
Analysis of Heterogeneous Wireless Networks

Using Poisson Hard-Core Hole Process

Ian Flint, Han-Bae Kong, Member, IEEE, Nicolas Privault,

Ping Wang, Senior Member, IEEE and Dusit Niyato, Fellow, IEEE

Abstract

The Poisson point process (PPP) has been widely employed to model wireless networks and analyze

their performance. The PPP has the property that nodes are conditionally independent from each other.

As such, it may not be a suitable model for many networks where there exists a repulsion among the

nodes. In order to address this limitation, we adopt a Poisson hard-core process (PHCP) in which no

two nodes can be closer than a repulsion radius from one another. We consider two-tier heterogeneous

networks where the spatial distributions of transmitters in the first-tier and the second-tier networks

follow a PHCP and a PPP, respectively. To alleviate inter-tier interference, we consider a guard zone for

the first-tier network and presume that the second-tier transmitters located in the zone are deactivated.

Under this setup, the activated second-tier transmitters form a Poisson hard-core hole process. We first

derive exact computable expressions of the coverage probability and introduce a method to efficiently

evaluate the expressions. Then, we provide approximations of the coverage probability which have lower

computational complexities. Additionally, as a special case, we investigate the coverage probability of

single-tier networks by modeling the locations of transmitters as a PHCP.

Index Terms

Stochastic geometry, repulsive point process, Poisson hard-core process.

I. INTRODUCTION

Wireless communication networks have evolved to meet the requirement of high speed data

services. As a promising network architecture capable of supporting the demand, heterogeneous
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networks (HetNets) have attracted much attention [2]. Recently, many researchers have utilized

stochastic geometry [3] to model and analyze wireless networks since conventional methods

assuming a regular hexagonal lattice or the Wyner model [4] are unrealistic and difficult to

apply.

A. Related Work and Motivations

The spatial distribution of nodes in wireless networks strongly affects the performance of

networks. Since the assumption of independence among the nodes makes the performance

analysis tractable, many works have attempted to analyze wireless networks by modeling the

spatial distribution of the nodes as a Poisson point process (PPP) [5]–[12]. The authors in [5]

and [6] characterized the transmission capacity of ad hoc wireless networks. In the case of

cellular networks, downlink and uplink performances were studied in [7] and [8], respectively.

However, in the PPP model, conditional on the PPP having n nodes, the nodes are assumed to be

distributed independently from one another, making the PPP an unsuitable model when it comes

to reflecting the actual node deployment in many wireless networks. In [7], it is shown that

modeling the locations of cellular base stations (BSs) as a PPP underestimates the performance

of the actual BS deployment.

In practical networks, the locations of transmitters may be chosen in order to alleviate inter-

ference or extend coverage region, and thus a repulsion among the locations of the transmitters

naturally arises [13]–[16].1 In this context, repulsive point processes which are either soft-

core point processes [18]–[21] or hard-core point processes (HCPs) have drawn attention of

researchers as models for actual networks which exhibit repulsion. The performance of cellular

networks has been analyzed by modeling the locations of BSs as a determinantal point process

(DPP) [18], a Ginibre point process (GPP) [19] and a β-GPP (0 < β ≤ 1) [20]. The authors

in [21] examined ambient radio frequency energy harvesting sensor networks using an α-GPP

(−1 ≤ α < 0). Although the soft-core point processes can reflect repulsion, they cannot forbid

points from being close to each others. Conversely, the HCPs are characterized by the property

that no two points can be closer than a given repulsion radius to one another. Therefore, in this

1For cellular networks, in order to serve hotspots area, the distribution of small cell BSs (SBSs) may exhibit a clustering

nature [17]. In this paper, we focus on the case where there exists a repulsion rather than a clustering.
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paper, we focus on the HCPs since its property is more suitable to model practical networks.

We distinguish two main classes of HCPs which we now introduce.

The Matérn hard core process (MHCP) of type I [22] is obtained by retaining every point of

a PPP which is not within the repulsion distance from another point of the PPP. The MHCP

type II model [22] is constructed by assigning a uniform age t ∈ [0, 1] to each point of a PPP

and removing every point which is within the repulsion distance of a younger point of the PPP

(a point x with age tx is said to be younger than y with age ty if tx ≤ ty). In [23], it was

shown that BS locations in wireless cellular networks are well modeled by MHCPs. The works

in [24] and [25] studied mean interference of MHCPs of types I and II, respectively. The nearest

neighbor distribution in the MHCP type II was derived in [26]. In addition, a modified MHCP

has been applied to analyze carrier-sense multiple access with collision avoidance (CSMA/CA)

networks [27]. Although the MHCP models the CSMA/CA networks well, exact expressions

for key metrics are not available since the Laplace functional of the MHCP is unknown. As an

example, it is intractable to find the exact distribution of the signal-to-noise-plus-interference ratio

(SINR), which determines important performance metrics such as achievable rate and coverage

probability, for the networks modeled by the MHCP as in [13], [28], [29].

A better suited HCP turns out to be the Poisson hard-core process (PHCP) [3] (sometimes

called Gibbs hard-core process or Strauss hard-core process) which is a PPP conditional on all

its points being further than a certain distance from one another. From the experimental results

in [14]–[16], it was verified that the PHCP models the actual deployment of BSs which exhibits

a repulsive behavior. However, previous works on the PHCP have only tried to fit the PHCP

to real configurations of the nodes. We found that the performance of networks modeled by a

PHCP has not been analytically investigated yet. Thus, in this paper, we introduce the exact

expression of the coverage probability of the network modeled by the PHCP, and provide simple

approximations of the coverage probability.

HetNets have emerged as an effective solution to meet high traffic demands and eliminate

coverage dead zones. For downlink cellular HetNets, assuming that each tier is represented by a

PPP, the coverage probability was identified in [9], and performance with flexible cell association

was examined in [10]. Also, the works in [11] and [12] analyzed the success probability in

downlink multiuser multiple-input multiple-output (MIMO) HetNets, and the outage probability

of uplink multi-tier cellular networks, respectively. However, for analytical tractability, the works
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in [9]–[12] assumed that the spatial distribution of BSs in a tier is independent from other tiers.

In many practical networks, there exists a repulsion among the tiers since closely located BSs

experience excessive interference, and therefore assuming the independence among the tiers may

not be suitable for practical scenarios.

As a method to alleviate the interference, for wireless ad hoc networks, the concept of guard

zone (also called exclusion zone), which is defined as the region around a receiver where

transmissions are not allowed, was introduced in [30]. Let us consider two independent PPPs

Φ1 and Φ2. When the points in Φ1 have disc-shaped exclusion zones, and only the points in

Φ2 outside the exclusion zones are activated, the activated points in Φ2 form a Poisson hole

process (PHP) [31]. By modeling the spatial distribution of cognitive transmitters as a PHP,

the performance of cognitive radio networks was characterized in [31] and [32]. Also, the PHP

was applied to a two-tier cellular network [33] and a D2D enhanced cellular network [34] to

analyze the performance of the networks. Recently, the authors in [35] provided bounds for the

Laplace transform of a PHP field of interferers. However, although the PHP takes the inter-

tier interference into account, it fails to reflect a correlation among the points due to the PPP

assumption. Furthermore, the works in [30]–[35] only derived the bounds of the performance

rather than the exact expression. Therefore, in this paper, we consider a two-tier network with

a PHCP and a guard zone, and introduce not only approximations but also an exact analytical

representation of the performance.

B. Contributions and Organization

In this paper, we study two-tier HetNets. We assume that the locations of transmitters in the

first-tier network are deployed to mitigate interference or extend the coverage region. Addition-

ally, it is assumed that transmitters in the second-tier network are deployed in an unplanned

fashion. Hence, we model the distributions of transmitters in the first- and second-tier networks

as a PHCP and a PPP, respectively. Furthermore, a guard zone for the first-tier network, which

deactivates the second-tier transmitters in the zone, is considered to alleviate the inter-tier

interference. Under this setup, the activated second-tier transmitters form a Poisson hard-core

hole process (PHCHP). The contributions of this paper are summarized next.

