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Abstract

We provide sufficient conditions for the existence of classical solutions of fractional
semilinear elliptic PDEs of index α ∈ (1, 2) with polynomial gradient nonlinearities on
d-dimensional balls, d ⩾ 2. Our approach uses a tree-based probabilistic representation
of solutions and their partial derivatives using α-stable branching processes, and al-
lows us to take into account gradient nonlinearities not covered by deterministic finite
difference methods so far. In comparison with the existing literature on the regular-
ity of solutions, no polynomial order condition is imposed on gradient nonlinearities.
Numerical illustrations demonstrate the accuracy of the method in dimension d = 10,
solving a challenge encountered with the use of deterministic finite difference methods
in high-dimensional settings.
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1 Introduction

The study of solutions of nonlocal and fractional elliptic partial differential equations (PDEs)

is an active research topic which has attracted significant attention over the past decades. In
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the case of the classical (local) Laplacian, viscosity solutions of fully nonlinear second-order

elliptic PDEs have been constructed in Ishii (1989) by the Perron method.

On the other hand, nonlocal elliptic PDEs can be solved using weak solutions, see Def-

inition 2.1 in Ros-Oton and Serra (2014), or viscosity solutions, see Servadei and Valdinoci

(2014) and Remark 2.11 in Ros-Oton and Serra (2014). Weak solutions can be obtained from

the Riesz representation or Lax-Milgram theorems as in Felsinger et al. (2015), Ros-Oton

(2016). See also Barles et al. (2008) for the use of the Perron method, and Bony et al. (1968)

for semi-group methods applied to second-order elliptic integro-differential PDEs.

Given d ⩾ 1, let

∆αu = −(−∆)α/2u =
4α/2Γ(d/2 + α/2)

πd/2|Γ(−α/2)|
lim
r→0+

∫
Rd\B(x,r)

u( ·+ z)− u(z)

|z|d+α
dz,

denote the fractional Laplacian on Rd with parameter α ∈ (0, 2), see, e.g., Kwaśnicki (2017),

where Γ(p) :=

∫ ∞

0

e−λxλp−1dλ is the gamma function and |z| is the Euclidean norm of

z ∈ Rd.

For problems of the form

∆αu(x) + f(x) = 0,

with u = ϕ on Rd \D, where D is an open bounded domain in Rd, the Hölder regularity of

viscosity solution has been proved in Kriventsov (2013) whenD is a ball and f, ϕ are bounded

functions. Existence of viscosity solutions has been derived in Servadei and Valdinoci (2014)

under smoothness assumptions on f, ϕ, and the existence of classical Hölder regular solutions

has been proved in Serra (2015) when ϕ is bounded continuous and f is Hölder continuous.

See also Felsinger et al. (2015), resp. Mou (2017), for the existence of weak solutions, resp.

viscosity solutions, with nonlocal operators. Regarding problems of the form

∆αu(x) + f(x, u(x)) = 0,

existence of non trivial solutions with u = 0 outside an open bounded domain D with

Lipschitz boundary in Rd has been considered in Servadei and Valdinoci (2012) using the

mountain pass theorem when f is a Carathéodory function on D×Rd satisfying a polynomial

growth condition of order m ∈ (1, (d+ α)/(d− α)).

The regularity of viscosity solutions of semilinear elliptic PDEs of the form

∆αu(x)− b(x)∥∇u(x)∥κ+τ
Rd − ∥∇u(x)∥rRd = 0, x ∈ D, (1.1)

2



where D is an open domain of Rd, b is in the space Cτ (Rd) of τ -Hölder continuous functions

on Rd for some τ ∈ (0, 1), has been considered in § 4.3 in Barles et al. (2011). Namely, from

Theorem 3.1 therein, if b is in Cτ (Rd) and κ, r ∈ (0, 2), then any bounded viscosity solution

u of (1.1) is β-Hölder continuous for small enough β, see also § 4.1.2 of Barles et al. (2012)

for Lipschitz regularity in the case of mixed local and fractional Laplacians.

More recently, the Lipschitz regularity of viscosity solutions of

∆αu(x) + f(x,∇u(x)) = 0

on D = B(0, R) the open ball of radius R > 0 in Rd, has been obtained in Theorem 2.1

of Biswas and Topp (2024), provided that f ∈ C(Rd × Rd) satisfies a power-type growth

condition of order m ∈ (0, α + 1) in ∇u(x), while this bound can be lifted under an extra

coercivity condition on H.

In this paper, we consider the class of semilinear elliptic problems on B(0, R) of the form∆αu(x) + f(x, u(x),∇u(x)) = 0, x ∈ B(0, R),

u(x) = ϕ(x), x ∈ Rd\B(0, R),
(1.2)

where

• f(x, y, z) is a polynomial nonlinearity on Rd × R× Rd, of the form

f(x, y, z) =
∑

l=(l0,...,lm)∈Lm

cl(x)y
l0

m∏
i=1

(bi(x) · z)li , (1.3)

where Lm is a finite subset of Nm+1 for somem ⩾ 0, and (cl(x))l=(l0,...,lm)∈Lm , (bi(x))i=1,...,m

are bounded continuous functions of x ∈ Rd, with x · z := x1z1 + · · ·+ xdzd,

• ϕ : Rd → R is a bounded Lipschitz function on Rd \B(0, R).

Using a probabilistic approach, we prove the existence of regular viscosity solutions to (1.2)

under the following conditions. We note that, in comparison to the literature quoted above

on the regularity of solutions, no coercivity or maximum growth order condition in z is

imposed on f(x, y, z).
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Assumption (A)

1) The boundary condition ϕ belongs to the fractional Sobolev space

Hα(Rd) :=

{
u ∈ L2(Rd) :

|u(x)− u(y)|
|x− y|d/2+α/2

∈ L2(Rd × Rd)

}
and is bounded on Rd \B(0, R).

2) The coefficients cl(x), l ∈ Lm, are uniformly bounded functions, i.e., we have

∥cl∥∞ := sup
x∈B(0,R)

|cl(x)| <∞, l = (l0, . . . , lm) ∈ Lm.

3) The coefficients bi(x), i = 0, . . . ,m, are such that

sup
x∈B(0,R)

|bi(x)|
R− |x|

<∞, i = 1, . . . ,m.

Theorem 1.1 is the main result of this paper. It is implied by Theorem 4.2, in which we

prove the existence of a classical solution for fractional elliptic problems of the form (1.2).

Theorem 1.1 Let α ∈ (1, 2) and d ⩾ 2. Under Assumption (A), the semilinear elliptic PDE

(1.2) admits a classical solution in Cα+ϵ(B(0, R)) ∩ C0(B(0, R)) for some ϵ > 0, provided

that R and maxl∈Lm ∥cl∥∞ are sufficiently small.

Our method of proof relies on the probabilistic representation of PDE solutions using stochas-

tic branching processes, as introduced in Skorokhod (1964) and Ikeda et al. (1968-1969).

