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Abstract

We prove the Sard inequality in infinite dimensions for the exponential
and uniform densities and obtain an extension of the corresponding change of
variables formula.
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1 Introduction

The Sard theorem in finite dimension, cf. [12], has been extended to a (gaussian)

infinite-dimensional setting via Wiener space techniques, cf. [4], [5], [15], [16]. Our

aim is to show that it can be proved on other infinite-dimensional measure spaces,

namely for the exponential and uniform densities, as an application of the change

of variables formula proved in [10]. We obtain in turn an extension of this formula

under weaker hypotheses, extending Wiener space results, cf. [5], [11], [14], [15]. The

main difficulty of this extension comes from the fact that unlike the gaussian density,

the exponential and uniform densities do not have full support. Consequently, the

transformations that are considered here need to satisfy certain boundary conditions

as supplementary hypothesis. In the exponential case, the results can be interpreted

in the framework of stochastic analysis for the Poisson process as in [8]. A proba-

bilistic interpretation of the uniform case can be found in [10], [9].

Sect. 2 contains preliminaries and definitions related to the stochastic calculus of vari-

ations and integration by parts. The main results are stated in Sect. 3 and proved

in Sect. 4. Some lemmas that are usually stated for the Gaussian density can be

applied here since their proofs do not use any particular property of the underlying

measure.

1



2 Calculus of variations and integration by parts

We consider a separable Banach space B = IR∞ with a metric and Borel σ-algebra

B such that a probability P is defined on (B,B) via its expression on cylinder sets:

P ({x ∈ B : (x0, . . . , xn) ∈ En}) = λ⊗n+1(En),

En Borel set in IRn+1, n ∈ IN, where λ is a Gaussian, exponential or uniform proba-

bility measure on an interval ]a, b[ respectively equal to ]−∞,+∞[, ]0,∞[, ]− 1, 1[,

i.e. dλ(x) = e−α1x− 1
2
α2x2

dx/α3, with (α1, α2, α3) = (0, 1, 1), (α1, α2, α3) = (1, 0, 1), or

(α1, α2, α3) = (0, 0, 2). The coordinate functionals

θk : B −→ IR, k ∈ IN,

are independent identically λ-distributed random variables. We denote by B[a,b] and

B]a,b[ the subsets of B defined as

B[a,b] = {ω ∈ B : a ≤ ωk ≤ b, k ∈ IN} ,

B]a,b[ = {ω ∈ B : a < ωk < b, k ∈ IN} .

Let S be the dense set in L2(B) of functionals of the form f(θk1 , ..., θkn) on B[a,b]

where n ∈ IN, k1, ..., kn ∈ IN, and f is a polynomial or f ∈ C∞c ([a, b]n). We denote by

(ek)k≥0 the canonical basis of H = l2(IN). Let X be a real separable Hilbert space

with orthonormal basis (hi)i∈IN, and let H⊗X denote the completed Hilbert-Schmidt

tensor product of H with X. Define two sets of smooth vector-valued functionals as

S(X) =

{
i=n∑
i=0

Qihi : Q0, . . . , Qn ∈ S, n ∈ IN

}
,

which is dense in L2(B;X),

U(X) =
{
v ∈ S(H ⊗X) : (v, ek)l2(IN) = 0 on θ−1

k ({a, b}), k ∈ IN
}
,

which is dense in L2(B;H ⊗ X), cf. [10], and let U=U(IR). In the Gaussian case,

U(X) = S(H ⊗X) since ]a, b[=]−∞,+∞[. We define the gradient and divergence

operators D : S(X)→ L2(B × IN;X) and δ : U(X)→ L2(B;X) by

(DF (ω), h)H = lim
ε→0

F (ω + εh)− F (ω)

ε
, ω ∈ B, h ∈ H,
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and

δ(u) =
∑
k∈IN

(α1 + α2θk)uk −Dkuk, u ∈ U .