• First, we identify the Laplace transform of the interference at a typical user from the first-tier

and the second-tier networks by exploiting the Laplace functional of pairwise interaction
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point processes. Here, the interference field induced by the second-tier transmitters can be

modeled as a PHCHP. Then, in Theorem 1, we provide an exact computable expression of

the coverage probability of two-tier HetNets which is the probability that SINR is larger than

a certain target SINR threshold. The proof of Theorem 1 relies on a geometric argument

which is detailed in Appendix D.

• Next, in Corollary 1, we specialize our result for the two-tier HetNets to the setting of

single-tier networks consisting of transmitters following a PHCP by letting the intensity

of the second-tier transmitters go to zero. We emphasize that even the performance of the

single-tier networks with a PHCP has not been studied in the literature so far.

• We apply the Quasi-Monte Carlo (QMC) technique to compute the derived results. We

confirm that our analytical results, which are evaluated by using the QMC technique, are

well matched with the Monte Carlo simulation results.

• Lastly, we provide approximations of the coverage probability. We derive numerical ap-

proximations of the coverage probability which have a lower computational complexity and

exhibit a negligible gap compared to the Monte Carlo simulation result. Then, we address

probabilistic approximations by approximating an interference field by a composition of

homogeneous PPPs with well chosen intensities, cf. Theorems 3 and 4.

The organization of this paper is as follows. In Section II, we introduce some background

on pairwise interaction point processes and describe the system model. In Section III, we

analyze the exact coverage probability of both single- and two-tier networks. Section IV provides

our approximations of the coverage probability. In Section V, numerical simulation results are

presented to validate our analytical results. Finally, the conclusions are given in Section VI.

The following notations are used throughout this paper. The operators ‖ · ‖ and \ indicate

Euclidean 2-norm and set difference, respectively. The bold notation is used to denote a point

x ∈ R2. In addition, we denote by P the probability on the underlying probability space, and

the corresponding expectation is denoted by E.

II. PRELIMINARIES AND SYSTEM MODEL

In this section, we first introduce fundamental properties of the pairwise interaction point

process which includes the PHCP as a special case. Then, we present the system model by

focusing on the PHCP.
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A. Preliminaries

Let W ⊂ R2 be an observation window, and let Ψ be a point process on W , i.e., a random

finite set of points located in W . Since many quantities manipulated in this manuscript depend

only on the radii of the points in Ψ, a polar change of coordinates combined with a circular

observation window allows us to present more compact closed forms. Therefore, in this paper,

we assume that W = B0 (R) is a circular observation window of radius R centered at the origin

(0, 0) in R2. The configuration space (i.e., all finite sets of points of W ) is denoted by X . We

assume that Ψ has joint densities fΨ : X → [0,∞) [36], i.e.,

E
[
F (Ψ)

]
=
∑
n≥0

e−πR
2

n!

∫
Wn

F ({x1, . . . ,xn})fΨ({x1, . . . ,xn}) dx1 · · · dxn, (1)

for all non-negative measurable functions F : X → [0,∞) where dxi denotes the Lebesgue

measure on W . We recall that the joint densities fΨ defined in (1) characterize the distribution

of the point process.

In the following, we introduce the definitions of the pairwise interaction point process and

the PHCP.

Definition 1 (Pairwise interaction point process [36]). The point process Ψ is said to be a

pairwise interaction point process if fΨ defined in (1) is given by

fΨ(ω) = c
∏
x∈ω

ϕ1(x)
∏

{x,y}⊂ω

ϕ2(‖x− y‖), ω ∈ X . (2)

Here, c is the normalizing constant defined by

c−1 ,
∑
n≥0

e−πR
2

n!

∫
Wn

n∏
i=1

ϕ1(xi)
∏

j,k=1,...,n;
j 6=k

ϕ2(‖xj − xk‖) dx1 · · · dxn, (3)

where ϕ1 and ϕ2 are two non-negative functions such that the right-hand side of (3) is finite. The

function ϕ1 plays the role of the (non-homogeneous) intensity while ϕ2 is the physical interaction

potential between the points of the point process.

Definition 2. A pairwise interaction point process with ϕ1(x) = λ and ϕ2(r) = 1{r≥d} is called

a PHCP with intensity λ > 0 and radius d > 0. Here, 1A is the indicator function of the event

A, i.e., the function equal to 1 if the event A holds, and 0 if not. The parameter λ is the intensity

parameter, and the potential function ϕ2 prohibits the PHCP from having any two points closer
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than d to one another. It can be shown that the probability of having a point in an infinitesimal

volume dx at the location x conditional on ω is λ1{x/∈∩y∈ωBy(d)} dx, as the volume of dx goes

to zero.

We define the intensity of the point process as the measurable function λ : W → [0,∞) which

satisfies E[Ψ(W )] =
∫
W
λ(x) dx, i.e., the intensity of Ψ is the density of the (random) number

of points. Note that by the Georgii-Nguyen-Zessin formula [37], we have

λ(x) = ϕ1(x)E

[∏
y∈Ψ

ϕ2(‖x− y‖)

]
, x ∈ W. (4)

We further define the reduced Palm measure of Ψ at x ∈ W [36] by

µx(dω) , ϕ1(x)
∏
y∈ω

ϕ2(‖x− y‖)λ−1(x)PΨ(dω), x ∈ W, (5)

where PΨ denotes the distribution of Ψ. To obtain some heuristics on the reduced Palm measure

µx, let dx be a small volume around x ∈ W , let A belong to the σ-algebra of sets of X . Then,

denoting by |dx| the volume of dx, by the Georgii-Nguyen-Zessin formula, we have

µx(A) = lim
|dx|→0

P((Ψ \ dx) ∈ A | |Ψ ∩ dx| = 1),

or to state things analogously, µx is the distribution of the point process obtained by conditioning

Ψ on x ∈ Ψ and removing x from the resulting configuration. When Ψ is the PPP, µx = PΨ,

which is known in the literature as the Slivnyak-Mecke theorem [3]. We now characterize the

reduced Palm measures of pairwise interaction point processes.

Proposition 1. Let Ψ be a pairwise interaction point process with interaction functions ϕ1 and

ϕ2. Then, µx is the law of a pairwise interaction point process with interaction functions given

by

ϕx
1 (y) = ϕ1(y)ϕ2(‖x− y‖) and ϕx

2 (r) = ϕ2(r). (6)

Proof. For any measurable function F : X → [0,∞), by (5), we have∫
X
F (ω)µx(dω) = ϕ1(x)λ−1(x)E

[
F (Ψ)

∏
y∈Ψ

ϕ2(‖x− y‖)

]
,
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and by (1), we obtain∫
X
F (ω)µx(dω) = cϕ1(x)λ−1(x)

∑
n≥0

e−πR
2

n!

∫
Wn

F ({x1, . . . ,xn})

×
n∏
i=1

ϕ1(xi)ϕ2(‖x− xi‖)
∏

j,k=1,...,n;
j 6=k

ϕ2(‖xj − xk‖) dx1 · · · dxn. (7)

Additionally, from (1) and (4), we have

λ(x) = ϕ1(x)E
[∏
y∈Ψ

ϕ2(‖x− y‖)
]

= cϕ1(x)
∑
n≥0

e−πR
2

n!

∫
Wn

n∏
i=1

ϕ1(xi)ϕ2(‖x− xi‖)
∏

j,k=1,...,n;
j 6=k

ϕ2(‖xj − xk‖) dx1 · · · dxn.

We conclude by comparing (7) to (1) and (2).

By Proposition 1 and Definition 2, the reduced Palm measure of the PHCP is the law of a

pairwise interaction point process with interaction functions given by

ϕx
1 (y) = λ1{‖x−y‖≥d} and ϕx

2 (r) = 1{r≥d}. (8)

We remark that the reduced Palm measure above corresponds to the distribution of a PPP with

intensity λ on W \ Bx (d) conditional on all its points lying farther than d from one-another.

We now discuss simulation methods producing points of a PHCP with intensity λ and radius

d. In the naive simulation technique, the points are first generated according to a PPP with

intensity λ, and then it is checked whether the minimum distance among the points is greater

than d. If the minimum distance is less than d, the sample is rejected and another set of points is

repeatedly generated until the minimum distance becomes larger than d. This contrasts with the

simulation of an MHCP in which only one sample of the PPP is required. Since a potentially

high number of samples of the PPP are rejected when λ, d or R are large, the naive simulation

technique may not be efficient.

