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Abstract

Let P and P̃ be the laws of two discrete-time stochastic processes defined on the sequence
space SN, where S is a finite set of points. In this paper we derive a bound on the total variation
distance dTV(P, P̃) in terms of the cylindrical projections of P and P̃. We apply the result to
Markov chains with finite state space and random walks on Z with not necessarily independent
increments, and we consider several examples. Our approach relies on the general framework
of stochastic analysis for discrete-time obtuse random walks and the proof of our main result
makes use of the predictable representation of multidimensional normal martingales. Along the
way, we obtain a sufficient condition for the absolute continuity of P̃ with respect to P which is
of interest in its own right.
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1 Introduction

We consider the general problem of estimating the total variation distance between the laws of two

discrete-time stochastic processes on the sequence space. Specifically, we provide an explicit upper

bound on the total variation distance between two discrete-time stochastic processes in terms of the

cylindrical projections of the laws of the processes. Our general estimate (see Theorem 4.1) yields:

(i) an explicit upper bound on the total variation distance between the laws of two discrete-time

Markov chains with finite state space in terms of the initial distribution and the coefficients of their

transition matrices (see Corollary 5.1) (ii) an explicit upper bound on the total variation distance
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between the laws of two random walks on Z in terms of the initial distribution and the conditional

distributions of their (not necessarily independent) increments (see Corollaries 5.2 and 5.3).

From the point of view of the applications, results of this kind can be used e.g. for parameter

estimation in Markov chain models. Indeed, letting (Xn) denote a Markov chain based on some data

set and (Xθ
n), θ ∈ Θ ⊂ R, a parametrized family of Markov chains, one may minimize (with respect

to θ) the upper bound on the total variation distance between (Xn) and (Xθ
n) to select the optimal

estimation of (Xn) in the parametrized class of Markov chains (see the comment after Corollary 5.1).

Our results can also be used to compute the distance between two inhomogeneous random walks. As

an illustration, we present a specialization of our bounds to elephant random walks [12] and to a gen-

eralization of this model introduced in [9] (see Examples 2 and 3). We also mention that computable

upper bounds on the distance between two discrete-time stochastic processes are potentially useful

in the study of the performance measurement of learning algorithms (see e.g. Sections 3 and 4 in [13]).

We let S be a finite set of points, and for ease of notation we assume that S = {0, . . . , d}
for some d ≥ 1. The sequence space (see [5, p. 27]) is defined as Ω := {0, . . . , d}{0,...,N}, where

N ∈ N := {0, 1, . . .} or N =∞, in which case we identify {0, . . . , N} with N. The set S is regarded

as the possible outcomes of an experiment, and Ω is the sample space corresponding to the repetition

of the experiment. The space Ω is endowed with the filtration (Fn)n∈{−1,0,...,N} generated by the

{0, . . . , d}-valued coordinate maps (πn)n∈{0,...,N}, πn((ωk)k∈{0,...,N}) := ωn, i.e.

Fn := σ (π0, . . . , πn) , n ∈ {0, . . . , N}, (1.1)

with F−1 := {∅,Ω}, and we let F :=
∨N
n=0Fn. We fix two probability measures P and P̃ on (Ω,F),

we define the predictable processes (or cylindrical projections of P and P̃, respectively)

p(i)
n := P (πn = i | Fn−1) and p̃(i)

n := P̃ (πn = i | Fn−1) , (1.2)

and we assume that

0 < p(i)
n , p̃

(i)
n < 1, i ∈ {0, . . . , d}, n ∈ {0, . . . , N}.

We shall see that P and P̃ can be the laws of two discrete-time Markov chains with finite state space

and of two random walks on Z, see Section 5. In this paper, we aim at providing a bound on the total

variation distance dTV(P, P̃) between P and P̃. Our approach relies on the construction of a suitable

d-dimensional normal martingale (see [3]) correctly associated with the cylindrical projections (1.2).
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The proof of the general bound on dTV(P, P̃) (i.e. of Theorem 4.1) is based on the following

decomposition of a square integrable random variable F : Ω→ R obtained recently in [8]:

F (ω)− E[F ] =
N∑
n=0

〈ξn(ω), Yn(ω)〉Rd , (1.3)

where E denotes the expectation with respect to P, 〈x, y〉Rd denotes the usual inner product of

two elements x = (x1, . . . , xd), y = (y1, . . . , yd) of Rd, (ξn)n∈{0,...,N} is a discrete-time predictable

process given by the Clark-Ocone formula (see Proposition 2.2) and (Yn)n∈{0,...,N} is the sequence of

increments of a discrete-time d-dimensional normal martingale. The proof proceeds by taking the

expectation under P̃ in (1.3), which yields

|Ẽ[F ]− E[F ]| ≤
N∑
n=0

Ẽ [|〈ξn, Yn〉Rd |] , (1.4)

and by bounding the right-hand side of this latter relation.