The operators D and δ are closable, with

E [(DF, u)H⊗X ] = E [(δ(u), F )X ] , u ∈ U(X), F ∈ S(X), (1)

as follows from finite-dimensional integration by parts on ]a, b[n with the boundary

conditions imposed on elements of U(X). The operators D and δ are local. Let

Dom(δ;X) denote the domain of the closed extension of δ for p = 2. For p ≥ 1, we

call Dp,1(X) the completion of S(X) with respect to the norm

‖ F ‖Dp,1(X)=‖| F |X‖Lp(B) + ‖| DF |H⊗X‖Lp(B),

and DUp,1(H) the completion of U with respect to the norm ‖ · ‖Dp,1(H), which for

p = 2 is equivalent to

‖ F ‖DU2,1(H)=‖| DF |H‖L2(B) +α2 ‖ F ‖L2(B),

on DU2,1(H), cf. [10]. For 1 ≤ p ≤ ∞, we say that F ∈ Dloc
p,1(X), resp. DU ,locp,1 (H) if

there is a sequence (Fn, An)n∈IN such that Fn ∈ Dp,1(X), resp. Fn ∈ DUp,1(X), An is

measurable,
⋃
n∈INAn = B a.s., and Fn = F a.s. on An, n ∈ IN.

3 The Sard theorem

If K is a Hilbert-Schmidt operator with eigenvalues (λk)k∈IN, counted with their

multiplicities, then the Carleman-Fredholm determinant of IH +K is defined as

det2(IH +K) =
∞∏
i=0

(1 + λi) exp(−λi),

cf. [2]. Since the operator δ is continuous from DU2,1(H) to L2(B), cf. [10], [8], [11],

we can define

ΛF = det2(IH +DF ) exp
(
−δ(F )− α2

2
| F |2H

)
, F ∈ DU ,loc2,1 (H). (2)

Definition 1 A random variable F : B → H is H−C1
loc if there is a random variable

r with r > 0 a.s. such that h→ F (ω + h) is continuously differentiable on{
h ∈ H : | h |H< r(ω) and ω + h ∈ B[a,b]

}
, ω ∈ B[a,b].
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We will prove the following Sard Lemma and Theorem, which extend the result of

[15] to the exponential and uniform densities.

Lemma 1 Let F ∈ H − C1
loc with F (k) = 0 on θ−1

k ({a, b}), k ∈ IN, and (IB +

F )
(
B]a,b[

)
⊂ B]a,b[, and let Q = {r > 0}. Then

P ((IB + F )(A ∩Q)) ≤
∫
A∩Q
| ΛF | dP,

for all A ∈ B.

As a consequence, Th. 3 below can be extended as follows:

Theorem 1 Let F ∈ H − C1
loc with F (k) = 0 on θ−1

k ({a, b}), k ∈ IN, (IB +

F )
(
B]a,b[

)
⊂ B]a,b[, and let N = card((IB + F )−1(ω)), ω ∈ B. Then

E [fN ] = E [f ◦ (IB + F ) | ΛF |] ,

for f bounded and measurable.

We then obtain the extension of the Sard theorem:

Theorem 2 Let F ∈ H − C1
loc with

(1) F (k) = 0 on θ−1
k ({a, b}), k ∈ IN,

(2) (IB + F )
(
B]a,b[

)
⊂ B]a,b[.

Then

P ((IB + F )(A)) ≤
∫
A

| ΛF | dP, A ∈ B.

4 Proofs

The following result, proved in [10], [8], extends the anticipating Girsanov theorem

of [5], [6], [11], [14], to the exponential and uniform densities.

Theorem 3 Let F ∈ H − C1
loc with

(1) F (k) = 0 on θ−1
k ({a, b}), k ∈ IN,

(2) (IB + F )
(
B]a,b[

)
⊂ B]a,b[,

and let M =
{
ω ∈ B[a,b] : det2(IH +DF ) 6= 0

}
. Then

E

f(ω)
∑

θ∈(IB+F )−1(ω)∩M

g(θ)

 = E [f ◦ (IB + F ) | ΛF | g]

for f , g bounded and measurable.
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The results of [10], [8] were in fact proven in the case where g = 1. The above

extension can easily be proven as in [14] from the decomposition of B into a partition

of sets where IB + F is injective in the proof of [10], [8].