Probabilistic representations have been applied to the blow-up and existence of solutions

for parabolic PDEs in Nagasawa and Sirao (1969), López-Mimbela (1996). They have also

been recently extended in Agarwal and Claisse (2020) to treat polynomial nonlinearities in

gradient terms in elliptic PDEs with (local) diffusion generators, following the approach of

Henry-Labordère et al. (2019) in the parabolic case. In this construction, gradient terms are

associated to tree branches to which a Malliavin integration by parts is applied. In Penent

and Privault (2022), this approach has been extended to the treatment of nonlocal pseudo-

differential operators of the form −η(−∆/2) using random branching trees constructed from

a Lévy subordinator, with application to parabolic PDEs with fractional Laplacians

The existence of viscosity solutions in Theorem 1.1 is obtained through a probabilistic

representation of the form

u(x) := E[Hϕ(Tx,0)], x ∈ B(0, R), (1.4)
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where Hϕ(Tx,0), see (4.2), is a functional of a random branching tree Tx,0 started at x ∈ Rd,

and constructed in Section 3. The proof of Theorem 1.1 also makes use of existence results

for nonlinear elliptic PDEs with fractional Laplacians derived in Penent and Privault (2023),

see Theorem 1.2 and Proposition 3.5 therein.

To prove Theorem 1.1, in Proposition 4.3 we construct for each i = 0, . . . ,m a sufficiently

integrable functional Hϕ(Tx,i) of a random tree Tx,i such that the probabilistic representation

u(x) = E
[
Hϕ(Tx,0)

]
, x ∈ Rd,

yields a viscosity solution of (1.2) in C1(B(0, R)) ∩ C0(B(0, R)), where the gradients bi(x) ·
∇u(x), x ∈ B(0, R), i = 0, . . . ,m, can be represented as

u(x) = E
[
Hϕ(Tx,0)

]
, bi(x) · ∇u(x) = E

[
Hϕ(Tx,i)

]
, x ∈ Rd,

under integrability assumptions on (Hϕ(Tx,i))x∈B(0,R).

Then, in Proposition 4.6 we show that for any d ⩾ 2 and p ⩾ 1, (Hϕ(Tx,i))x∈B(0,R) is

bounded in Lp(Ω) uniformly in x ∈ B(0, R), and therefore uniformly integrable, i = 0, . . . ,m.

We conclude the proof of Theorem 1.1 by showing, using results of Kriventsov (2013) and

Serra (2015), that the C1 viscosity solution of (1.2) is in Cα+ϵ(B(0, R)) ∩ C0(B(0, R)) for

some ϵ > 0.

For this, we extend arguments of Agarwal and Claisse (2020) from the standard Lapla-

cian ∆ and Brownian motion to the fractional Laplacian ∆α := −(−∆)α/2 and its associated

stable process. There are, however, significant differences from the Brownian case. In par-

ticular, in the stable setting we rely on sharp gradient estimates for fractional Green and

Poisson kernel proved in Bogdan et al. (2002), and on integrability results for stable process

hitting times, see Bogdan et al. (2015). The behavior of the negative moments of stable

processes, see (2.5), requires a more involved treatment of integrability in small time when

showing the boundedness of (Hϕ(Tx,i))x∈B(0,R) in L
p(Ω), for p ⩾ 1.

In addition, we present a Monte Carlo numerical implementation of the probabilistic

representation (1.4) on specific examples. In comparison with deterministic finite difference

methods, see e.g. § 6.3 of Huang and Oberman (2014) for the one-dimensional Dirichlet

problem, our approach allows us to take into account gradient nonlinearities. We also note

that our tree-based Monte Carlo implementation applies to high-dimensional problems, see
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Figures 4 and 6 in dimension d = 10, whereas the application of deterministic finite difference

methods to the fractional Laplacian in higher dimensions is challenging, see e.g. Huang and

Oberman (2014), page 3082.

This paper is organized as follows. Section 3 presents the description of the branching

mechanism, following the preliminaries on stable processes and kernel introduced in Sec-

tion 2. In Section 4 we state and prove our main existence result, Theorem 4.2, for the

probabilistic representation of the solution of (1.2). Section 5 presents a Monte Carlo nu-

merical implementation of our method on specific examples.

2 Preliminaries and notation

Before proceeding further, we recall some preliminary results on fractional Laplacians on the

ball B(0, R) in Rd.

Poisson and Green kernels

Given (Xt)t⩾0 an Rd-valued α-stable process, α ∈ (0, 2), we consider the process

Xt,x := x+Xt, t ∈ R+,

started at x ∈ Rd, see e.g. § 1.3.1 in Applebaum (2009), and the first hitting time

τR(x) := inf
{
t ⩾ 0, Xt,x ̸∈ B(0, R)

}
of Rd \ B(0, R) by (Xt,x)t⩾0. Note that by the bound (1.4) in Bogdan et al. (2015) we have

E[τR(x)] < ∞, and therefore τR(x) is almost surely finite for all x ∈ B(0, R). The Green

kernel GR(x, y) satisfies

E

[∫ τR(x)

0

f(Xt,x)dt

]
=

∫
B(0,R)

GR(x, y)f(y)dy, x ∈ B(0, R), (2.1)

for f a nonnegative measurable function on Rd. If α ∈ (0, 2) \ {d}, we also have

GR(x, y) =
κdα

|x− y|d−α

∫ r0(x,y)

0

tα/2−1

(1 + t)d/2
dt, x, y ∈ B(0, R),

see Theorem 3.1 in Bucur (2016), where

r0(x, y) :=
(R2 − |x|2)(R2 − |y|2)

R2|x− y|2
and κdα :=

2−αΓ(d/2)

πd/2(Γ(α/2))2
.
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The Poisson kernel PR(x, y) of the harmonic measure Px
(
XτR(x),x ∈ dy

)
satisfies

E
[
f
(
Xx

τR(x)

)]
=

∫
Rd\B(0,R)

PR(x, y)f(y)dy, x ∈ B(0, R), (2.2)

for f a nonnegative measurable function on Rd, and is given by

PR(x, y) = A(d,−α)
∫
B(0,R)

GR(x, z)

|y − z|d+α
dz

where

A(d,−α) := 2αΓ((d+ α)/2)

πd/2|Γ(−α/2)|
.

In particular, when |x| < R and |y| > R we have

PR(x, y) =
C(α, d)
|x− y|d

(
R2 − |x|2

|y|2 −R2

)α/2

,

with C(α, d) := Γ(d/2)π−d/2−1 sin(πα/2). In addition, we have the bounds

|∇xPR(x, y)| ⩽ (d+ α)
PR(x, y)

R− |x|
, x ∈ B(0, R), y ∈ Rd \B(0, R), (2.3)

where B(0, R) denotes closed ball of radius R > 0 in Rd, see Lemma 3.1 in Bogdan et al.

(2002), and

|∇xGR(x, y)| ⩽ d
GR(x, y)

min(|x− y|, R− |x|)
, x, y ∈ B(0, R), x ̸= y, (2.4)

see Corollary 3.3 in Bogdan et al. (2002).

Moments of stable processes

In the sequel we will need to estimate the negative moments E[|Xt|−p] of an α-stable process

(Xt)t⩾0 represented as the subordinated Brownian motion (Xt)t⩾0 = (BSt)t⩾0, where the

subordinator (St)t⩾0 is an α/2-stable process with Laplace exponent η(λ) = (2λ)α/2, i.e.