The inequality (1.4) is deduced under the crucial assumption P̃� P, i.e. the absolute continuity

of P̃ with respect to P. Therefore, to apply our general estimate to most cases of interest, we need

sufficient conditions for P̃ � P. We thus prove in Proposition 3.1 that if Ẽ[
∑N

n=0 p̃
(i)
n ] < ∞ and∑N

n=0 p
(i)
n < ∞, P̃-a.s. for all i different from a fixed i0, then P̃ is absolutely continuous with

respect to P. Additionally, the Radon-Nikodym derivative can be made explicit under slightly

stronger conditions. We note that the result of Proposition 3.1 is quite general. As an illustra-

tion, if V = (Vn)n∈{0,...,N} and W = (Wn)n∈{0,...,N} are two sequences of {0, . . . , d}-valued random

variables defined on Ω, Proposition 3.1 provides a sufficient condition for the absolute continuity of

the law of V with respect to the law of W in terms of their respective cylindrical projections.

When d = 1 and d = 2 the general bound of Theorem 4.1 can be considerably simplified (see

Corollaries 4.1 and 4.2). Such simplified estimates are applied to random walks in Section 5.2. In

Corollary 4.3 we give a more explicit upper bound on dTV(P, P̃) which is used in Section 5.1 to obtain

estimates on the total variation distance between the laws of two discrete-time Markov chains with

finite state space.

The paper is organized as follows. In Section 2, we give some preliminary results on obtuse

random walks, and in Section 3 we provide sufficient conditions for the absolute continuity required

in the statement of Theorem 4.1. In Section 4 we provide the general upper bound on dTV(P, P̃) and

3



we make it more explicit in some specific settings. The above-mentioned applications to discrete-time

Markov chains with finite state space and random walks are given in Section 5.

2 Preliminaries

An obtuse system in Rd, see [3], is a family of d+ 1 vectors x0, . . . , xd ∈ Rd such that 〈xi, xj〉Rd =

−1, ∀i 6= j. We letOPp denote the collection of families ((v
(i)
n )n∈{0,...,N})0≤i≤d of Rd-valued predictable

processes such that (v
(i)
n (ω))0≤i≤d is an obtuse system in Rd for all ω ∈ Ω and n ∈ {0, . . . , N}, and

which is correctly associated to the predictable processes p ≡ ((p
(i)
n )n∈{0,...,N})0≤i≤d defined in (1.2),

in the sense that it verifies the structure equations

d∑
i=0

v(i)
n (ω)p(i)

n (ω) = 0 and
d∑
i=0

p(i)
n (ω) v(i)

n (ω)⊗ v(i)
n (ω) = Id, (2.1)

n ∈ {0, . . . , N}, ω ∈ Ω, where 0 ∈ Rd is the null vector, Id is the identity in the group Od of d × d
orthogonal real matrices, and

v(i)
n (ω)⊗ v(i)

n (ω) := ((v(i)
n (ω))j(v(i)

n (ω))k)1≤j,k≤d.

For later purposes, we recall that

‖v(i)
n ‖2

Rd =
1− p(i)

n

p
(i)
n

, n ∈ {0, . . . , N}, i = 0, . . . , d. (2.2)

The following proposition combines [3, Theorem 2(b)] and [2, Proposition 2.4].

Proposition 2.1. The family OPp is not empty and, for any ((v
(i)
n )n∈{0,...,N})0≤i≤d ∈ OPp, we have

OPp ≡ {((Ov(i)
n )n∈{0,...,N})0≤i≤d : O ∈ Od}.

Hereon, we fix ((v
(i)
n )n∈{0,...,N})0≤i≤d ∈ OPp, define Yn(ω) := v

(πn(ω))
n (ω) = v

(ωn)
n (ω), n ∈ {0, . . . , N},

ω ∈ Ω and note that, since v(i)
n = v

(j)
n if and only if i = j (which follows from the fact that

〈v(i)
n , v

(j)
n 〉Rd = −1 for all i 6= j), we have

{ω ∈ Ω : πn(ω) = i} = {ω ∈ Ω : Yn(ω) = v(i)
n (ω)}, n ∈ {0, . . . , N}, i ∈ {0, . . . , d},

which implies Fn = σ(Y0, . . . , Yn), n ∈ {0, . . . , N}, as well as

p(i)
n = P (πn = i | Fn−1) = P

(
Yn = v(i)

n | Fn−1

)
, n ∈ {0, . . . , N}, i ∈ {0, . . . , d}.
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By the structure equations (2.1), we then have that (Y0 + · · ·+Yn)n∈{0,...,N} is a d-dimensional normal

martingale, i.e.

E[Yn | Fn−1] = 0 and Var (Yn | Fn−1) := E[Yn ⊗ Yn | Fn−1] = In, n ∈ {0, . . . , N}.

The process (Y0 + · · ·+ Yn)n∈{0,...,N} is called a d-dimensional obtuse random walk.

Finally we recall the following Clark-Ocone formula for square-integrable functions on (Ω,F ,P),

see [8, Proposition 7.1 and Proposition 7.2].