Proposition 1 ([15]) Let F : B → H be a measurable mapping and let A ∈ B.

Then (IB +F )(A) is universally measurable, i.e. it belongs to the intersection for all

probabilities on (B,B) of the completions of B with null sets.

Proof. The proof of this proposition is not dependent on the nature of the measure

chosen on (B,B), hence the proof of [15], cf. also [1], applies here. 2

The following lemma is taken from [10], [8].

Lemma 2 Let G : B → H measurable with

G(k) = 0 on θ−1
k ({a, b}), k ∈ IN, and (IB +G)(B) ⊂ B[a,b],

and for some c > 0

| G(ω + h)−G(ω) |H< c | h |H ,

h ∈ H, and ω, ω + h ∈ B[a,b]. Then G ∈ DU∞,1, and there is a sequence (Gn)n∈IN ⊂ U
that converges to G in DU2,1(H) with

(i) ‖| Gn |H‖∞≤‖| G |H‖∞,

(ii) ‖| DGn |H⊗H‖∞≤ c,

(iii) (IB +Gn)(B) ⊂ B[a,b], n ∈ IN.

Let πn : B → H be defined as πn(ω) = (1{k≤n}ωk)k∈IN, and let π⊥n = IB − πn.

Lemma 3 Let G : B → H be measurable such that

• there is c ∈]0, 1[ such that

| G(ω + h)−G(ω) |H≤ c | h |H , (3)

for h ∈ H, ω, ω + h ∈ B[a,b],

• G(k) = 0 on θ−1
k ({a, b}), k ∈ IN,

• (IB +G)(B) ∈ B[a,b], a.s.
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Then

(i) IB +G is almost surely bijective,

(ii) its inverse can be written as IB + U , where U ∈ DU2,1,

(iii) and we have the absolute continuity relations

E[f ◦ (IB +G) | ΛG |] = E[f ] and E[f ◦ (IB + U) | ΛU |] = E[f ], (4)

for f bounded and measurable.

Proof. We refer to [13] for the gaussian case. The injectivity of IB +G follows from

the contractivity hypothesis (3). After modification of G with G = 0 on B \ B[a,b],

consider a sequence (Gn)n∈IN ⊂ U given by Lemma 2, converging to G in DU2,1(H)

with Gn = 0 on B \B[a,b], such that π⊥nGn(k) = 0, Gn depending only on θ0, . . . , θn,

n ∈ IN. The mapping IB +Gn is bijective on B and its inverse IB + Un satisfies

Un = −Gn ◦ (IB + Un),

and from Lemma 2-(iii), (IB + Un)(B[a,b]) = B[a,b]. Moreover,

| DUn |H⊗H≤ c/(1− c), (5)

and it is shown in e.g. the proof of Prop. 11 in [10] that the sequence (ΛGn)n∈IN is

uniformly integrable, and that Un, Gn, G, n ∈ IN, satisfy the hypothesis of Th. 3.

Hence from Th. 3,

E[f ◦ (IB + Un) | ΛUn |] = E[f ], E[f ◦ (IB +Gn) | ΛGn |] = E[f ], n ∈ IN,

and

E[f ◦ (IB +G) | ΛG |] = E[f ],

for f bounded and measurable. We may now proceed exactly as in [13], p. 89, to

show that (Un)n∈IN converges in probability to an element U of IDU2,1(H) that satisfies

(i), (ii), (iii). 2

We recall that a sufficient condition for F to be in DU ,loc∞,1 is that F ∈ H − C1
loc with

Fk = 0 on θ−1
k ({a, b}), k ∈ IN, cf. Prop. 5 in [8].