E
[
e−λSt

]
= e−t(2λ)α/2

, λ, t ⩾ 0,

see, e.g., Theorem 1.3.23 and pages 55-56 in Applebaum (2009). Using the fact that BSt/
√
St

follows the normal distribution N (0, 1) given St, for d ⩾ 1 and p ∈ (0, d) we have

E[|Xt|−p] = E[|BSt|−p]

7



= E

[
S
−p/2
t E

[
S
p/2
t

|BSt |p

∣∣∣∣St

]]

= E

[
S
−p/2
t

∫
Sd−1

µd(dσ)

∫ ∞

0

rd−1−p e
−r2/2

(2π)d/2
dr

]

= 2
2(d−p−2)/2

2d/2Γ(d/2)
Γ((d− p)/2)E

[
S
−p/2
t

]
=

Cα,d,p

tp/α
, t > 0, α ∈ (1, 2), (2.5)

where µd denotes the surface measure on the d-dimensional sphere Sd−1,

Cα,d,p := 21−pΓ(p/α)Γ((d− p)/2)

αΓ(p/2)Γ(d/2)
,

and we used the relation E
[
S−p
t

]
= α−121−pt−2p/αΓ(2p/α)/Γ(p), p, t > 0, see, e.g., Rela-

tion (1.10) in Penent and Privault (2022).

Integration by parts

The stochastic representation of the gradient ∇u(x) will rely on an integration by parts

argument. For this, we will use the weight functions WB(0,R)(x, y) and W∂B(0,R)(x, y) defined

as

WB(0,R)(x, y) :=
∇xGR(x, y)

GR(x, y)
and W∂B(0,R)(x, y) :=

∇xPR(x, y)

PR(x, y)
, x, y ∈ B(0, R). (2.6)

Lemma 2.1 Let α ∈ (1, 2) and d ⩾ 2.

a) Given ϕ a bounded measurable function on Rd \B(0, R), the function

χϕ
1(x) := E

[
ϕ
(
XτR(x),x

)]
=

∫
Rd\B(0,R)

PR(x, y)ϕ(y)dy, x ∈ B(0, R), (2.7)

belongs to C1(B(0, R)) ∩ C0(B(0, R)), with

∇χϕ
1(x) = E

[
W∂B(0,R)

(
x,XτR(x),x

)
ϕ
(
XτR(x),x

)]
, x ∈ B(0, R).

b) Given h a bounded continuous function on B(0, R), the function

χh
2(x) := E

[∫ τR(x)

0

h(Xt,x)dt

]
=

∫
B(0,R)

GR(x, y)h(y)dy, x ∈ B(0, R),

belongs to C1(B(0, R)) ∩ C0(B(0, R)), with

∇χh
2(x) = E

[ ∫ τR(x)

0

WB(0,R)(x,Xt,x)h(Xt,x)dt

]
, x ∈ B(0, R).
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Proof. (a) Using (2.2) and the boundedness of ϕ on Rd \ B(0, R), we differentiate (2.7)

under the integral sign, to obtain that χϕ
1 is in C1(B(0, R)) ∩ C0(B(0, R)), with

∇χϕ
1(x) =

∫
Rd\B(0,R)

∇xPR(x, y)ϕ(y)dy = E

[
∇xPR

(
x,XτR(x),x

)
PR

(
x,XτR(x),x

) ϕ
(
XτR(x),x

)]
, x ∈ B(0, R).

(b) Using (2.1), the condition d ⩾ 2 and the relation

χh
2(x) =

∫
B(0,R)

GR(x, y)h(y)dy

=

∫
B(x,R)

κdα
|z|d−α

∫ r0(x,z−x)

0

tα/2−1

(1 + t)d/2
dt h(z − x)dz, x ∈ B(0, R),

we differentiate (2.7) under the integral sign and integrate by parts, to obtain

∇χh
2(x) =

∫
B(0,R)

∇xGR(x, y)h(y)dy = E
[ ∫ τR(x)

0

∇xGR(x,Xt,x)

GR(x,Xt,x)
h(Xt,x)dt

]
,

first for h a C1 function with compact support in B(0, R), then by uniform approximation

of h continuous with compact support in B(0, R), and finally by pointwise approximation of

h bounded continuous on B(0, R), using the bound (2.4). □

3 Marked branching process

Let ρ : R+ → (0,∞) be a probability density function on R+, and let (ql0,...,lm)(l0,...,lm)∈Lm be

a strictly positive probability mass function on Lm. We consider

• an i.i.d. family (τ i,j)i,j⩾1 of random variables with distribution ρ(t)dt on R+ and tail

distribution function F (t) =
∫∞
t
ρ(ds)ds, t ⩾ 0,

• an i.i.d. family (I i,j)i,j⩾1 of discrete random variables with distribution

P(I i,j = (l0, . . . , lm)) = ql0,...,lm > 0, (l0, . . . , lm) ∈ Lm,

• an independent family (X(i,j))i,j⩾1 of symmetric α-stable processes.

In addition, the families of random variables (τ i,j)i,j⩾1, (I
i,j)i,j⩾1 and

(
X(i,j)

)
i,j⩾1

are assumed

to be mutually independent.
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The probabilistic representation for the solution of (1.2) uses a branching process started

from a particle x ∈ B(0, R) with label 1 = (1) and mark i ∈ {0, . . . ,m}, which evolves ac-

cording to the process X1
s,x = x+X

(1,1)
s , s ∈ [0, T1], with T1 = τ 1,1∧τR(x) = min

(
τ 1,1, τR(x)

)
,

where in the notation

τR(x) := inf
{
t ⩾ 0, x+X

(1,1)
t ̸∈ B(0, R)

}
,

we omit the reference to the label (1, 1).

If τ 1,1 < τR(x), then the process branches at time τ 1,1 into new independent copies of

(Xt)t⩾0, each of them started at X1
τ1,1,x, and determined by a random sample (l0, . . . , lm) ∈

Lm of I1,1. Namely, |l| := l0 + · · · + lm new branches carrying respectively the marks

i = 0, . . . ,m are created with the probability ql0,...,lm , where:

a) the first l0 branches carry the mark 0 and are indexed by (1, 1), (1, 2), . . . , (1, l0),

b) for i = 1, . . . ,m, the next li branches carry the mark i and are indexed by the labels

(1, l0 + · · ·+ li−1 + 1), . . . , (1, l0 + · · ·+ li).

Each new particle then follows independently the above mechanism in such a way that

particles at generation n ⩾ 1 are assigned a label of the form k = (1, k2, . . . , kn) ∈ Nn, and

every branch stops when it leaves the domain B(0, R).

Precisely, the particle with label k = (1, k2, . . . , kn) ∈ Nn is born at the time Tk−, where

k− := (1, k2, . . . , kn−1) represents the label of its parent, and its lifetime τn,πn(k) is the

element of index πn(k) in the i.i.d. sequence (τn,j)j⩾1, which defines an injection

πn : Nn → N, n ⩾ 1.

The random evolution of the particle of label k is given by

Xk
t,x := Xk−

Tk−,x +X
n,πn(k)
t−Tk−

, t ∈ [Tk−, Tk],

where Tk := Tk− + τn,πn(k) ∧ τR
(
Xk−

Tk−,x

)
and

τR
(
Xk−

Tk−,x

)
:= inf

{
t ⩾ 0, Xk−

Tk−,x +X
n,πn(k)
t ̸∈ B(0, R)

}
.