Proposition 2.2. For any real-valued F ∈ L2
(
Ω,P

)
we have

F = E[F ] +
N∑
n=0

〈E [DnF | Fn−1] , Yn〉Rd , P− a.s.,

where

DnF (ω) :=
d∑
i=0

p(i)
n (ω)v(i)

n (ω)F (ωin), n ∈ {0, . . . , N}, ω ∈ Ω, (2.3)

and

ωin := (ω0, . . . , ωn−1, i, ωn+1, . . . , ωN), n ∈ {0, . . . , N}, i ∈ {0, . . . , d}.

Remark 1. For later purposes, we note that when d = 1, setting

p(0)
n (ω) := pn(ω), p(1)

n (ω) := qn(ω) := 1− pn(ω),

ω ∈ Ω = {0, 1}N , n ∈ {0, . . . , N}, by a simple computation we have that the corresponding set OPp
is given by the processes

(v(0)
n )n∈{0,...,N} :=

(
−
√
qn
pn

)
n∈{0,...,N}

, (v(1)
n )n∈{0,...,N} :=

(√
pn
qn

)
n∈{0,...,N}

,

and

((−1)v(0)
n )n∈{0,...,N} :=

(√
qn
pn

)
n∈{0,...,N}

, ((−1)v(1)
n )n∈{0,...,N} :=

(
−
√
pn
qn

)
n∈{0,...,N}

.

The random variables

Yn(ω) =


v(0)
n (ω) = −

√
qn(ω)

pn(ω)
if ωn = 0,

v(1)
n (ω) =

√
pn(ω)

qn(ω)
if ωn = 1,
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are the increments of a random walk on R (with possibly non-independent increments). In this case,

the gradient operator defined in (2.3) reduces to

DnF (ω) =
√
pn(ω)qn(ω)

(
F (ω+

n )− F (ω−n )
)
, ω ∈ Ω,

where ω+
n := (ω0, . . . , ωn−1, 1, ωn+1, . . . , ωN) and ω−n := (ω0, . . . , ωn−1, 0, ωn+1, . . . , ωN), and this is

precisely the setting of [11]. For background material on stochastic analysis in the discrete setting,

see Chapter 1 of [11].

3 Absolute continuity of P̃ with respect to P

In this section we provide sufficient conditions for P̃ � P, for future use in combination with

Theorem 4.1.

We begin with a preliminary lemma.

Lemma 3.1. Let i0 ∈ {0, . . . , d} be fixed, N = +∞, define

Ω0 :=
⋃
n≥0

⋂
k≥n

{ω ∈ Ω : ωk = i0} (3.1)

and take ω ∈ Ω0. Then

P({ω}) =
∏
n≥0

p(ωn)
n (ω)

and P({ω}) > 0 if and only if∑
n≥0

p(i)
n (ω) <∞, ∀i ∈ {0, . . . , d} \ {i0}.

Proof. Define

Ak := {ω ∈ Ω : ω0 = ω0, . . . , ωk = ωk} , k ∈ N.

By iterating (1.2) we have

P ({ω ∈ Ω : ω0 = ε0, . . . , ωn = εn}) :=
n∏
k=0

p
(εk)
k (ε),

n ∈ N, ε0, . . . , εn ∈ {0, . . . , d}, where ε := (ε0, . . . , εn, 0, . . . , 0) ∈ Ω, and thus

P (Ak) =
k∏

n=0

p(ωn)
n (ω),

6



and so, since (Ak)k≥0 is a non-increasing sequence of events, we have

P ({ω}) = P
( ⋂
k≥0

Ak

)
= lim

k→∞
P (Ak) =

∏
n≥0

p(ωn)
n (ω).

Note that the infinite product is well-defined as a number in [0, 1). Letting k(ω) denote the integer

such that ωn = i0 for any n ≥ k(ω), we write

P({ω}) =
∏
n≥0

p(ωn)
n (ω) =

k(ω)−1∏
n=0

p(ωn)
n (ω)

∏
n≥k(ω)

p(i0)
n (ω)

=

k(ω)−1∏
n=0

p(ωn)
n (ω)

∏
n≥k(ω)

(
1−

∑
i 6=i0

p(i)
n (ω)

)
. (3.2)

The first product in (3.2) is positive since p(i)
n (ω) > 0 for any i, n and ω. The second product in (3.2)

is positive if and only if ∑
n≥0

∑
i 6=i0

p(i)
n (ω) <∞,

see e.g. [6, Theorem 1.9] p. 422. The proof is completed.

The following proposition holds.