To overcome this issue, we adopt the perfect simulation algorithm in [38]. The algorithm starts

from a PPP Z0 with intensity λ, and constructs a backwards Markov chain Zj = {Zj
0 , . . . , Z

j
j },

for j = 0,−1,−2, . . . . Then, two forward Markov chains are constructed, namely the upper

process U j = {U j
j , . . . , U

j
0} and the lower process Lj = {Ljj, . . . , L

j
0}, respectively, where Ljj

is the null process and U j
j := Zj

j . The algorithm goes on until the two chains have converged
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and yields a sample of the PHCP. The above perfect simulation algorithm is summarized in

Algorithm 1.

Algorithm 1 Perfect simulation algorithm (simplified version of [38, p. 360])
1: Generate a PPP Z0 on W with intensity λ and set k = 1;

2: repeat

3: Generate backwards Z−2k−2−1, . . . , Z−2k−1 according to [38, p. 356];

4: Generate forwards
(
L−2k−1

−2k−1 , U
−2k−1

−2k−1

)
, . . . ,

(
L−2k−1

0 , U−2k−1

0

)
according to (13)-(14) in [38];

5: k = k + 1;

6: until U−2k−1

0 = L−2k−1

0

7: return U−2k−1

0

Although the naive simulation technique may not be practical, it gives us an insight on the

resulting intensity of the PHCP. Indeed, the naive algorithm has a tendency to reject configu-

rations which have a high density of points, as these configurations will typically have points

close to each others. Therefore, heuristically, the intensity of the resulting points of the PHCP

(termed scaled intensity) ought to be less than λ. In the following lemma, we provide the scaled

intensity for the reduced Palm measure of a PHCP and prove that it is indeed less than λ.

Lemma 1. The scaled intensity of the reduced Palm measure of a PHCP with radius d and

intensity λ is given by

λ̃(λ, d) =
λ

πR2

∑
n≥0

λn

n!
νn+1∑

n≥0
λn

n!
νn

, (9)

where νn ,
∫

(W\B0(d))n

∏
j,k=1,...,n;

j 6=k
1{‖xj−xk‖≥d} dx1 · · · dxn.

Proof. See Appendix A.

By the inequality νn+1 ≤ νn(πR2 − πd2) ≤ νnπR
2, we obtain λ̃(λ, d) ≤ λ, which formalizes

the intuition that the scaled intensity λ̃(λ, d) will be less than λ.

B. System model

We consider two-tier HetNets where the spatial distributions of transmitters in the first-tier

and the second-tier networks follow a PHCP Ψ1 and a PPP Ψ2 on the observation window W ,
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TABLE I

LIST OF SYMBOLS

Symbol Definition

Ψ1 PHCP which models the distribution of the transmitters in the first-tier network

Ψ0
1 Reduced Palm measure of Ψ1

Ψ2 PPP which models the distribution of the transmitters in the second-tier network

Ψa
2 Activated transmitters in the second-tier network

Ξ Guard zone based on the locations of transmitters in Ψ0
1

λ1 Spatial intensity of PHCP Ψ1

λ2 Spatial intensity of PPP Ψ2

dh.c. Radius of PHCP Ψ1

dG Radius of guard zone Ξ

r1 Distance between the typical receiver in the first-tier network and its associated transmitter

P1 Transmit power of the transmitters in the first-tier network

P2 Transmit power of the transmitters in the second-tier network

α Path loss exponent

respectively. A list of the symbols used in this paper is given in Table I. Ψ1 is a PHCP with

intensity λ1 and radius dh.c. such that 0 ≤ dh.c. < R, and Ψ2 is a PPP with intensity λ2. with

intensity λ1 and radius dh.c. such that 0 ≤ dh.c. < R.

Each transmitter x ∈ Ψ1 sends data to its corresponding receiver. We study the performance

at a typical receiver x1, and its associated transmitter in the first-tier network (termed tagged

transmitter) is conditioned on being located at the origin. Correspondingly, we denote by Ψ0
1

the point process of transmitters, conditioned on a transmitter being located at the origin. The

distribution of Ψ0
1 is the reduced Palm measure of Ψ1, i.e., a pairwise interaction point process

characterized by (8). We assume that the typical receiver x1 is located at a distance r1 from

its transmitter, in a direction which is assumed to be uniformly distributed. In other words, the

coordinates of x1 are given by (r1 cos(U), r1 sin(U)) where U ∼ U([0, 2π]) is a uniform random

variable on [0, 2π] independent from the other random variables. Note that the analytical results

in this paper can be applied to networks in which the typical receiver is located at a random

distance R1 from the origin, and we have conditioned on R1 = r1.

We assume that the spatial distribution of transmitters in the second-tier network Ψ2 is

independent from Ψ0
1 and is modeled by a PPP with intensity λ2 since the locations of the

transmitters in the second-tier network are assumed to be independent and uniformly distributed.
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We consider the case in which the interferences at the receivers (associated to Ψ0
1) caused by

transmitters in Ψ2 are not desirable. As a way to alleviate the interferences, we introduce a guard

zone and assume that among Ψ2, the points located in the guard zone are deactivated.2 One may

construct the guard zone based on the locations of receivers in the first-tier network. However,

in practical scenarios, it may be difficult for the transmitters in Ψ2 to detect the locations of the

receivers since the receivers may be passive [39].

In this context, we define the guard zone based on the locations of transmitters in Ψ0
1 as

Ξ = B0 (dG) ∪
⋃

x∈Ψ0
1

Bx (dG), (10)

where 0 ≤ dG ≤ dh.c./2 is the guard zone radius. The union with B0 (dG) appears since the

first-tier transmitter at the origin also forms a guard zone for its receiver. The point process Ψa
2,

which corresponds to the activated transmitters (which are not in the guard zone), is defined as

Ψa
2 = Ψ2 \ Ξ. (11)

In this paper, we call Ψa
2 a PHCHP. Compared to the PHP in [30]–[35], the PHCHP can take the

repulsion among the transmitters in the first-tier network into account. Note that two transmitters

in Ψ0
1 cannot be at a distance less than dh.c. from one another, and an activated transmitter in

Ψa
2 cannot be closer than dG to a point in Ψ0

1. However, there is no restriction on the distance

between two transmitters in Ψa
2.

It is worth noting that our network model can be applied to cognitive networks where the

distributions of primary and secondary transmitters are modeled as a PHCP and a PPP, respec-

tively. As a way to ensure that the transmission from the secondary transmitters does not cause

excessive interference to the primary transmission, one can construct exclusion zones around the

primary transmitters which can be expressed as Ξ in (10). In this case, the activated secondary

transmitters can be modeled as a PHCHP Ψa
2 in (11).

In addition, we could consider two-tier closed-access cellular networks where macro cell BSs

(MBSs) and SBSs follow a PHCP and a PPP, respectively, when a typical user is assumed to be

2A transmitter in Ψ2 can know whether it is in the guard zone or not by checking the signal strength from the transmitters

in the first-tier network.
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(a) Two independent PPPs with intensities λ1 = 0.02 and

λ2 = 0.04.
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(b) A PHCP Ψ1 with λ1 = 0.02 and dh.c. = 4, and Ψ2

with λ2 = 0.04 and dG = 2.

Fig. 1. Some realizations of two-tier networks.

served by a MBS and its contact distance is equal to r1
3. When guard zones are created based

on the locations of the MBSs, the spatial distribution of the activated SBSs follows a PHCHP

Ψa
2 in (11).

Fig. 1 illustrates realizations of the two-tier HetNets where dots and circles indicate the loca-

tions of the transmitters in the first-tier network and boundaries of the guard zone, respectively.

The crosses and triangles denote the activated and deactivated transmitters in the second-tier

network. As observed in Fig. 1, by employing the PHCP and guard zone, we can alleviate not

only intra-tier interference but also inter-tier interference.