If τn,πn(k) < τR
(
Xk−

Tk−,x

)
, we draw a random sample (l0, . . . , lm) of Ik := In,πn(k) with the

probability ql0,...,lm , and the particle k branches into |In,πn(k)| = l0+· · ·+lm offsprings, indexed
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by (1, . . . , kn, j), j = 1, . . . , |In,πn(k)| and respectively carrying the marks i = 0, . . . ,m, as in

point (b) above. Namely, the particles whose index ends with an integer between 1 and l0

will carry the mark 0, and those with index ending with an integer between l0+ · · ·+ li−1+1

and l0 + · · ·+ li will carry a mark i ∈ {1, . . . ,m}. Finally, the mark of the particle k will be

denoted by θk ∈ {0, . . . ,m}.

The set of particles dying inside the ball B(0, R) is denoted by K◦, whereas those dying

outside of B(0, R) form a set denoted by K∂. For n ⩾ 1, the set n-th generation particles

that die inside the domain B(0, R) is denoted by K◦
n, and the set of n-th generation particles

which die outside of B(0, R) is denoted by K∂
n, and we let Kn = K◦

n ∪ K∂
n.

Definition 3.1 We denote by Tx,i the marked branching process, or random marked tree

constructed above after starting from the position x ∈ Rd and mark i ∈ {0, . . . ,m} on its

first branch.

The tree Tx,0 will be used for the stochastic representation of the solution u(x) of the PDE

(1.2), while the trees Tx,i will be used for the stochastic representation of bi(x) · ∇u(x),
i = 1, . . . ,m. Table 1 summarizes the notation introduced so far.

Object Notation

Initial position x
Tree rooted at x with initial mark θ1 = i Tx,i

Particle (or label) of generation n ⩾ 1 k = (1, k2, . . . , kn)
First branching time T1
Lifespan of a particle Tk − Tk−
Birth time of the particle k Tk−
Death time of the particle k ∈ K◦ Tk = Tk− + τn,πn(k)

Death time of the particle k ∈ K∂ Tk = Tk− + τR
(
Xk−

Tk−,x

)
Position at birth of the particle k Xk

Tk−,x

Position at death of the particle k Xk
Tk,x

Mark of the particle k θk
Exit time starting from x ∈ B(0, R) τR(x) := inf {t ⩾ 0, x+Xt ̸∈ B(0, R)}

Table 1: Notation.

Figure 1 presents the marking and labeling conventions used for the graphical representation

of random marked trees, in which different colors represent different ways of branching.
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labelmark

time

position

lab
el

ma
rk

Figure 1: Tree labelling and marking conventions.

A sample tree for the PDE

∆αu(t, x) + c(0,0)(x) + c(0,1)(x)u(t, x)
∂u

∂x
(t, x) = 0

in dimension d = 1 is presented in Figure 2. Absence of branching is represented in blue,

branching into two branches, one bearing the mark 0 and the other one bearing the mark

1, is represented in purple, and the black color is used for leaves, i.e. for particles that die

outside of the domain B(0, R).

0
x

T1

X1
T1,x

T(1,2)

X
(1,2)
T(1,2),x

T(1,2,2)

X
(1,2,2)
T(1,2,2),x

(1, 2, 2)
1

T(1,2,1) := T(1,2) + τR(X
(1,2,1)
T(1,2,1),x

)

X
(1,2,1)
T(1,2,1),x(1, 2, 1)

0

(1, 2)
1

T(1,1)

X
(1,1)
T(1,1),x(1, 1

)

01

0

Figure 2: Tree labelling and marking conventions.

In Figure 2 we have K◦ = {1, (1, 1), (1, 2), (1, 2, 2)} and K∂ = {(1, 2, 1)}.

12



4 Probabilistic representation of PDE solutions

We consider the weight function W(t, x,X) defined as

W(t, x,X) := WB(0,R)(x,Xt,x)1{Xt,x∈B(0,R)} +W∂B(0,R)(x,XτR(x),x)1{Xt,x ̸∈B(0,R)}, (4.1)

x ∈ B(0, R). We note that the products involved in the definition (4.2) of Hϕ(Tx,i) below are

almost surely finite since the interbranching times Tk − Tk− are identically distributed and

the number of offsprings at any branching time is bounded by a constant depending only on

the finite set Lm.

Definition 4.1 We define the functional Hϕ of the random tree Tx,i with initial mark θ1 =

i ∈ {0, . . . ,m} as

Hϕ(Tx,i) :=
∏
k∈K◦

cIk
(
Xk

Tk,x

)
Wk

Tk−,x

qIkρ(Tk − Tk−)

∏
k∈K∂

ϕ
(
Xk

Tk,x

)
Wk

Tk−,x

F (Tk − Tk−)
, x ∈ B(0, R), (4.2)

where for k ∈ K◦ ∪ K∂ we let

Wk
Tk−,x :=

{
1 if θk = 0,

bθk
(
Xk

Tk−,x

)
· W
(
Tk − Tk−, X

k
Tk−,x, X

k
)

if θk = 1, . . . ,m,
(4.3)

where θk ∈ {0, . . . ,m} denotes the mark of the particle k.

Assumption (B) Let α ∈ (1, 2) and d ⩾ 2. We assume that the common probability density

function ρ and tail distribution function F of the random times τ i,j’s satisfies the conditions

sup
t∈(0,1]

1

ρ(t)tp/α
<∞ and E

[(
F (τR(0))

)1−p]
<∞

for some p ∈ (1, d).

When α ∈ (1, 2) and R is sufficiently small, Assumption (B) is satisfied by any continuous

probability density function ρ(t) such that

ρ(t) ∼
t→0

κtδ−1,

for some δ ∈ (0, 1 − p/α] and κ > 0, and 1/F (x) ⩽ eκx, x ⩾ 0, for some κ > 0, see, e.g.,

Lemma 6 in Bogdan et al. (2010). This includes for example a gamma distribution with

shape parameter δ ∈ (0, 1 − p/α]. The goal of this section is to prove the following result,

which implies Theorem 1.1.
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Theorem 4.2 Let α ∈ (1, 2) and d ⩾ 2. Under Assumptions (A)-(B), if R > 0 and

maxl∈Lm ∥cl∥∞ are sufficiently small, the semilinear elliptic PDE (1.2) admits a classical

solution in Cα+ϵ(B(0, R))∩C0(B(0, R)) for some ϵ > 0, which is the unique viscosity solution

of (1.2) and can be represented as

u(x) := E[Hϕ(Tx,0)], x ∈ B(0, R). (4.4)

Before giving the proof of Theorem 4.2 at the end of this section, we need to state and

prove Propositions 4.3 and 4.6 below. First, in Proposition 4.3 we obtain a probabilistic

representation for the solutions of semilinear elliptic PDEs of the form (1.2) under uniform

integrability conditions on (Hϕ(Tx,i))x∈B(0,R), i = 0, . . . ,m. Then, in Proposition 4.6 we show

that such conditions are satisfied under Assumptions (A)-(B).