Proposition 3.1. Assume that there exists i0 ∈ {0, . . . , d} such that

Ẽ
[ N∑
n=0

p̃(i)
n

]
<∞, ∀i ∈ {0, . . . , d} \ {i0} (3.3)

and
N∑
n=0

p(i)
n <∞, P̃-a.s., ∀i ∈ {0, . . . , d} \ {i0}. (3.4)

Then P̃� P. If it is further assumed that

E
[ N∑
n=0

p(i)
n

]
<∞, ∀i ∈ {0, . . . , d} \ {i0}, (3.5)

then the corresponding Radon-Nikodym derivative, say L, is given by

L(ω) :=

∏N
n=0 p̃

(ωn)
n (ω)∏N

n=0 p
(ωn)
n (ω)

if
∏N

n=0 p
(ωn)
n (ω) 6= 0, and L(ω) = 0 otherwise. Note that if N ∈ N then (3.3), (3.4) and (3.5) are

clearly true and we have
N∏
n=0

p(ωn)
n (ω) 6= 0.
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Proof. We first consider the case N ∈ N. For any ω ∈ Ω, we have

P({ω}) =
N∏
n=0

p(ωn)
n (ω) and P̃({ω}) =

N∏
n=0

p̃(ωn)
n (ω).

Since p and p̃ are (0, 1)-valued we deduce P({ω}) > 0 and P̃({ω}) > 0 for any ω ∈ Ω, and so the

probability measures P and P̃ are equivalent (the unique event with null probability is the empty

set) and in particular we have the claimed expression for the Radon-Nikodym derivative L. Next,

we consider the case where N =∞. Let i0 be chosen as in the main statement, and define

Bn = {ω ∈ Ω : ωn = i0}, n ≥ 0.

By assumption (3.3) we have∑
n≥0

P̃({ω ∈ Ω : ωn = i}) <∞, ∀ i ∈ {0, . . . , d} \ {i0}.

Therefore ∑
n≥0

P̃(Bc
n) =

∑
n≥0

∑
i 6=i0

P̃({ω ∈ Ω : ωn = i}) <∞,

where Bc
n denotes the complement of the set Bn. So by Borel-Cantelli’s lemma P̃

(
lim supn→∞B

c
n

)
=

0, i.e.

P̃(Ω0) = P̃
(

lim inf
n→∞

Bn

)
= 1, (3.6)

where Ω0 is defined by (3.1). Let A ∈ F be such that P(A) = 0. In particular, we also have

P(A ∩ Ω0) = 0. Since Ω0 is countable we have∑
η∈Ω0∩A

P({η}) = 0.

It follows by Lemma 3.1 that for all η ∈ Ω0 ∩A, there exists i ∈ {0, . . . , d} \ {i0} (which depends on

η) such that ∑
n≥0

p(i)
n (η) =∞.

Thus

P̃ (A) = P̃ (A ∩ Ω0) ≤ P̃
({
η ∈ Ω0 :

∑
n≥0

∑
i 6=i0

p(i)
n (η) =∞

})
= 0,

where we used (3.6) for the former equality and (3.4) for the latter. Let us now further assume that

(3.5) holds. By arguments identical to those used in the beginning of the proof, we have P(Ω0) = 1.

Therefore, for any A ∈ F , by Lemma 3.1 and (3.4), we deduce

E [L1A] =

∫
Ω

L(ω)1A(ω)P(dω) =

∫
Ω0

L(η)1A(η)P(dη)
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=
∑

η∈Ω0∩A

L(η)P({η})

=
∑

η∈Ω0∩A

L(η)1{∑
n≥0

∑
i 6=i0

p
(i)
n (η)<∞

}P({η})

=
∑

η∈Ω0∩A

1{∑
n≥0

∑
i 6=i0

p
(i)
n (η)<∞

}P̃({η})

=
∑

η∈Ω0∩A

P̃({η})

= P̃(A).

The proof is completed.

4 Upper bound on the total variation distance

Let P and P̃ be two probability measures on (Ω,F) and consider the families

p ≡ ((p(i)
n )n∈{0,...,N})0≤i≤d and p̃ ≡ ((p̃(i)

n )n∈{0,...,N})0≤i≤d

of (0, 1)-valued predictable processes defined in (1.2). We recall that the total variation distance

between the probability measures P and P̃ is defined as

dTV(P, P̃) := sup
F : Ω→[0,1],
F measurable

∣∣E[F ]− Ẽ[F ]
∣∣.

Theorem 4.1 below provides an upper bound on dTV(P, P̃). In the following, for a vector v ∈ Rd, we

set

|v| := (|v1|, . . . , |vd|),

and, for a family of vectors (vi)i∈I ⊂ Rd indexed by a finite set I ⊂ N, we define

max
i∈I

vi :=
(

max
i∈I

v1
i , . . . ,max

i∈I
vdi

)
.

4.1 A general upper bound

The following theorem is our most general upper bound.

