(x)

=
−1

2(2πTλ)Mλ/2 · Tλ

∫ 1

0

∫
RMλ

(xk
√
s− zk)gα,λ (z) exp

(
−‖x
√
s− z‖2

2(1− s)Tλ

)
dzds

s1/2(1− s)3/2

=
1

2(2πTλ)Mλ/2 · Tλ

∫ 1

0

∫
RMλ

ykg
α,λ(x

√
s+ y

√
1− s) exp

(
−‖y‖

2

2Tλ

)
dyds√
s(1− s)

=
1

2Tλ

∫ 1

0

E
[
gα,λ(x

√
s+ Uλ

√
1− s)Uλ

k

] ds√
s(1− s)

,

and

∂3g̃h,λ
∂x3

k

(x) =
1

2Tλ

∫ 1

0

E
[
∂2gα,λ

∂x2
k

(x
√
s+ Uλ

√
1− s)Uλ

k

]
ds√

s(1− s)
, (6.24)
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x ∈ RMλ , k = 1, . . . ,Mλ. Next, letting

hα,λ(x) :=
m∑
n=1

hα,λn (x), x ∈ RMλ ,

we have

∂gα,λ

∂xk
(x) =

∂g(hα,λ)

∂xk
(x) = g′(hα,λ(x))

∂hα,λ

∂xk
(x),

and

∂2gα,λ

∂x2
k

(x) = g′′(hα,λ(x))

(
∂hα,λ

∂xk
(x)

)2

+ g′(hα,λ(x))
∂2hα,λ

∂x2
k

(x)

= g′′(hα,λ(x))

(
∂hα,λ

∂xk
(x)

)2

, (6.25)

since from (6.20) we have ∂2hα,λ

∂x2k
(x) = 0 as ∂hα,λ

∂xk
does not depend on xk. Substituting

(6.25) into (6.24) and using (6.16), we deduce that for all k = 1, . . . ,Mλ we have∣∣∣∣∣
∫ tλk

tλk−1

E
[
∂3g̃h,λ
∂x3

k

(
Ψλ
t

)]
dt

∣∣∣∣∣
≤ 1

2Tλ
‖g′′‖∞

∫ tλk

tλk−1

∫ 1

0

E

[(
∂hα,λ

∂xk
(Ψ̂λ(t)

√
s+ Uλ

√
1− s)

)2 ∣∣∣∣∫ ∞
0

1Aλk
(s)dBs

∣∣∣∣ ]√ s

1− s
dsdt

≤ 1

2Tλ
‖g′′‖∞

∫ tλk

tλk−1

∫ 1

0

E

∣∣∣∣∣
m∑
n=1

nIλ,sn−1(fα,λn (·; t))

∣∣∣∣∣
2
√E

[ ∣∣∣∣∫ ∞
0

1Aλk
(s)dBs

∣∣∣∣2 ]√ s

1− s
dsdt

(6.26)

≤ π

2
√
Tλ
‖g′′‖∞

m∑
n=1

nn!

∫ tλk

tλk−1

‖fn(·, t)‖2
L2(Rn−1

+ )
dt,

where we used (5.13) and the identity

∫ 1

0

√
s

1− s
ds = π, and the second inequal-

ity in (6.26) holds by recalling that
∂hα,λ

∂xk
(Ψ̂λ(t)

√
s + Uλ

√
1− s) is independent of∫ ∞

0

1Aλk
(s)dBs since (6.22) contains no term in the form Iλ,s1 (1Aλk ). �
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