Proposition 4.3 Let α ∈ (1, 2) and d ⩾ 2, and assume that the family (H(Tx,i))x∈B(0,R) is

uniformly integrable, i = 0, . . . ,m. Then, the function u(x) defined as

u(x) := E[Hϕ(Tx,0)], x ∈ B(0, R),

is a viscosity solution in C1(B(0, R)) ∩ C0(B(0, R)) of (1.2). In addition, the gradient

bi(x) · ∇u(x) can be represented as the expected value

bi(x) · ∇u(x) = E
[
Hϕ(Tx,i)

]
, x ∈ B(0, R), i = 1, . . . ,m.

Proof. Let

vi(x) := E[Hϕ(Tx,i)], x ∈ B(0, R), i = 1, . . . ,m.

By considering the first branching at time T1 and letting T (j)

X1
T
1
,x,i

, j = 1+l0+· · ·+li−1, . . . , l0+

· · · + li, denote independent tree copies started at X1
T1,x

with the mark i ∈ {0, . . . ,m}, we
have

u(x) = E[Hϕ(Tx,0)]

= E

1{T1=τR(x)}
ϕ
(
X1

τR(x),x

)
F (T1)

+ 1{T1<τR(x)}
∑
l∈Lm

1{I1=(l0,...,lm)}
cI1
(
X1

T1,x

)
qI1ρ(T1)

m∏
i=0

l0+···+li∏
j=1+l0+···+li−1

Hϕ

(
T (j)

X1
T
1
,x,i

)
= E

[
ϕ
(
X1

τR(x),x

)
+

∫ τR(x)

0

∑
l∈Lm

cl
(
X1

t,x

)
ul0
(
X1

t,x

) m∏
i=1

vlii
(
X1

t,x

)
dt

]

= E
[
ϕ
(
X1

τR(x),x

)]
+ E

[ ∫ τR(x)

0

h
(
X1

t,x

)
dt

]
, (4.5)
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where u(x) and the function

h(x) :=
∑
l∈Lm

cl(x)u
l0(x)

m∏
i=1

vlii (x), x ∈ B(0, R),

are bounded continuous on B(0, R) by Lemma 4.7. Hence by Lemmas 2.1 and 4.7 the

function u(x) is differentiable in x ∈ B(0, R), with

∇u(x) = ∇E
[
ϕ
(
X1

τR(x),x

)]
+∇E

[ ∫ τR(x)

0

h
(
X1

t,x

)
dt

]
= E

[
W∂B(0,R)

(
x,X1

τR(x),x

)
ϕ
(
X1

τR(x),x

)]
+ E

[ ∫ τR(x)

0

WB(0,R)

(
x,X1

t,x

)
h
(
X1

t,x

)
dt

]
= E

[
Hϕ(Tx,0)W(T1, x,X)

]
,

and by (4.3)-(4.2) we have

bi(x) · ∇u(x) = E
[
Hϕ(Tx,0) bi(x) · W(T1, x,X)

]
= E[Hϕ(Tx,i)]

= vi(x), x ∈ B(0, R), i = 1, . . . ,m.

Therefore, using (1.3), Relation (4.5) rewrites as

u(x) = E
[
ϕ
(
X1

τR(x),x

)
+

∫ τR(x)

0

f
(
X1

t,x, u
(
X1

t,x

)
,∇u

(
X1

t,x

))
dt

]
, x ∈ B(0, R).

It then follows from a classical argument that u is a viscosity solution of (1.2). Indeed, for

any δ > 0, by the Markov property we also have

u(x) = E
[
u
(
X1

δ∧τR(x),x

)
+

∫ δ∧τR(x)

0

f
(
X1

t,x, u
(
X1

t,x

)
,∇u

(
X1

t,x

))
dt

]
, x ∈ B(0, R).

Next, let ξ ∈ C2(B(0, R)) such that x is a maximum point of u− ξ and u(x) = ξ(x). By the

Itô-Dynkin formula, we get

E
[
ξ
(
X1

δ∧τR(x),x

)]
= ξ(x) + E

[ ∫ δ∧τR(x)

0

∆αξ
(
X1

t,x

)
dt

]
.

Thus, since u(x) = ξ(x) and u ⩽ ξ, we find

E
[ ∫ δ∧τR(x)

0

(
∆αξ

(
X1

t,x

)
+ f
(
X1

t,x, u
(
X1

t,x

)
,∇u

(
X1

t,x

)))
dt

]
⩾ 0.
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Since Xt,x converges in distribution to the constant x ∈ Rd as t tends to zero, it admits an

almost surely convergent subsequence, hence by continuity and boundedness of f( · , u( · ))
together with the mean-value and dominated convergence theorems, we have

∆αξ(x) + f(x, ξ(x),∇ξ(x)) ⩾ 0,

hence u is a viscosity subsolution (and similarly a viscosity supersolution) of (1.2). □

The proof of the next lemma uses the filtration (Fn)n⩾1 defined by

Fn := σ

(
Tk, Ik, X

k, k ∈
n⋃

i=1

Ni

)
, n ⩾ 1.

Recall that K◦
i (resp. K∂

i ), i = 1, . . . , n+1, denotes the set of i-th generation particles which

die inside (resp. outside) the domain B(0, R), and Kn = K◦
n ∪ K∂

n.

Lemma 4.4 Given p ⩾ 1, let v : B(0, R) → R+ be a bounded measurable function satisfying

the inequality

v(x) ⩾ K1E
[(
F (τR(x))

)1−p]
+E
[ ∫ τR(x)

0

(
Kp

21[0,1](t)ρ(t)+K̃
p
21(1,∞)(t)

) ∑
l=(l0,...,lm)∈Lm

v|l|(X1
t,x)

qp−1
l

dt

]
,

x ∈ B(0, R), for some K1, K2, K̃2 > 0, where |l| = l0 + · · ·+ lm. Then, we have

v(x) ⩾ E

∏
k∈K∂

K1

F p(Tk − Tk−)

∏
k∈K◦

T
k
−T

k−⩽1

Kp
2

qpIk

∏
k∈K◦

T
k
−T

k−>1

K̃p
2

qpIk
ρp(Tk − Tk−)

 , x ∈ B(0, R). (4.6)

Proof. Since T1 is independent of
(
X1

s,x

)
s⩾0

and has the probability density ρ, letting

g(y) :=
∑

l=(l0,...,lm)∈Lm

y|l|

qp−1
l

,

we have

v(x) ⩾ E
[
K1

(
F (τR(x))

)1−p
+

∫ τR(x)

0

(
Kp

21[0,1](t)ρ(t) + K̃p
21(1,∞)(t)

)
g
(
v
(
X1

t,x

))
dt

]
= E

[
E

[
K1

(
F (τR(x))

)1−p
+

∫ τR(x)

0

(
Kp

21[0,1](t)ρ(t) + K̃p
21(1,∞)(t)

)
g
(
v
(
X1

t,x

))
dt

∣∣∣∣ (X1
s,x

)
s⩾0

]]

= E

[
E

[
K1

F p(τR(x))
1{T1=τR(x)} +

∫ τR(x)

0

(
Kp

21[0,1](t) +
K̃p

2

ρ(t)
1(1,∞)(t)