Theorem 4.1. If P̃� P then for any orthogonal matrix O ∈ Od such that

N∑
n=0

Ẽ

[〈
max

i∈{0,...,d}
p(i)
n |Ov(i)

n |,
d∑
i=0

p̃(i)
n |Ov(i)

n |
〉

Rd

]
<∞, (4.1)
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we have

dTV(P, P̃) ≤ d

N∑
n=0

Ẽ

[〈
max

i∈{0,...,d}
p(i)
n |Ov(i)

n |,

∣∣∣∣∣
d∑
i=0

(
p̃(i)
n − p(i)

n

)
Ov(i)

n

∣∣∣∣∣
〉

Rd

]
. (4.2)

Remark 2. (i) Note that if p is equal to p̃, i.e. P = P̃, then the upper bound in (4.2) is zero.

(ii) Theorem 4.1 provides an upper bound on the distance between the laws under P, respectively
P̃, of a finite-dimensional random vector (X1, . . . , Xm) defined on the sequence space. Indeed,

letting LP((X1, . . . , Xm)), respectively LP̃((X1, . . . , Xm)), denote the law of (X1, . . . , Xm) under

P, respectively P̃, we have

dTV

(
LP((X1, . . . , Xm)),LP̃((X1, . . . , Xm))

)
= sup

f :Rm→[0,1],
f measurable

∣∣E[f(X1, . . . , Xm)]− Ẽ[f(X1, . . . , Xm)]
∣∣

= sup
f :Rm→[0,1],
f measurable

∣∣∣∣∫
Ω

f(X1(ω), . . . , Xm(ω))P(dω)−
∫

Ω

f(X1(ω), . . . , Xm(ω)) P̃(dω)

∣∣∣∣
≤ sup

F : Ω→[0,1],
F measurable

∣∣∣∣∫
Ω

F (ω)P(dω)−
∫

Ω

F (ω) P̃(dω)

∣∣∣∣
= dTV(P, P̃).

In particular, if (Xn)n∈{0,...,N} and (X̃n)n∈{0,...,N} are two discrete-time processes defined on the

sequence space and respective laws P and P̃ such that P̃� P, then the right-hand side of (4.2)

yields an upper bound on the finite-dimensional distributions of the processes.

If additionally X1, . . . , Xm are Fn-measurable for some n ∈ {0, . . . , N}, then the summation in

(4.2) is truncated at n due to the equality dTV(P, P̃) = dTV(P|Fn , P̃|Fn) on the restricted laws

P|Fn, P̃|Fn.

The next lemma, whose proof is postponed to the end of the section, is used in the proof of

Theorem 4.1.

Lemma 4.1. Let m ≥ 2 be a fixed integer, (αk)k=1,...,m ⊂ R be a sequence which is not of constant

sign, and (βk)k=1,...,m ⊂ [0, 1]. Then,∣∣∣∣∣
m∑
k=1

αkβk

∣∣∣∣∣ ≤ (m− 1) max
k=1,...,m

|αk|.

10



Proof of Theorem 4.1. Let O ∈ Od be an orthogonal matrix satisfying (4.1), and let F : Ω→ [0, 1] be

a measurable function. By Proposition 2.2 (with Ov(i)
n in place of v(i)

n in the definitions of DnF and

Yn, see also Proposition 2.1) and the (Fn)n∈{−1,...,N}-predictability of the processes (p
(i)
n Ov

(i)
n )n∈{0,...,N},

i ∈ {0, . . . , d}, we have

F (ω) = E[F ] +
N∑
n=0

〈E [DnF | Fn−1] (ω), Yn(ω)〉Rd

= E[F ] +
N∑
n=0

d∑
i=0

p(i)
n (ω)E

[
F i
n | Fn−1

]
(ω)〈Ov(i)

n (ω), Yn(ω)〉Rd ,

for P-almost all ω ∈ Ω, where F i
n is the random variable defined by F i

n(ω) := F (ωin). Since P̃ � P,
the previous equality holds P̃-almost surely. So, integrating with respect to P̃ yields

Ẽ[F ]− E[F ] =
N∑
n=0

∫
Ω

d∑
i=0

E
[
F i
n | Fn−1

]
(ω)p(i)

n (ω)〈Ov(i)
n (ω), Yn(ω)〉Rd P̃(dω).

Here the exchange between the sum and the integral is justified by Fubini’s theorem. Indeed, as shall

be checked later on, we have

(n, ω) 7→
d∑
i=0

E
[
F i
n | Fn−1

]
(ω)p(i)

n (ω)〈Ov(i)
n (ω), Yn(ω)〉Rd ∈ L1

(
{0, . . . , N} × Ω, κ⊗ P̃

)
(4.3)

(where κ denotes the counting measure). For fixed n ∈ {0, . . . , N}, ω ∈ Ω and j ∈ {1, . . . , d}, by the

first relation in (2.1) (p
(i)
n (ω)(Ov

(i)
n (ω))j)0≤i≤d is not of constant sign, and E [F i

n | Fn−1] (ω) ∈ [0, 1].