The quantities of interest are the interference from the other transmitters I and the SINR at

the typical receiver γ, which can be written as

γ =
P1hr

−α
1

I + σ2
, (12)

and

I =
∑
y∈Ψ0

1

P1hy‖y − x1‖−α +
∑
z∈Ψa

2

P2hz‖z− x1‖−α, (13)

3The generalization to an open-access cellular network with the identification of the distribution of the contact distance is an

interesting future research topic. We expect that our work will be a good starting point for the future works on heterogeneous

cellular networks based on a PHCP.
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where P1, P2, α and σ2 stand for the transmit power at the transmitters in Ψ0
1, the transmit

power at transmitters in Ψa
2, the path-loss exponent and the power of additive white Gaussian

noise (AWGN), respectively. Here, h and hy indicate, respectively, the fading gains of the channel

between the typical receiver and the tagged transmitter, and the channel between the receiver and

the transmitter positioned at y. We assume that fading channels follow the Rayleigh distribution,

and thus h and hy are independent exponential random variables with unit mean.

We study the coverage probability Pcov, defined as the probability that the SINR γ in (12) is

larger than a certain threshold γth, i.e., Pcov , P(γ ≥ γth). Since h is an exponential random

variable with unit mean,

Pcov=P
(
h ≥ γthr

α
1

P1

(I + σ2)

)
=E

[
exp

(
− γthr

α
1

P1

(I + σ2)

)]
=exp

(
−γthr

α
1 σ

2

P1

)
LI
(
γthr

α
1

P1

)
, (14)

where LX(s) = E [exp(−sX)] stands for the Laplace transform of a random variable X .

We finally point out that the single-tier network setting can be obtained by letting the intensity

of the second-tier network λ2 go to zero. Then, the interference in (13) is simplified to I =∑
y∈Ψ0

1
P1hy‖y − x1‖−α.

Until now, we have introduced some background on the PHCP and presented the two-tier

HetNets models. In the next section, we derive exact expressions of the coverage probability.

III. EXACT PERFORMANCE ANALYSIS

In this section, we investigate the coverage probability at the typical receiver which is con-

nected to the transmitter at the origin. First, we state and prove the following theorem, which

provides an exact computable expression of the coverage probability of the two-tier network.

Theorem 1. In the two-tier network setting, the coverage probability Pcov is given by

Pcov = c exp

(
−γthr

α
1 σ

2

P1

− λ2κ

)∑
n≥0

λn1
n!

∫
(W\B0(dh.c.))n

n∏
i=1

1

1 + γthrα1
∥∥xi − (r1, 0)

∥∥−α
×

∏
j,k=1,...,n;

j 6=k

1{‖xj−xk‖≥dh.c.} exp

(
λ2

n∑
i=1

∫ R+r1

0

rθxi(r)

1 + P1(r/r1)α/(γthP2)
dr

)
dx1 · · · dxn, (15)

where κ and θxi(r) have been defined in (37) and Proposition 3, respectively, and the normalizing

constant c is equal to

c−1 ,
∑
n≥0

λn1
n!

∫
(W\B0(dh.c.))n

∏
j,k=1,...,n;

j 6=k

1{‖xj−xk‖≥dh.c.} dx1 · · · dxn. (16)
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Proof. See Appendix B.

As a corollary, we derive the coverage probability (14) of single-tier networks.

Corollary 1. In the single-tier network setting, the coverage probability Pcov is given by

Pcov = c exp

(
−γthr

α
1 σ

2

P1

)∑
n≥0

λn1
n!

∫
(W\B0(dh.c.))n

∏
j,k=1,...,n;

j 6=k

1{‖xj−xk‖≥dh.c.} (17)

×
n∏
i=1

1

1 + γthrα1
∥∥xi − (r1, 0)

∥∥−α dx1 · · · dxn,

where the normalizing constant c has been defined in (16).

Proof. We can prove the result by letting λ2 in (15) go to zero in the two-tier setting.

We now comment on the general result obtained in Theorem 1. First, we remark that the

series in (15) is in fact a finite sum. To see this, note that for n large enough, the term∏
j,k=1,...,n;

j 6=k
1{‖xj−xk‖≥dh.c.} is equal to zero for all x1, . . . ,xn. A similar comment can be made

regarding the series in (16).

Next, we emphasize that the expressions in (15)-(17) contain multi-dimensional integrals,

which may incur a high computational complexity, especially since the integrals are nested.

We employ the QMC integration technique [40] to approximate the multi-dimensional integrals

efficiently. For all g : [0, 1]n → C, the QMC integration method exhibits a deterministic sequence

x1, . . . ,xNs ∈ [0, 1]n such that

1

Ns

Ns∑
n=1

g(xn) ≈
∫

[0,1]n
g(z) dz, (18)

when Ns goes to infinity. The advantage of this method compared to the Monte-Carlo method

(in which the sequence xn is stochastic) is that, for high dimensions, the QMC approximation

converges much faster. In this paper, we choose the Sobol sequence [41] as the deterministic

sequence. Since the QMC method is applicable for integrations over the unit square, we rewrite

the expressions in Theorem 1 in the following corollary. Utilizing the results in Corollary 2 and

the QMC integration method in (18), we can readily evaluate the coverage probability.
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Corollary 2. By changing the integral region in (15), we have

Pcov = c exp

(
−γthr

α
1 σ

2

P1

− λ2κ

)∑
n≥0

λn1
n!

(2R)2n

∫
([0,1]×[0,1])n

n∏
i=1

1{dh.c./(2R)≤‖zi−(1/2,1/2)‖≤1/2}

×
n∏
i=1

1

1 + sP1

∥∥R(2zi − (1, 1))− (r1, 0)
∥∥−α ∏

j,k=1,...,n;
j 6=k

1{‖zj−zk‖≥dh.c./(2R)}

× exp

(
λ2

n∑
i=1

∫ R+r1

0

rθR(2zi−(1,1))(r)

1 + P1(r/r1)α/(γthP2)
dr

)
dz1 · · · dzn, (19)

where

c−1 =
∑
n≥0

λn1 (2R)2n

n!

∫
([0,1]×[0,1])n

n∏
i=1

1{dh.c./(2R)≤‖zi−(1/2,1/2)‖≤1/2}

×
∏

j,k=1,...,n;
j 6=k

1{‖zj−zk‖≥dh.c./(2R)} dz1 · · · dzn. (20)

Proof. The proof is obtained by doing a change of variables in (15) and (16). The details are

omitted since the derivation is straightforward.

Letting λ2 go to zero in Corollary 2, one can rewrite (17) so that the integrations are on powers

of the unit square, thereby enabling us to apply the QMC method, cf. Fig 2 in Section V. The

details are omitted for brevity.

IV. APPROXIMATIONS OF THE COVERAGE PROBABILITY

As observed in Section III, the exact expressions of the coverage probability may induce heavy

complexity burdens. To this end, in this section, we provide approximations of the coverage

probability which have lower computational complexity.

A. Numerical approximations

In this subsection, we provide numerical approximations of the coverage probability in (15)

and (17). Our numerical approximation is based on two different insights. First, for any two sets

A,B ⊂ Rd and any non-negative measurable function f : Rd → [0,∞), we use∫
A∩B

f(z) dz '
∫
A∩B

1

|A|

∫
A

f(y) dy dz =
|A ∩B|
|A|

∫
A

f(y) dy, (21)
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where |A| denotes the volume of the set A. The approximation (21) consists in approximating

f(z) by its average value on A. It is a good approximation when f does not vary much on

A ∩B or when |A ∩B| ' |A|. Second, by induction, we obtain the following approximation:∫
(W\B0(dh.c.))n

∏
j,k=1,...,n;

j 6=k

1{‖xj−xk‖≥dh.c.} dx1 · · · dxn

=

∫
(W\B0(dh.c.))n−1

∏
j,k=2,...,n;

j 6=k

1{‖xj−xk‖≥dh.c.}

(∫
W\B0(dh.c.)

1{x1 /∈∩ni=2Bxi (dh.c.)}dx1

)
dx2 · · · dxn

=

∫
(W\B0(dh.c.))n−1

∏
j,k=2,...,n;

j 6=k

1{‖xj−xk‖≥dh.c.}

∣∣∣W \ B0 (dh.c.) \
(
∩ni=2Bxi (dh.c.)

)∣∣∣ dx2 · · · dxn

' max
(

0,
(
πR2 − nπd2

h.c.