)
g
(
v
(
X1

t,x

))
ρ(t)dt

∣∣∣∣ (X1
s,x

)
s⩾0

]]
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= E

[
K1

F p(τR(x))
1{T1=τR(x)} +Kp

2g
(
v
(
X1

T1,x

))
1{T1⩽min(1,τR(x))} +

K̃p
2

ρ(T1)
g
(
v
(
X1

T1,x

))
1{1<T1<τR(x)}

]

= E

[
K1

F p(T1)
1{T1=τR(x)} +

1

qpI1

(
Kp

21{T1⩽min(1,τR(x))} +
K̃p

2

ρ(T1)
1{1<T1<τR(x)}

)
v|I1|

(
X1

T1,x

)]
,

showing that

v(x) ⩾ E

∏
k∈K∂

1

K1

F p(Tk − Tk−)

∏
k∈K◦

1
T
k
−T

k−⩽1

Kp
2

qpIk

∏
k∈K◦

1
T
k
−T

k−>1

K̃p
2

qpIk
ρp(Tk − Tk−)

∏
k∈K2

v
(
Xk

Tk−,x

) , (4.7)

x ∈ B(0, R). By repeating this argument for the particles in k ∈ K2, we find

v
(
Xk

Tk−,x

)
⩾ E

[
K1

F p(Tk − Tk−)
1{Xk

T
k
,x /∈B(0,R)}

+
1

qpIk

(
Kp

21{Tk−Tk−⩽min(1,τR(x))} +
K̃p

2

ρp(Tk − Tk−)
1{1<Tk−Tk−<τR(x)}

)
v|Ik|

(
Xk

Tk,x

) ∣∣∣∣F1

]
.

Plugging this expression in (4.7) above and using the tower property of the conditional

expectation, we obtain

v(x) ⩾ E

 ∏
k∈

⋃2
i=1 K∂

i

K1

F p(Tk − Tk−)

∏
k∈

⋃2
i=1

K◦
i

T
k
−T

k−⩽1

Kp
2

qpIk

∏
k∈

⋃2
i=1

K◦
i

T
k
−T

k−>1

K̃p
2

qpIk
ρp(Tk − Tk−)

∏
k∈K4

v
(
Xk

Tk−,x

)
 ,

and repeating this process inductively leads to

v(x) ⩾ E

 ∏
k∈

⋃n
i=1 K∂

i

K1

F p(Tk − Tk−)

∏
k∈

⋃n
i=1

K◦
i

T
k
−T

k−⩽1

Kp
2

qpIk

∏
k∈

⋃n
i=1

K◦
i

T
k
−T

k−>1

K̃p
2

qpIk
ρp(Tk − Tk−)

∏
k∈Kn+1

v
(
Xk

Tk−,x

) ,
n ⩾ 1. Using Fatou’s lemma as n tends to infinity, since all particles become eventually

extinct with probability one, we obtain (4.6). □

Lemma 4.5 Let α ∈ (1, 2), p ∈ [1, d), d ⩾ 2, and

b0,∞ := max
1⩽i⩽m

sup
x∈B(0,R)

|bi(x)|, b1,∞ := max
1⩽i⩽m

sup
x∈B(0,R)

|bi(x)|
R− |x|

.
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Under Assumptions (A)-(B), we have the bound

E
[∣∣Hϕ(Tx,i)

∣∣p] ⩽ E

∏
k∈K∂

K1

F p(Tk − Tk−)

∏
k∈K◦

T
k
−T

k−⩽1

K4maxl∈Lm ∥cl∥p∞
qpIk

∏
k∈K◦

T
k
−T

k−>1

K3maxl∈Lm ∥cl∥p∞
qpIk
ρp(Tk − Tk−)

 ,
(4.8)

x ∈ B(0, R), i = 0, . . . ,m, where

K1 := ∥ϕ∥p∞(1 + (d+ α)pbp1,∞), K3 := 1 + dpbp1,∞ + dpbp0,∞Cα,d,p, (4.9)

and

K4 := sup
t∈[0,1]

1 + dpbp1,∞
ρp(t)

+ dpbp0,∞ sup
t∈[0,1]

Cα,d,p

ρp(t)tp/α
. (4.10)

Proof. For x ∈ B(0, R), let

wi(x) := E
[∣∣Hϕ(Tx,i)

∣∣p] = Ei

∏
k∈K◦

∣∣cIk(Xk
Tk,x

)∣∣p∣∣Wk
Tk−,x

∣∣p
qpIk
ρp(Tk − Tk−)

∏
k∈K∂

∣∣ϕ(Xk
Tk,x

)∣∣p∣∣Wk
Tk−,x

∣∣p
F p(Tk − Tk−)

 ,
(4.11)

where Ei denotes the conditional expectation given that the tree Tx,i is started with the mark

i ∈ {0, . . . ,m}. When k ∈ K◦ has mark θk = 0 we have Wk
Tk−,x = 1, whereas when θk ̸= 0,

using (2.4), (4.1)-(4.3) and the Cauchy-Schwarz inequality, we have

∣∣Wk
Tk−,x

∣∣ ⩽
d
∣∣bθk(Xk

Tk−,x

)∣∣
min

(
R−

∣∣Xk
Tk−,x

∣∣, ∣∣Xk
Tk,x

−Xk
Tk−,x

∣∣)
⩽ dmax

(∣∣bθk(Xk
Tk−,x

)∣∣
R−

∣∣Xk
Tk−,x

∣∣ ,
∣∣bθk(Xk

Tk−,x

)∣∣∣∣Xk
Tk,x

−Xk
Tk−,x

∣∣
)

⩽ db1,∞ +
db0,∞∣∣Xk

Tk,x
−Xk

Tk−,x

∣∣ .
Similarly, when k ∈ K∂, the definition of W∂B(0,R)(x, y) in (2.6), together with the bound

(2.3) and the Cauchy-Schwarz inequality, imply∣∣Wk
Tk−,x

∣∣ ⩽ (d+ α)b1,∞. (4.12)

Next, by conditional independence given G := σ
(
τ i,j, I i,j : i, j ⩾ 1

)
of the terms in the

product over k ∈ K◦ and k ∈ K∂, which involve random terms of the form Xk
Tk,x

− Xk
Tk−,x

given Tk − Tk−, by (2.5), and (4.11)-(4.12), we have

wi(x)
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⩽ E

∏
k∈K◦

∥cIk∥
p
∞

qpIk
E

[
2p

ρp(Tk − Tk−)

(
1 + dpbp1,∞ +

dpbp0,∞∣∣Xk
Tk,x

−Xk
Tk−,x

∣∣p
)∣∣∣∣G

] ∏
k∈K∂

E

[
K1

F p(Tk − Tk−)

∣∣∣∣G
]

= E

∏
k∈K◦

(
∥cIk∥

p
∞

qpIk
ρp(Tk − Tk−)

(
1 + dpbp1,∞ +

dpbp0,∞Cα,d,p

(Tk − Tk−)
p/α

)) ∏
k∈K∂

K1

F p(Tk − Tk−)

 .
Splitting the terms in the product over k ∈ K◦ between small and large values of Tk − Tk−,

we get

wi(x)

⩽ E

∏
k∈K◦

∥cIk∥
p
∞

qpIk

(
K3

ρp(Tk − Tk−)
1{Tk−Tk−>1} +K41{Tk−Tk−⩽1}

) ∏
k∈K∂

K1

F p(Tk − Tk−)

 ,
(4.13)

x ∈ B(0, R), which yields (4.8), i = 0, . . . ,m. □

Proposition 4.6 provides sufficient conditions for the finiteness of the upper bound (4.8), and

for (Hϕ(Tx,i))x∈B(0,R) to be bounded in L1(Ω), uniformly in x ∈ B(0, R), i = 0, . . . ,m, as

required in Proposition 4.3.