Therefore by Lemma 4.1 we have

|Ẽ[F ]− E[F ]| =

∣∣∣∣∣
N∑
n=0

∫
Ω

d∑
i=0

d∑
j=1

E
[
F i
n | Fn−1

]
(ω)p(i)

n (ω)(Ov(i)
n (ω))jYn(ω)j P̃(dω)

∣∣∣∣∣
=

∣∣∣∣∣
N∑
n=0

∫
Ω

d∑
j=1

d∑
i=0

E
[
F i
n | Fn−1

]
(ω)p(i)

n (ω)(Ov(i)
n (ω))jYn(ω)j P̃(dω)

∣∣∣∣∣
≤

N∑
n=0

d∑
j=1

∫
Ω

∣∣∣∣∣
d∑
i=0

E
[
F i
n | Fn−1

]
(ω)p(i)

n (ω)(Ov(i)
n (ω))j

∣∣∣∣∣ |Ẽ [Y j
n | Fn−1

]
(ω)| P̃(dω)

≤ d

N∑
n=0

d∑
j=1

∫
Ω

(
max

i∈{0,...,d}
p(i)
n (ω)|(Ov(i)

n (ω))j|
)
|Ẽ
[
Y j
n | Fn−1

]
(ω)| P̃(dω)

= d
N∑
n=0

Ẽ
[〈

max
i∈{0,...,d}

p(i)
n |Ov(i)

n |, |Ẽ [Yn | Fn−1] |
〉

Rd

]

= d
N∑
n=0

Ẽ

[〈
max

i∈{0,...,d}
p(i)
n |Ov(i)

n |,

∣∣∣∣∣
d∑
i=0

p̃(i)
n Ov

(i)
n

∣∣∣∣∣
〉

Rd

]
.
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By (2.1) and Proposition 2.1 we have that
∑d

i=0 p
(i)
n Ov

(i)
n = 0 , and the claim (4.2) thus follows by

taking the supremum over all the functions F . Recalling that here Yn is defined with Ov(i)
n in place

of v(i)
n , the last equality above follows noticing that

Ẽ[Yn | Fn−1] = Ẽ
[
Ov(πn)

n | Fn−1

]
=

d∑
i=0

p̃(i)
n Ov

(i)
n .

It remains to check (4.3). By similar computations, by (4.1) we deduce

N∑
n=0

∫
Ω

∣∣∣∣∣
d∑
i=0

E
[
F i
n | Fn−1

]
(ω)p(i)

n (ω)〈Ov(i)
n (ω), Yn(ω)〉Rd

∣∣∣∣∣ P̃(dω)

≤
N∑
n=0

∫
Ω

d∑
j=1

∣∣∣∣∣
d∑
i=0

E
[
F i
n | Fn−1

]
(ω)p(i)

n (ω)(Ov(i)
n (ω))j

∣∣∣∣∣ |Yn(ω)j| P̃(dω)

=
N∑
n=0

∫
Ω

d∑
j=1

∣∣∣∣∣
d∑
i=0

E
[
F i
n | Fn−1

]
(ω)p(i)

n (ω)(Ov(i)
n (ω))j

∣∣∣∣∣ Ẽ[|Y j
n | | Fn−1](ω) P̃(dω)

≤
N∑
n=0

Ẽ

[〈
max

i∈{0,...,d}
p(i)
n |Ov(i)

n |,
d∑
i=0

p̃(i)
n |Ov(i)

n |
〉

Rd

]
<∞.

Proof of Lemma 4.1. Without loss of generality, assume that α1, . . . , αn ≥ 0 and αn+1, . . . , αm ≤ 0

for some n ∈ {1, . . . ,m− 1}. We have∣∣∣∣∣
m∑
k=1

αkβk

∣∣∣∣∣ ≤ max

(
n∑
k=1

αkβk,−
m∑

k=n+1

αkβk

)

≤ max

(
n max
k=1,...,n

αk, (m− n) max
k=n+1,...,m

(−αk)
)

≤ (m− 1) max
k=1,...,m

|αk|.

4.2 Operative upper bounds

In this section, we provide corollaries of Theorem 4.1 which can be directly applied to the Markov

chains and random walks considered in the next section. The first two corollaries are specializations

of Theorem 4.1 to the cases d = 1 and d = 2 under a minor strengthening of the assumptions. More

specifically, in the first corollary we consider d = 1, in which case there exists a unique orthogonal

matrix and the bound given by (4.2) is computed explicitly. In the second corollary, we consider

12



d = 2 and for a particular orthogonal matrix we compute explicitly the upper bound in Theorem 4.1.

Our last corollary provides a more tractable upper bound for the right-hand side of (4.2) which is

valid for any d.