)) ∫
(W\B0(dh.c.))n−1

∏
j,k=2,...,n;

j 6=k

1{‖xj−xk‖≥dh.c.} dx2 · · · dxn

'
n∏
k=1

(
πR2 − kπd2

h.c.

)
1{n≤R2/d2

h.c.}. (22)

Utilizing (21) and (22), we obtain the following approximation.

Theorem 2. In the two-tier network setting, the coverage probability is approximated by

Pcov ' c exp

(
−γthr

α
1 σ

2

P1

− λ2κ

) bR2/d2
h.c.c∑

n=0

λn1
n!

∏n
k=1

(
R2 − kd2

h.c.

)(
R2 − d2

h.c.

)n (23)

×
(∫

W\B0(dh.c.)

1

1 + γthrα1
∥∥x− (r1, 0)

∥∥−α exp

(
λ2

∫ R+r1

0

rθx(r)

1 + P1(r/r1)α/(γthP2)
dr

)
dx

)n
where bac denotes the largest integer smaller than a ∈ R. Here, κ and θxi(r) have been defined

in (37) and Proposition 3, respectively. The inverse of the normalizing constant is additionally

approximated by

c−1 '
bR2/d2

h.c.c∑
n=0

(πλ1)n

n!

n∏
k=1

(
R2 − kd2

h.c.

)
. (24)

Proof. Focusing on the approximation of multi-dimensional integral in (15), we set

A = (W \B0 (dh.c.))
n, B = {(x1, . . . ,xn) ∈ R2n : ∀i, j ∈ {1, . . . , n}, i 6= j, ‖xi−xj‖ ≥ dh.c.},

and

f(x1, . . . ,xn) =
n∏
i=1

1

1 + γthrα1
∥∥xi − (r1, 0)

∥∥−α exp

(
λ2

n∑
i=1

∫ R+r1

0

rθxi(r)

1 + P1(r/r1)α/(γthP2)
dr

)
.
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By (21) and (22), we have∫
A∩B

f(z) dz ' |A ∩B|
|A|

∫
A

f(y) dy

=

∫
(W\B0(dh.c.))n

∏
j,k=1,...,n;

j 6=k
1{‖xj−xk‖≥dh.c.} dx1 · · · dxn

(πR2 − πd2
h.c.)

n

∫
A

f(y) dy

' 1{n≤R2/d2
h.c.}

∏n
k=1

(
πR2 − kπd2

h.c.

)
(πR2 − πd2

h.c.)
n

∫
A

f(y) dy

= 1{n≤R2/d2
h.c.}

∏n
k=1

(
R2 − kd2

h.c.

)
(R2 − d2

h.c.)
n

∫
A

f(y) dy.

The above approximation yields (23). The approximation of the inverse of the normalizing

constant follows from a direct application of (22).

We specialize the approximation in Theorem 2 to the single-tier network setting in the

following corollary.

Corollary 3. In single-tier networks, the coverage probability is approximated by

Pcov ' c exp

(
−γthr

α
1 σ

2

P1

) bR2/d2
h.c.c∑

n=0

λn1
n!

∏n
k=1

(
R2 − kd2

h.c.

)(
R2 − d2

h.c.

)n (
2π

∫ R−r1

max(dh.c.−r1,0)

r

1 + γth(r1/r)α
dr

+ 2

∫ r1+R

R−r1

arccos
(
r2
1+r2−R2

2r1r

)
1 + γth(r1/r)α

r dr − 2

∫ r1+dh.c.

|dh.c.−r1|

arccos
(
r2
1+r2−d2

h.c.

2r1r

)
1 + γth(r1/r)α

r dr

)n
, (25)

where the normalizing constant c is approximated by (24).

Proof. By letting λ2 go to zero in Theorem 2, we obtain

Pcov ' c exp

(
−γthr

α
1 σ

2

P1

)

×
bR2/d2

h.c.c∑
n=0

λn1
n!

∏n
k=1

(
R2 − kd2

h.c.

)(
R2 − d2

h.c.

)n (∫
W\B0(dh.c.)

1

1 + γthrα1
∥∥x− (r1, 0)

∥∥−α dx

)n
.

Then, we derive the expression in (25) by applying Proposition 3 of Appendix D.

Note that the above approximations have low computational complexities compared to the

results in Section III. More specifically, the approximation in Theorem 2 is a finite sum of

terms involving a single three-dimensional integral. In single-tier networks, the approximation

in Corollary 3 requires only the computation of a one-dimensional integral. In Section V, it will

be shown numerically that the approximations in (23) and (25) are very tight.
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B. Probabilistic approximation

In this subsection, we provide probabilistic approximations of the coverage probability which

give us some insight on the coverage probability. The main difficulty in identifying the closed-

form expression of the coverage probability Pcov = exp
(
−γthr

α
1 σ

2

P1

)
LI
(γthrα1

P1

)
in (14) comes from

the fact that the Laplace transform of the interference contains a sum of multi-dimensional

integrals. Therefore, our idea is to approximate Ψ0
1 and Ψa

2 by PPPs in order to obtain sim-

ple expressions of the Laplace transform of the interference. In the following proposition we

introduce a simple expression for a quantity related to LI which will be used in the following.

Proposition 2. Let us assume that Φ is a PPP on W with intensity λ. Then, for τ ≥ 0 and

s > 0, we have

E

[
exp

(
−s
∑
y∈Φ

hy‖y − x1‖−α1{‖y−x1‖≥τ}

)]
= f(λ, s, τ),

where

f(λ, s, τ) , exp

(
−2πλ

∫ R−r1

τ

r

1 + s−1rα
dr − 2λ

∫ r1+R

R−r1

arccos

(
r2
1+r2−R2

2r1r

)
1 + s−1rα

r dr

)
, (26)

where arccos(x) , cos−1(x) is the inverse cosine function.

Proof. See Appendix C.

We first concentrate on single-tier networks, and then consider two-tier networks. As one of

the most naive approaches, one may substitute the locations of the points in Ψ0
1 by a PPP on W

denoted by Φ(1) with intensity λ1. In this case, by Proposition 2, the Laplace transform of the

interference can be approximated by f(λ1, sP1, 0).

A more elaborate approach follows an idea from [42] which we recall. Since the transmitters in

Ψ0
1 cannot be at a distance less than dh.c. from one another, and the distance from a transmitter in

Ψ0
1 to its corresponding receiver is equal to r1, the distance between a receiver and its interfering

transmitter is always larger than τ = max(dh.c. − r1, 0). We could thus approximate Ψ0
1 by the

PPP Φ(1) in which we remove the points which are closer than τ from x1. By Proposition 2,

the corresponding Laplace transform of the interference is

E

[
exp

(
− s

∑
y∈Φ(1)

P1hy‖y − x1‖−α1{‖y−x1‖≥τ}

)]
= f(λ1, sP1, τ). (27)
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The last enhancement that we propose is to approximate Ψ0
1 by a PPP Φ(2) with intensity

λ̃(λ1, dh.c.), the intensity of the reduced Palm measure of a PHCP, cf. Lemma 1. Summarizing

the above discussion, we obtain the following probabilistic approximation.

Theorem 3. In single-tier networks, the coverage probability is approximated by

Pcov ' exp
(
−γthr

α
1 σ

2

P1

)
E

[
exp

(
− γthrα1

∑
y∈Φ(2)

hy‖y − x1‖−α1{‖y−x1‖≥τ}

)]

= exp
(
−γthr

α
1 σ

2

P1

)
f
(
λ̃(λ1, dh.c.), γthr

α
1 , τ
)
, (28)

where λ̃(λ1, dh.c.) has been defined in Lemma 1 and τ = max(dh.c. − r1, 0).

Now, we present the probabilistic approximation of the two-tier network. First of all, we

assume that the interferences from Ψ0
1 and Ψa

2 are independent. Under this assumption, Pcov
becomes

Pcov ' exp

(
−γthr

α
1 σ

2

P1

)
LI1
(
γthr

α
1

P1

)
LI2
(
γthr

α
1

P1

)
, (29)

where I1 =
∑

y∈Ψ0
1
P1hy‖y−x1‖−α and I2 =

∑
z∈Ψa

2
P2hz‖z−x1‖−α. Here, as described in the

single-tier setting, LI1(s) can be approximated by f
(
λ̃(λ1, dh.c.), sP1, τ

)
. Now, we approximate

Ψa
2 by a PPP in order to find a simple approximation of LI2 .