Proposition 4.6 Let α ∈ (1, 2), p ∈ [1, d), and d ⩾ 2. Under Assumptions (A)-(B),

suppose that the boundary condition ϕ is bounded on Rd and that there exists a bounded

strictly positive weak solution v ∈ Hα/2(Rd) ∩ L∞(Rd) to the following partial differential

inequality: 
∆αv(x) + K̃2

∑
l∈Lm

v|l|(x)

qp−1
l

⩽ 0, x ∈ B(0, R),

v(x) ⩾ K̃1 > 0, x ∈ Rd \B(0, R),

(4.14)

where K̃1 ⩾ K1E
[
F 1−p(τR(0))

]
, K1 > 0 is given by (4.9), and K̃2 > 0. Then, for sufficiently

small maxl∈Lm ∥cl∥∞ we have the bound

E[|Hϕ(Tx,i)|p] ⩽ v(x) ⩽ ∥v∥∞ <∞, x ∈ B(0, R), i = 0, . . . ,m. (4.15)

Proof. We smooth out v ∈ Hα/2(Rd) as

vε(x) :=
1

ε

∫ ∞

−∞
ψ

(
x− y

ε

)
v(y)dy, x ∈ R, ε > 0,

where ψ : R → R+ is a mollifier such that
∫∞
−∞ ψ(y)dy = 1. By (4.14) and Jensen’s inequality,

we have

∆αvε(x) + K̃2

∑
l∈Lm

v
|l|
ε (x)

qp−1
l

19



=
1

ε

∫ ∞

−∞
∆αψ

(
x− y

ε

)
v(y)dy + K̃2

∑
l∈Lm

1

qp−1
l

(
1

ε

∫ ∞

−∞
ψ

(
x− y

ε

)
v(y)dy

)|l|

⩽
1

ε

∫ ∞

−∞
ψ

(
x− y

ε

)
∆αv(y)dy + K̃2

∑
l∈Lm

1

εqp−1
l

∫ ∞

−∞
ψ

(
x− y

ε

)
v|l|(y)dy

=
1

ε

∫ ∞

−∞
ψ

(
x− y

ε

)(
∆αv(y) + K̃2

∑
l∈Lm

v|l|(y)

qp−1
l

)
dy

⩽ 0, x ∈ B(0, R).

Applying the Itô-Dynkin formula to vε(Xs,x) with vε ∈ Hα(Rd), by (4.14) we have

vε(x) = E

[
vε
(
Xx

τR(x)

)
−
∫ τR(x)

0

∆αvε(Xt,x)dt

]

⩾ E

[
K̃1 +

∫ τR(x)

0

K̃2

∑
l∈Lm

v
|l|
ε (Xt,x)

qp−1
l

dt

]
, x ∈ B(0, R).

Thus, passing to the limit as ε tends to zero, by dominated convergence and the facts that

E[τR(x)] < ∞ and v(x) is upper and lower bounded in (0,∞), for some sufficiently small

K2 > 0 we have

v(x) ⩾ K̃1 + E
[ ∫ τR(x)

0

K̃2

∑
l∈Lm

v|l|(Xt,x)

qp−1
l

dt

]

⩾ K1E
[
F 1−p(τR(0))

]
+ E

[ ∫ τR(x)

0

(
Kp

21[0,1](t)ρ(t) + K̃p
21(1,∞)(t)

) ∑
l∈Lm

v|l|(Xt,x)

qp−1
l

dt

]
,

⩾ K1E
[
F 1−p(τR(x))

]
+ E

[ ∫ τR(x)

0

(
Kp

21[0,1](t)ρ(t) + K̃p
21(1,∞)(t)

) ∑
l∈Lm

v|l|(Xt,x)

qp−1
l

dt

]
,

x ∈ B(0, R), as the function F 1−p is non-decreasing. Hence by Lemmas 4.4 and 4.5, for K3,

K4 given in (4.9)-(4.10) we have, provided that maxl∈Lm ∥cl∥∞ is sufficiently small,

v(x) ⩾ E

∏
k∈K∂

K1

F p(Tk − Tk−)

∏
k∈K◦

T
k
−T

k−⩽1

Kp
2

qpIk

∏
k∈K◦

T
k
−T

k−>1

K̃p
2

qpIk
ρp(Tk − Tk−)



⩾ E

∏
k∈K∂

K1

F p(Tk − Tk−)

∏
k∈K◦

T
k
−T

k−⩽1

K4maxl∈Lm ∥cl∥p∞
qpIk

∏
k∈K◦

T
k
−T

k−>1

K3maxl∈Lm ∥cl∥p∞
qpIk
ρp(Tk − Tk−)


⩾ E

[∣∣Hϕ(Tx,i)
∣∣p],

x ∈ B(0, R), i = 0, . . . ,m, which yields (4.15). □
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Proof of Theorem 4.2. By Theorem 1.2 in Penent and Privault (2023), the partial differential

inequality (4.14) admits a positive (continuous) viscosity solution v(x) on Rd when R > 0

is sufficiently small. In addition, by Proposition 3.5 in Penent and Privault (2023), v ∈
Hα/2(Rd) ∩ L∞(Rd) and is a weak solution of (4.14). By Propositions 4.3 and 4.6, the PDE

(1.2) admits a viscosity solution in C1(B(0, R)) ∩ C0(B(0, R)), which can be represented as

(4.4). Hence by Theorem 1.2 in Kriventsov (2013), ∇u and f(u,∇u) are in Cϵ(B(0, R)) for

some ϵ > 0, as the kernel of ∆α satisfies (1.11) therein. Therefore, by Theorem 1.3 in Serra

(2015), the (unique) viscosity solution u is in Cα+ϵ(B(0, R)) ∩ C0(B(0, R)). □

Lemma 4.7 extends Lemma 3.3 in Penent and Privault (2023) from i = 0 to i ∈ {1, . . . ,m}.
Lemma 4.7 Let i ∈ {0, . . . ,m}, and assume that (H(Tx,i))x∈B(0,R) is uniformly integrable.

Then, the function vi(x) := E[Hϕ(Tx,i)] is continuous in x ∈ B(0, R).