Corollary 4.1. Let d = 1 and assume either N <∞, or

N =∞ and
∑
n≥0

Ẽ[p̃(i)
n + p(i)

n ] <∞, for some i ∈ {0, 1}. (4.4)

Then

dTV(P, P̃) ≤
N∑
n=0

Ẽ[|p(0)
n − p̃(0)

n |]. (4.5)

Proof. In order to simplify the notation, for n ∈ {0, . . . , N}, define pn := p
(0)
n , qn := p

(1)
n = 1 − pn,

p̃n := p̃
(0)
n and q̃n := p̃

(1)
n = 1 − p̃n. Let ((v

(i)
n )n∈{0,...,N})i=0,1 be the stochastic processes defined in

Remark 1. It is readily checked that

N∑
n=0

Ẽ

[(
max
i∈{0,1}

p(i)
n |v(i)

n |
) 1∑

i=0

p̃(i)
n |v(i)

n |

]
=

N∑
n=0

Ẽ

[(
max
i∈{0,1}

p(i)
n |(−1)v(i)

n |
) 1∑

i=0

p̃(i)
n |(−1)v(i)

n |

]

=
N∑
n=0

Ẽ
[
√
pnqn

∣∣∣∣p̃n√qn
pn

+ q̃n

√
pn
qn

∣∣∣∣]

=
N∑
n=0

Ẽ[p̃nqn + q̃npn].

This latter quantity is clearly finite if either N <∞ or condition (4.4) holds. Proposition 3.1 along

with the assumptions ensure that P̃� P. The claim thus follows by Theorem 4.1 noticing that

N∑
n=0

Ẽ

[(
max
i∈{0,1}

p(i)
n |v(i)

n |
) ∣∣∣∣∣

1∑
i=0

p̃(i)
n v

(i)
n

∣∣∣∣∣
]

=
N∑
n=0

Ẽ

[(
max
i∈{0,1}

p(i)
n |(−1)v(i)

n |
) ∣∣∣∣∣

1∑
i=0

p̃(i)
n (−1)v(i)

n

∣∣∣∣∣
]

=
N∑
n=0

Ẽ
[
√
pnqn

∣∣∣∣p̃n√qn
pn
− q̃n

√
pn
qn

∣∣∣∣]

=
N∑
n=0

Ẽ[|p̃nqn − q̃npn|]

=
N∑
n=0

Ẽ [|pn − p̃n|] .
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Remark 3. By a close inspection of the proof one may easily realize that condition (4.4) can be

replaced by the slightly weaker condition:

N =∞,
∑
n≥0

Ẽ[p̃(0)
n p(1)

n + p̃(1)
n p(0)

n ] <∞,

as well as ∑
n≥0

Ẽ[p̃(i)
n ] <∞ and

∑
n≥0

p(i)
n <∞, P̃− a.s., for some i ∈ {0, 1}.

The next corollary provides an upper bound on the total variation distance when d = 2. We

mention that the upper bound corresponds to the choice of the orthogonal matrix O = I2 in (4.2).

Clearly, different upper bounds may be obtained by considering other orthogonal matrices in the

statement of Theorem 4.1.

Corollary 4.2. Let d = 2 and assume either N <∞ or

N =∞,
∑
n≥0

Ẽ[p̃(1)
n + p̃(2)

n ] <∞ and
∑
n≥0

Ẽ[p(1)
n + p(2)

n ] <∞. (4.6)

Then

dTV(P, P̃) ≤ 2
N∑
n=0

Ẽ

[∣∣∣∣p(1)
n + p(2)

n − p̃(1)
n − p̃(2)

n +
p̃

(1)
n p

(2)
n − p̃(2)

n p
(1)
n

p
(1)
n + p

(2)
n

∣∣∣∣
]
. (4.7)

Proof. The assumptions easily imply that P̃� P by Proposition 3.1 (take i0 = 0 therein). In order

to simplify the notation, for n ∈ {0, . . . , N}, define pn := p
(0)
n , qn := p

(1)
n , rn := p

(2)
n = 1 − pn − qn,

p̃n := p̃
(0)
n , q̃n := p̃

(1)
n and r̃n := p̃

(2)
n = 1− p̃n− q̃n. It is readily checked that, for fixed n ∈ {0, . . . , N},

v(0)
n :=


√

1−pn
pn

0

 , v(1)
n :=


−
√

pn
1−pn√
rn

qn(1−pn)

 , v(2)
n :=


−
√

pn
1−pn

−
√

qn
rn(1−pn)


is an obtuse system of R2 verifying the structure equations (2.1). We first check that (4.1) holds

with the identity matrix O = I2. Indeed, we have

N∑
n=0

Ẽ

[〈
max

i∈{0,...,d}
p(i)
n |Ov(i)

n |,
d∑
i=0

p̃(i)
n |Ov(i)

n |
〉

Rd

]

=
N∑
n=0

Ẽ

〈(√pn(1− pn)√
qnrn
1−pn

)
,

p̃n√1−pn
pn

+ q̃n
√

pn
1−pn + r̃n

√
pn

1−pn

q̃n
√

rn
qn(1−pn)

+ r̃n
√

qn
rn(1−pn)

〉
Rd


=

N∑
n=0

Ẽ
[
p̃n(1− pn) + q̃npn + r̃npn +

q̃nrn
1− pn

+
r̃nqn

1− pn

]
14



≤
N∑
n=0

Ẽ [qn + rn + 2(q̃n + r̃n)] <∞.