The naive approach is to approximate Ψa
2 by a PPP with intensity λ2, from which we deduce

an approximation of LI2(s) given by f(λ2, sP2, 0). Note that this approach overestimates the

intensity of the interfering transmitters in the second-tier network. Since a portion of the trans-

mitters in Ψ2 becomes inactive due to the guard zone Ξ in (10), the intensity of the interfering

second-tier transmitters λ̃2 should be less than λ2, i.e., λ̃2 < λ2. In this context, we provide

a better choice of intensity. First, note that the guard zone introduced in (10) has Ψ0
1(W ) + 1

points, and thus

E[Ψ0
1(W ) + 1] = λ̃(λ1, dh.c.)`(W ) + 1 = (λ̃(λ1, dh.c.) + (πR2)−1)πR2,

which implies that the intensity of the guard zone is given by

λ̂1 , λ̃(λ1, dh.c.) + (πR2)−1. (30)

Second, we remark that {Bx (dG)}x∈Ψ0
1∪(0,0) are not overlapping, and thus the transmitters in Ψ2

will be activated with a probability 1− πd2
Gλ̂1. Hence, it is reasonable to approximate Ψa

2 by a
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PPP with intensity

λ̂2 = λ2

(
1− πd2

Gλ̃1 −
(dG

R

)2
)
. (31)

The corresponding approximation of LI2(s) is f(λ̂2, sP2, 0).

Lastly, since the distance between the typical receiver and a point in Ψa
2 is always larger than

τ̂ = max(dG − r1, 0), similarly to (27), we obtain the following approximation.

Theorem 4. In two-tier networks, the coverage probability is approximated by

Pcov ' exp
(
−γthr

α
1 σ

2

P1

)
f
(
λ̃(λ1, dh.c.), γthr

α
1 , τ
)
f(λ̂2, γthr

α
1P2/P1, τ̂), (32)

where λ̃(λ1, dh.c.) has been defined in Lemma 1, λ̂2 is given by (31), τ = max(dh.c.− r1, 0) and

τ̂ = max(dG − r1, 0).

Due to the simple expression in (28), we can see that the approximation in (28) is a decreasing

function of λ1 as f(λ, s, τ) in (26) is decreasing in λ. Likewise, the approximation in (32)

becomes smaller with the increase in λ2 since λ̂2 in (31) is proportional to λ2. Also, the

approximation in (32) is a non-decreasing function of dG since a larger dG results in an increase

in τ̂ and a decrease in λ̂2.

Let us conclude this section by addressing the complexity issue in detail. First, the conven-

tional Monte Carlo integration with the results in Theorem 1 and Corollary 1 converges at a

rate O(1/
√
n). Next, the convergence rate of the QMC method applied to Corollary 2 is in

O(lnk(n)/n) for a constant k [43], and therefore we can calculate the coverage probability

more rapidly using the QMC method. Since the approximation in Theorem 2 contains a three-

dimensional integral of a smooth function, it converges at a rate which is exponential in the

number of quadrature points. Lastly, for the same reason, the convergence rates of the approx-

imations in Corollary 3 and Section IV-B are also exponential in the number of quadrature

points.
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Fig. 2. Coverage probability of single-tier networks with

different values of Ns.
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Fig. 3. Coverage probability of single-tier networks as a

function of dh.c..

V. SIMULATION RESULTS

In this section, we provide numerical results to validate our analysis. Let us define SNR1 =

P1/σ
2 and SNR2 = P2/σ

2. We set α = 4, r1 = 1, σ2 = 1 and R = 204. The analytical results in

(15) and (17) are evaluated by using the QMC method in (18) and the result in (19). Note that

the performance of networks with dh.c. = 0 can be interpreted as that of networks with a PPP.

In Figs. 2 to 5, we present the coverage probability of single-tier networks. Fig. 2 examines

the coverage probability Pcov with various numbers of terms in the Sobol sequence Ns when

SNR1 = 20 dB and λ1 = 0.01. It is shown that the analytical results with Ns = 215(32768) are

well matched with the simulated results. Accordingly, in this paper, we set the number of terms

in the Sobol sequences Ns as Ns = 215. From Fig. 2, we can see that Pcov becomes larger as γth

decreases and dh.c. grows. Also, it is shown that the impact of dh.c. is more pronounced when

γth is high.

In Fig. 3, we plot the coverage probability Pcov for different values of SNR1 and λ1 in the

case of γth = 15 dB. We observe that Pcov is an increasing function of dh.c. and SNR1. Since an

4From extensive simulations, we have checked that the observation window with R > 20 does not change the analysis

significantly. Therefore, in this paper, we set R = 20. Note that the impact of the transmitters located further away will be

diminished for larger values of α and smaller values of λ1 and λ2. Therefore, we propose a choice of R = 20 when α ≥ 4,

and λ1 and λ2 are no larger than the values adopted in our simulation settings. In other cases, the window radius R should be

increased.
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Fig. 5. Average rate of single-tier networks as a function

of λ1.

increase in λ1 results in additional interference, Pcov decreases as λ1 becomes bigger. Moreover,

it is shown that Pcov is more sensitive to dh.c. when the SNR1 is large. Note that the impact of

interference on the SINR in (12) becomes lower as dh.c. increases. Therefore, we can see that

Pcov is saturated when dh.c. is high, and the influence of λ1 on Pcov gets smaller as dh.c. becomes

larger.

Fig. 4 reveals the tightness of the approximations of the coverage probability of the single-tier

networks with SNR1 = 20 dB and λ1 = 0.01. First, we can see that our numerical approximation

in (25) is very tight for all simulated configurations. Additionally, it is shown that the probabilistic

approximation in (28), which is obtained by approximating the interference field as a PPP, exhibits

small performance gaps compared to the simulated results. Moreover, we can observe that the

probabilistic approximation becomes more tighter when dh.c. is small or large.

Fig. 5 establishes the average rate E [log2 (1 + γ)] of the single-tier networks with SNR1 =

20 dB. In this figure, we compare the performance of the networks with PHCPs with that of

networks with β-GPPs, MHCPs of type II or a PPP. Note that a β-GPP with β = 0, a PHCP with

dh.c. = 0 and an MHCP with dh.c. = 0 correspond to a PPP with the same intensity. Here, the

analytical results for the networks with PHCPs are calculated by evaluating E [log2 (1 + γ)] =∫∞
0

P(γ > 2t − 1) dt where the integrand is computed by the result in Corollary 1. Also, the

reduced Palm measure of β-GPPs is obtained by [44]. First, we see that the PPP yields the worst



23

performance as it cannot take a repulsive behavior into account. Also, since a larger β results in

a stronger repulsion, it is shown that the average rate with the β-GPP increases with β. However,

since the slopes corresponding to β-GPPs are higher than those corresponding to PHCPs, we

infer that the PHCP is more efficient to alleviate the interference as λ1 becomes larger. Moreover,

when compared to the β-GPP, it is shown that the PHCP can model the case where there exists

a strong repulsion since the β-GPP is only applicable to β such that 0 < β ≤ 1. In addition,

we can see that two HCPs, the PHCP and the MHCP, exhibit almost the same trend. From

the fact that the exact performance analysis of the networks with an MHCP is intractable, we

can conclude that the PHCP is a more suitable model to analyze the wireless networks with a

repulsion.

In Figs. 6 to 8, we present the coverage probability of two-tier networks where SNR1 =

20 dB and λ1 = 0.01. In Fig. 6, we illustrate the coverage probability when γth = 15 dB

and dG = dh.c./2. It is shown that the analytical result in (15) is very accurate for different

values of dh.c., λ2 and SNR2. We note that, when dh.c. = 0, the two-tier networks with a PHCP

and a guard zone become equivalent to the networks consisting of two independent PPPs with

intensities λ1 and λ2, respectively. Thus, from Fig. 6, we see that the network performance can

be significantly enhanced by taking the PHCP and guard zone into account. As expected, the

coverage probability Pcov is a decreasing function of SNR2 and λ2 since a growth of SNR2 (or

λ2) leads to an increase of interference. In addition, it is observed that the influence of λ2 on

Pcov becomes smaller as dh.c. increases and SNR2 decays.