Proof (given for completeness). Let x ∈ B(0, R). By Lemma 3.2 therein, for any sequence

(xn)n∈N in B(0, R) converging fast enough to x ∈ B(0, R) we have

P
(

lim
n→∞

τR(xn) = τR(x)
)
= 1,

and letting τk,x := τR
(
Xk−

Tk−,x

)
, k ∈ K, the event

Ak :=
{
lim
n→∞

τk,xn
= τk,x

}⋂{
lim
n→∞

Xk
·,xn

= Xk
·,x

}
,

has probability one. Again, by Lemma 3.2-a) in ibid, for some n0(ω) large enough we have

Xk
τk,xn

= Xk
τk,x

+ xn − x,

and τk,xn
= τk,x, n ⩾ n0(ω). Therefore, using the continuity of the functions ϕ and cl, l ∈ L,

we have

lim
n→∞

ϕ
(
Xk

τk,xn

)
Wk

Tk−,xn
1{Tk=τk,xn}

= ϕ
(
Xk

τk,x

)
Wk

Tk−,x1{Tk=τk,x}, P− a.s.

and

lim
n→∞

cIk
(
Xk

Tk,xn

)
Wk

Tk−,xn
1{Tk<τk,xn}

=
cIk
(
Xk

Tk,x

)
qIk

Wk
Tk−,x1{Tk<τk,x}, P− a.s..

Hence by (4.2), on the event A :=
⋂

k∈KAk of probability one, we have

lim
n→∞

Hϕ(Txn,i(ω)) = Hϕ(Tx,i(ω)).

Therefore, for any sequence (xn)n⩾1 converging to x ∈ B(0, R) fast enough, we have

P
(
lim
n→∞

Hϕ(Txn,i) = Hϕ(Tx,i(ω)
)
= 1,

which yields limn→∞ vi(xn) = vi(x) by uniform integrability of (Hϕ(Tx,i(ω)))x∈B(0,R). □
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5 Numerical examples

In this section, we consider numerical applications of the probabilistic representation (4.4).

The paths of the α-stable process Xt = BSt are simulated by time discretization, by generat-

ing independent random samples of Brownian motion and of the α/2-stable process (St)t∈R+

using the identity in distribution

St ≃ 2t2/α
sin(α

(
U + π/2)/2)

cos2/α(U)

(
cos(U − α(U + π/2)/2)

E

)−1+2/α

based on the Chambers-Mallows-Stuck (CMS) method, where U is uniform on (−π/2, π/2),
and E is exponential with unit parameter, see Relation (3.2) in Weron (1996). In order to

keep computation times to a reasonable level, the probability density ρ(t) of τ i,j, i, j ⩾ 1, is

taken to be gamma with shape parameters ranging from 1.5 to 1.7. The C codes used to plot

Figures 4 and 6 are available at https://github.com/nprivaul/fractional_elliptic.

Given k ⩾ 0, we consider the function

Φk,α(x) := (1− |x|2)k+α/2
+ , x ∈ Rd,

which is Lipschitz if k > 1 − α/2, and solves the Poisson problem ∆αΦk,α = −Ψk,α on Rd,

with

Ψk,α(x)

:=


Γ((d+ α)/2)Γ(k + 1 + α/2)

2−αΓ(k + 1)Γ(d/2)
2F1

(
d+ α

2
,−k; d

2
; |x|2

)
, |x| ⩽ 1

2αΓ((d+ α)/2)Γ(k + 1 + α/2)

Γ(k + 1 + (d+ α)/2)Γ(−α/2)|x|d+α 2F1

(
d+ α

2
,
2 + α

2
; k + 1 +

d+ α

2
;

1

|x|2

)
, |x| > 1

x ∈ Rd, where 2F1(a, b; c; y) is Gauss’s hypergeometric function, see (5.2) in Getoor (1961),

Lemma 4.1 in Biler et al. (2015), and Relation (36) in Huang and Oberman (2016).

Linear gradient term

We take R = 1, m = 1, L1 = {(0, 0), (0, 1)}, and

c(0,0)(x) := Ψk,α(x) + (2k + α)|x|2(1− |x|2)k+α/2, c(0,1)(x) := 1, b1(x) := (1− |x|2)x,

and consider the PDE

∆αu(x) + Ψk,α(x) + (2k + α)|x|2(1− |x|2)k+α/2 + (1− |x|2)x · ∇u(x) = 0, (5.1)
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x ∈ B(0, 1), with u(x) = 0 for x ∈ Rd \B(0, 1), and explicit solution

u(x) = Φk,α(x) = (1− |x|2)k+α/2
+ , x ∈ Rd.

The random tree associated to (5.1) starts at the point x ∈ B(0, 1), and branches into 0

branch or 1 branch as in the random tree samples of Figure 3.

0
x

T1

X1
T1,x

T(1,1)

X
(1,1)
T(1,1),x

T(1,1,1) := T(1,1) + τR(X
(1,1,1)
T(1,1,1),x

)

X
(1,1,1)
T(1,1,1),x

(1, 1, 1)

1

(1, 1)

1

1

0

0
x

T1

X1
T1,x

T(1,1)

X
(1,1)
T(1,1),x

(1, 1)

1

1

0

Figure 3: Random tree samples for the PDE (5.1).

The simulations of Figures 4-a) and 4-b) respectively use 107 and 2 × 107 Monte Carlo

samples.
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Exact solution
Numerical solution

(a) Numerical solution of (5.1) with k = 0.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1.5 -1 -0.5  0  0.5  1  1.5
x1

Exact solution
Numerical solution

(b) Numerical solution of (5.1) with k = 1.

Figure 4: Numerical solution of (5.1) in dimension d = 10 with α = 1.75.

Nonlinear gradient term

In this example we take L1 = {(0, 0), (0, 2)},

c(0,0)(x) := Ψk,α(x) + (2k + α)2|x|4(1− |x|2)2k+α, c(0,2)(x) := −1, b1(x) := (1− |x|2)x,

and consider the PDE with nonlinear gradient term

∆αu(x) + Ψk,α(x) + (2k + α)2|x|4(1− |x|2)2k+α − ((1− |x|2)x · ∇u(x))2 = 0, (5.2)
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x ∈ B(0, 1), with u(x) = 0 for x ∈ Rd \B(0, R), and explicit solution

u(x) = Φk,α(x) = (1− |x|2)k+α/2
+ , x ∈ Rd.

The random tree associated to (5.2) starts at a point x ∈ B(0, 1) and branches into 0 branch

or 2 branches as in the random tree sample of Figure 5.

0
x

T1

X1
T1,x

T(1,2)

X
(1,2)
T(1,2),x

T(1,2,2)

X
(1,2,2)
T(1,2,2),x

(1, 2, 2)

1

T(1,2,1) := T(1,2) + τR(X
(1,2,1)
T(1,2,1),x

)

X
(1,2,1)
T(1,2,1),x

(1, 2,
1)

0(1, 2)

1

T(1,1)

X
(1,1)
T(1,1),x

(1, 1
)

0
1

0

Figure 5: Random tree sample for the PDE (5.2).

The simulations of Figure 6 use five million Monte Carlo samples.
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(a) Numerical solution of (5.2) with k = 0.
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(b) Numerical solution of (5.2) with k = 2.

Figure 6: Numerical solution of (5.2) in dimension d = 10 with α = 1.75.
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D. Applebaum. Lévy processes and stochastic calculus, volume 116 of Cambridge Studies in Advanced Math-
ematics. Cambridge University Press, Cambridge, second edition, 2009.

G. Barles, E. Chasseigne, and C. Imbert. On the Dirichlet problem for second-order elliptic integro-differential
equations. Indiana Univ. Math. J., 57(1):213–246, 2008.

24
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