Lemma 4 Let V, F, U ∈ DU ,loc2,1 (H) such that (IB + U)∗P is absolutely continuous

with respect to P , with IB + V = (IB +F ) ◦ (IB +U). Then ΛV = ΛF ◦ (IB +U)ΛU .
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Proof. The proof of this result, (cf. [5], [7] on the Wiener space) relies here on the

identity

δ(πnF ) ◦ (IB + U) = δ(πnV ) + δ(U) + trace(DU · (DπnF ) ◦ (IB + U)),

cf. Prop. 4 of [8], and on the fact that (δ(πnF ))n∈IN, (δ(πnF ) ◦ (IB + U))n∈IN,

(δ(πnV ))n∈IN converge in probability as n goes to infinity respectively to δ(F ), δ(F )◦
(IB + U) and δ(V ). 2

Lemma 5 Let F ∈ H − C1
loc with (IB+F )(B[a,b]) ⊂ B[a,b], and Fk = 0 on θ−1

k ({a, b}),

k ∈ IN. Let Q = {r > 0}. There exists a partition (Bn,m)n,m of B[a,b] ∩ Q and two

families (Gn,m)n,m and (Kn,m)n,m in DU2,1 with Gn,m = π⊥n F on Bn,m, and such that

(i) the mapping Sn,m defined as

IB + Sn,m = (IB + F ) ◦ (IB +Kn,m)

has range in πnB and is Lipschitz on (IB +Gn,m)(Bn,m),

(ii) Gn,m(k) = 0 on θ−1
k ({a, b}), k ∈ IN,

(iii) IB +Kn,m = (IB +Gn,m)−1 on E = (IB +Gn,m)(Bn,m),

(iv) | DGn,m |2, | DKn,m |2< 1/2, a.s., n,m ∈ IN.

Proof. The proof of this lemma consists in the part of lemma 3.2 of [15] that does

not depend on the nature of the underlying measure, but only on the normed vector

space structures of B and H. The fact that Gn,m, Kn,m belongs to DU2,1 instead of

D2,1 can be easily verified using Lemma 2. 2

Proof of Lemma 1. The proof is done here in the exponential and uniform cases.

Let Pn and P⊥n denote respectively the image measures of P by πn and π⊥n , and let

En,m = (IB + Gn,m)(Bn,m), n,m ∈ IN. We have Enm, Bn,m ⊂ B[a,b], n,m ∈ IN. Now

from Lemma 3, (IB +Gn,m)−1 can be written as IB + Un,m, and

E[f ◦ (IB +Gn,m)−1 | ΛUn,m |] = E[f ],

for f bounded and measurable. Using Lemma 5 and Th. 3.2.3 of [3] and omitting

the indices n,m, we obtain

P ((IB + S)(IB +G)(B))

=

∫
B⊥n

Pn((IIRn+1 + S(ω + ·)) ((E − ω) ∩ πnH))P⊥n (dω)
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≤
∫
B⊥n

P⊥n (dω)

∫
(E−ω)∩πnH

| det(IIRn+1 +DS(ω + ω̃)) | e−(S(ω̃+ω),ω̃)Pn(dω̃)

=

∫
B⊥n

Pn(dω)

∫
(E−ω̃)∩πnH

| ΛS(ω + ω̃) | Pn(dω̃)

=

∫
E

| ΛS | dP (ω)

=

∫
E

| ΛF ◦ (IB + U) || ΛU | dP.

For the last equality we used Lemma 4 and the locality property of D and δ. We

can now end the proof as in [15]:

P ((IB + S)(IB +G)(Bn,m)) ≤
∫

(IB+G)(Bn,m)

| ΛF ◦ (IB + U) || ΛU | dP

=

∫
B

(1Bn,mΛF ) ◦ (IB +G)−1 | ΛK | dP

=

∫
B

1Bn,m | ΛF | dP.

2

Proof of Th. 1: Let Q = {r > 0} and N(A) = card((IB + F )−1(ω) ∩ A), ω ∈ B,

A ⊂ B. We have 1T (Mc∩Q)c(ω) = 1{(IB+F )−1(ω)∩Mc∩Q=∅}, ω ∈ B, and

P (T (M c ∩Q)) ≤
∫
Mc∩Q

| ΛF | dP = 0,

from Lemma 1, hence from Th. 3,

E[f ◦ (IB + F ) | ΛF |] = E[1Qf ◦ (IB + F ) | ΛF |]

= E[fN(M ∩Q)]

= E[f1T (Mc∩Q)cN(Q)] = E[fN ].

2

Th. 2 now follows from Th. 1 as in [15].
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