In Fig. 7, we plot the average rate E[log2 (1 + γ)] of the two-tier networks with dh.c. = 5.

The analytical results are obtained by evaluating E [log2 (1 + γ)] =
∫∞

0
P (γ > 2t − 1) dt and

using the result in Theorem 1. As expected, we see that the average rate is a decreasing function

of λ2 and SNR2. Since a larger dG results in a reduced interference from the transmitters in

the second-tier network, the average rate becomes higher as dG gets bigger. In addition, it is

observed that the impact of dG is more pronounced when λ2 is high as the inter-tier interference

dominates the performance when λ2 is large.

Fig. 8 reveals the exact and approximated coverage probabilities when SNR2 = 20 dB, γth =

10 dB and dG = dh.c./2. First, it is seen that our numerical approximation in (23) exhibits almost

identical performance with the simulated result. Unlike the case in Fig 4, for two-tier networks,

the performance gap between the simulated result and the probabilistic approximation is not
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small. This is due to the assumption in (29) that the interference from the second-tier network I2

is independent from the one generated by the first-tier network I1. Indeed, the spatial distribution

of the activated transmitters in the second-tier network Ψa
2 is closely related to the locations of

the transmitters in the first-tier network Ψ0
1. Lastly, we see that the probabilistic approximation

gets tighter as λ2 increases.
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VI. CONCLUSION

In this paper, we have modeled two-tier heterogeneous networks using the Poisson hard-

core process (PHCP) which takes the repulsion among the transmitters into account. We have

investigated both single- and two-tier networks and considered a guard zone which alleviates the

cross-tier interference. Under this setup, the distribution of the activated second-tier transmitters

can be modeled as a Poisson hard-core hole process (PHCHP). We have derived explicit ana-

lytical expressions of the coverage probability for both single-/two-tier networks. In addition,

we have introduced the method to compute the derived results by employing the Quasi-Monte

Carlo (QMC) technique. Different approximations of the coverage probability which have low

computational complexities have also been provided. In the simulation results, we have verified

that our analysis accurately predicts the performance and confirmed that the coverage probability

is an increasing function of the radius of the PHCP.

APPENDIX A

PROOF OF LEMMA 1

Let us denote by λ̃(λ, d) the scaled intensity. Then, the equation characterizing λ̃(λ, d) is

E[Ψ0
1(W )] = λ̃(λ, d)πR2. (33)

From (3) and (8),

c−1 =
∑
n≥0

λne−πR
2

n!

∫
(W\B0(d))n

∏
j,k=1,...,n;

j 6=k

1{‖xj−xk‖≥d} dx1 · · · dxn =
∑
n≥0

λne−πR
2

n!
νn, (34)

and we have

E[Ψ0
1(W )] = c

∑
n≥0

ne−πR
2

n!

∫
(W\B0(dh.c.))n

fΨ0
1
({x1, . . . ,xn}) dx1 · · · dxn

= c
∑
n≥0

nλne−πR
2

n!
νn = cλ

∑
n≥0

λne−πR
2

n!
νn+1. (35)

Hence, from (33)-(35), λ̃(λ, d) is given by (9). �
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APPENDIX B

PROOF OF THEOREM 1

We recall that the coverage probability is computed by (14), and thus in this proof we focus

on the computation of the Laplace transform LI . For any s > 0, from the fact that the laws of

Ψ0
1 and Ψ2 are invariant with respect to rotations, we derive the Laplace transform LI(s) as

LI(s) = E
[
exp

(
−s
(∑

y∈Ψ0
1

P1hy
∥∥y − (r1, 0)

∥∥−α +
∑
z∈Ψa

2

P2hz
∥∥z− (r1, 0)

∥∥−α))].
Therefore, we have

LI(s) = E
[ ∏

y∈Ψ0
1

E
[

exp
(
− sP1hy

∥∥y − (r1, 0)
∥∥−α)]

×
∏
z∈Ψa

2

E
[

exp
(
− sP2hz

∥∥z− (r1, 0)
∥∥−α) | Ψ0

1, Ψ2

]]

= E
[∏
y∈Ψ0

1

1

1+sP1

∥∥y − (r1, 0)
∥∥−α ∏

z∈Ψa
2

1

1+sP2

∥∥z− (r1, 0)
∥∥−α

]

= E
[
exp

(
−
∑
y∈Ψ0

1

ln
(

1 + sP1

∥∥y − (r1, 0)
∥∥−α))

× E
[
exp

(
−
∑
z∈Ψ2

ln
(

1 + sP2

∥∥z− (r1, 0)
∥∥−α)1{z/∈Ξ}

)
| Ψ0

1

]]
.

Then, we compute the probability generation functional (PGFL) of the PPP [3] and deduce

LI(s) = E
[
exp

(
−
∑
y∈Ψ0

1

ln
(

1 + sP1

∥∥y − (r1, 0)
∥∥−α))

× exp

(
−λ2

∫
W

1

1 + (sP2)−1
∥∥z− (r1, 0)

∥∥α1{z/∈Ξ} dz

)]
= exp

(
−λ2

∫
W

1

1 + (sP2)−1
∥∥z− (r1, 0)

∥∥α dz

)
× E

[
exp

(
−
∑
y∈Ψ0

1

(
ln
(

1+sP1

∥∥y−(r1, 0)
∥∥−α)+λ2

∫
W

1

1+(sP2)−1
∥∥z−(r1, 0)

∥∥α1{z∈Ξ} dz

)]
(a)
= exp (−λ2κ)E

[
exp

(
−
∑
y∈Ψ0

1

(
ln
(

1 + sP1

∥∥y − (r1, 0)
∥∥−α)+ λ2βy

)]
, (36)

where κ ,
∫
B0(R)\B0(dG)

(1+(sP2)−1
∥∥y−(r1, 0)

∥∥α)−1 dy and βy ,
∫
By(dG)∩B0(R)

(1+(sP2)−1
∥∥z−

(r1, 0)
∥∥α)−1 dz. Here, (a) follows from the fact that the points in Ψ0

1 cannot be closer than dh.c.
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from one another, which implies that

1{z∈Ξ} = 1{
z∈B0(dG)∪

⋃
y∈Ψ0

1
By(dG)

} = 1{z∈B0(dG)} +
∑
y∈Ψ0

1

1{z∈By(dG)},

since dG ≤ dh.c./2.

By Proposition 3 in Appendix D, we have

κ = 2π

∫ R−r1

max(dG−r1,0)

r

1 + (sP2)−1rα
dr + 2

∫ r1+R

R−r1

arccos

(
r2
1+r2−R2

2r1r

)
1 + (sP2)−1rα

r dr

− 2

∫ r1+dG

|dG−r1|

arccos

(
r2
1+r2−d2

G

2r1r

)
1 + (sP2)−1rα

r dr,

(37)

and

βy =

∫ R+r1

0

r

1 + (sP2)−1rα
θy(r) dr. (38)

Substituting (37) and (38) into (36), and applying (1), the Laplace transform in (36) is equal to

LI(s)

= exp(−λ2κ)E
[
exp

(
−
∑
y∈Ψ0

1

(
ln
(

1+sP1

∥∥y − (r1, 0)
∥∥−α)+λ2

∫ R+r1

0

r

1 + (sP2)−1rα
θy(r) dr

)]

= c exp(−λ2κ)
∑
n≥0

λn1
n!

∫
(W\B0(dh.c.))n

n∏
i=1

1

1 + sP1

∥∥xi − (r1, 0)
∥∥−α

×
∏

j,k=1,...,n;
j 6=k

1{‖xj−xk‖≥dh.c.} exp

(
λ2

n∑
i=1

∫ R+r1

0

r

1 + (sP2)−1rα
θxi(r) dr

)
dx1 · · · dxn. (39)

Finally, by plugging (39) into (14), we obtain (15). �

APPENDIX C

PROOF OF PROPOSITION 2

Let us denote the rotation of angle u by Ru. Since the law of Φ is invariant with respect to

rotations, we have

f(λ, s, τ) =
1

2π

∫ 2π

0

E
[
exp

(
−s
∑
y∈Φ

hy‖y −Ru(r1, 0)‖−α1{‖y−Ru(r1,0)‖≥τ}

)]
du

= E
[
exp

(
−s
∑
y∈Φ

hy‖y − (r1, 0)‖−α1{‖y−(r1,0)‖≥τ}

)]
.
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Then,

f(λ, s, τ) = E
[ ∏

y∈Φ : ‖y−(r1,0)‖≥τ

E
[

exp
(
− shy‖y − (r1, 0)‖−α

)
| Φ
]]

(b)
= E

[ ∏
y∈Φ : ‖y−(r1,0)‖≥τ

1

1 + s‖y − (r1, 0)‖−α

]

= exp

(
−λ
∫
W

1

1 + s−1‖z− (r1, 0)‖α
1{‖z−(r1,0)‖≥τ} dz

)
= exp

(
−λ
∫
B(−r1,0)(R)

1

1 + s−1‖z‖α
1{‖z‖≥τ} dz

)
= exp

(
−λ
∫
B(−r1,0)(R)

1

1 + s−1‖z‖α
dz + λ

∫
B0(τ)

1

1 + s−1‖z‖α
dz

)

(c)
= exp

(
−2πλ

∫ R−r1

τ

r

1 + s−1rα
dr − 2λ

∫ r1+R

R−r1

arccos

(
r2
1+r2−R2

2r1r

)
1 + s−1rα

r dr

)
,

where (b) follows from the independence of {hy} and Φ, and the fact that the moment generating

function of hy is equal to E[exp(thy)] = (1 − t)−1. Lastly, to obtain (c), we have applied

Proposition 3 in Appendix D. �

APPENDIX D

A GEOMETRIC RESULT

In this appendix, we state and prove a technical result.

Proposition 3. Let y ∈ R2 and dG > 0 be the center of a disk and its radius, respectively. Let R

be such that ‖y‖ ≤ R let r1 ≥ 0 be fixed, and let f : R→ [0,∞) be a non-negative measurable

function. Then, we have∫
By(dG)∩B0(R)

f(‖x− (r1, 0)‖) dx =

∫ R+r1

0

rf(r)θy(r) dr. (40)

Here, if r ≤ R− r1,

θy(r) =


2π, if 0 ≤ r ≤ max(0, dG − ‖y − (r1, 0)‖),

2 arccos

(
‖y−(r1,0)‖2+r2−d2

G

2‖y−(r1,0)‖r

)
, if |dG − ‖y − (r1, 0)‖| ≤ r ≤ dG + ‖y − (r1, 0)‖,

0, otherwise,

and otherwise, θy(r) is equal to



29

max

(
0, arccos

(
‖y − (r1, 0)‖2 + r2 − d2

G

2‖y − (r1, 0)‖r

)
+ min

(
arccos

(
‖y − (r1, 0)‖2 + r2 − d2

G

2‖y − (r1, 0)‖r

)
,

arccos

(
r2

1 + r2 −R2

2r1r

)
− arccos

(
‖y − (r1, 0)‖2 + r2

1 − ‖y‖2

2‖y − (r1, 0)‖r1

)))
,

if r ∈ [‖y − (r1, 0)‖ − dG, ‖y − (r1, 0)‖ + dG], and θy(r) = 0 otherwise. In particular, for any

d ≥ 0, we obtain∫
By(d)

f(‖x‖) dx = 2π

∫ max(d−‖y‖,0)

0

rf(r) dr + 2

∫ ‖y‖+d
|d−‖y‖|

rf(r) arccos

(
‖y‖2 + r2 − d2

2‖y‖r

)
dr.

(41)

Proof. Note that∫
By(dG)∩B0(R)

f(‖x− (r1, 0)‖) dx =

∫
By−(r1,0)(dG)∩B(−r1,0)(R)

f(‖x‖) dx

=

∫ ∞
0

∫ 2π

0

f(r)1{(r cos(θ),r sin(θ))∈By−(r1,0)(dG)∩B(−r1,0)(R)}r dθdr =

∫ ∞
0

rf(r)θy(r) dr,

where θy(r) ∈ [0, 2π] is the angle covered by the portion of the circle centered at the origin and

of radius r that is in By−(r1,0) (dG) ∩ B(−r1,0) (R).

Assume first that ‖y − (r1, 0)‖ ≤ R − dG − r1 (which implies By−(r1,0) (dG) ⊂ B(−r1,0) (R))

or r ≤ R− r1 (which implies B0 (r) ⊂ B(−r1,0) (R)), and let us distinguish two cases.

1) First, assume that ‖y− (r1, 0)‖ ≥ dG. If r < ‖y− (r1, 0)‖−dG or r > ‖y− (r1, 0)‖+dG,

the circle centered at the origin of radius r does not intersect By−(r1,0) (dG), and thus

θy(r) = 0. Else, defining θ1(r) and θ2(r) as in Fig. 9-(a), by the cosine law in the triangle

ABC, we have d2
G = ‖y − (r1, 0)‖2 + r2 − 2‖y − (r1, 0)‖r cos(θ1(r)). Also, similarly by

the cosine law in ABD, we have d2
G = ‖y − (r1, 0)‖2 + r2 − 2‖y − (r1, 0)‖r cos(θ2(r)).

Hence, we conclude that in this case

θy(r) = 2 arccos

(
‖y − (r1, 0)‖2 + r2 − d2

G

2‖y − (r1, 0)‖r

)
, (42)

for r ∈ [‖y − (r1, 0)‖ − dG, ‖y − (r1, 0)‖+ dG].

2) Second, assume that ‖y − (r1, 0)‖ < dG. Then, when r ≤ dG − ‖y − (r1, 0)‖, B0 (r) ⊂

By−(r1,0) (dG), and thus θy(r) = 2π. Else, when dG−‖y−(r1, 0)‖ < r ≤ dG−‖y+(r1, 0)‖,

by the same arguments as in the first part, (42) holds.
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Fig. 9. Cosine law.

By the above two steps, we obtain

θy(r) =


2π if 0 ≤ r ≤ max(0, dG − ‖y − (r1, 0)‖),

2 arccos

(
‖y−(r1,0)‖2+r2−d2

G

2‖y−(r1,0)‖r

)
if |dG − ‖y − (r1, 0)‖| ≤ r ≤ dG + ‖y − (r1, 0)‖,

0 otherwise.
(43)

Assume now that ‖y − (r1, 0)‖ > R − dG − r1 and r > R − r1. If r > min(R + r1, ‖y −

(r1, 0)‖ + dG) or r ≤ ‖y − (r1, 0)‖ − dG, the circle centered at the origin of radius r does not

intersect either By−(r1,0) (dG) or B(−r1,0) (R), and thus θy(r) = 0. Else, we consider the setting

and notation of Fig. 9-(b). In this case, we have

θy(r) =


2θ1(r) if β(r)− γ ≥ θ1(r),

θ1(r) + β(r)− γ if − θ1(r) ≤ β(r)− γ < θ1(r),

0 otherwise,

and it is readily checked that this can be rewritten as θy(r) = max
(
0, θ1(r) + min(θ1(r), β(r)−

γ)
)
. The angle θ1(r) has already been seen to be equal to arccos((‖y−(r1, 0)‖2+r2−d2

G)/2‖y−

(r1, 0)‖r). Additionally, by an application of the cosine law in the triangles ADE and ABE
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respectively, we obtain

β(r) = arccos

(
r2 + r2

1 −R2

2r1r

)
and γ = arccos

(
‖y − (r1, 0)‖2 + r2

1 − ‖y‖2

2‖y − (r1, 0)‖r1

)
.

Let us summarize the obtained results. When r ≤ R − r1, θy(r) is given by (43). When

r > R − r1 and ‖y − (r1, 0)‖ ≤ R − dG − r1, we necessarily have r > ‖y − (r1, 0)‖+ dG and

therefore θy(r) = 0. When r > R− r1 and ‖y − (r1, 0)‖ > R− dG − r1, we have

θy(r) = max
(
0, θ1(r) + min(θ1(r), β(r)− γ)

)
1{r∈[‖y−(r1,0)‖−dG,min(R+r1,‖y−(r1,0)‖+dG)]}.

This concludes the proof of the result in (40). In order to obtain (41), it suffices to choose r1 = 0

and let R go to infinity in the result (40).
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