Hence by (4.2) in Theorem 4.1 and similar computations, we have

dTV(P, P̃) ≤ 2
N∑
n=0

Ẽ
[∣∣∣p̃n(1− pn)− q̃npn − r̃npn +

q̃nrn
1− pn

− r̃nqn
1− pn

∣∣∣]

= 2
N∑
n=0

Ẽ
[∣∣∣qn − q̃n + rn − r̃n +

q̃nrn − r̃nqn
1− pn

∣∣∣] ,
which is precisely (4.7).

Remark 4. We limit ourselves to remark that the assumptions of Corollary 4.2 can be weakened.

Indeed, the choice of i0 = 0 in the proof is clearly arbitrary and, in view of Proposition 3.1, condi-

tion (4.6) is not the minimal one to guarantee P̃� P.

Corollary 4.3. Assume that either N <∞ or N =∞ and there exists i0 ∈ {0, . . . , d} such that

Ẽ
[∑
n≥0

p̃(i)
n

]
<∞, ∀i ∈ {0, . . . , d} \ {i0}, (4.8)

∑
n≥0

p(i)
n <∞, P̃-a.s., ∀i ∈ {0, . . . , d} \ {i0}, (4.9)

and ∑
n≥0

Ẽ

p̃(j)
n

√
p

(i)
n (1− p(i)

n )(1− p(j)
n )

p
(j)
n

 <∞, ∀i, j ∈ {0, . . . , d}.

Then we have

dTV(P, P̃) ≤ d

N∑
n=0

Ẽ

[
d∑
i=0

√
p

(i)
n (1− p(i)

n )
d∑
i=0

√
p

(i)
n (1− p(i)

n )

∣∣∣∣∣1− p̃
(i)
n

p
(i)
n

∣∣∣∣∣
]

≤ d
√
d+ 1

2

N∑
n=0

Ẽ

[
d∑
i=0

∣∣∣∣∣1− p̃
(i)
n

p
(i)
n

∣∣∣∣∣
]
. (4.10)

Proof. For ease of notation, in this proof we set q(i)
n := 1 − p(i)

n , n ∈ {0, . . . , N}, i ∈ {0, . . . , d}. For

any orthogonal matrix O ∈ Od, we have

N∑
n=0

Ẽ

[〈
max

i∈{0,...,d}
p(i)
n |Ov(i)

n |,
d∑
i=0

p̃(i)
n |Ov(i)

n |
〉

Rd

]
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≤
N∑
n=0

Ẽ

[∥∥∥∥ max
i∈{0,...,d}

p(i)
n |Ov(i)

n |
∥∥∥∥
Rd

∥∥∥∥∥
d∑
i=0

p̃(i)
n |Ov(i)

n |

∥∥∥∥∥
Rd

]

≤
N∑
n=0

Ẽ

[
d∑
i=0

p(i)
n ‖Ov(i)

n ‖Rd

d∑
i=0

p̃(i)
n ‖Ov(i)

n ‖Rd

]

=
N∑
n=0

Ẽ

[
d∑
i=0

p(i)
n ‖v(i)

n ‖Rd

d∑
i=0

p̃(i)
n ‖v(i)

n ‖Rd

]

=
N∑
n=0

Ẽ

 d∑
i=0

√
p

(i)
n q

(i)
n

d∑
i=0

p̃(i)
n

√
q

(i)
n

p
(i)
n

 <∞, (4.11)

where in the last equality we have used (2.2). The quantity appearing in (4.11) is finite when N =∞
by assumption, and it is finite when N < ∞ since by a conditioning argument each of the addends

is finite. Next, by Theorem 4.1 and again (2.2) we have

dTV(P, P̃) ≤ d
N∑
n=0

Ẽ

[〈
max

i∈{0,...,d}
p(i)
n |Ov(i)

n |,

∣∣∣∣∣
d∑
i=0

(p̃(i)
n − p(i)

n )Ov(i)
n

∣∣∣∣∣
〉

Rd

]

≤ d
N∑
n=0

Ẽ

[∥∥∥∥ max
i∈{0,...,d}

p(i)
n |Ov(i)

n |
∥∥∥∥
Rd

∥∥∥∥∥
d∑
i=0

(p̃(i)
n − p(i)

n )Ov(i)
n

∥∥∥∥∥
Rd

]

≤ d
N∑
n=0

Ẽ

[
d∑
i=0

p(i)
n ‖Ov(i)

n ‖Rd

d∑
i=0

|p̃(i)
n − p(i)

n |‖Ov(i)
n ‖Rd

]

= d
N∑
n=0

Ẽ

[
d∑
i=0

p(i)
n ‖v(i)

n ‖Rd

d∑
i=0

|p̃(i)
n − p(i)

n |‖v(i)
n ‖Rd

]

= d
N∑
n=0

Ẽ

[
d∑
i=0

√
p

(i)
n q

(i)
n

d∑
i=0

√
p

(i)
n q

(i)
n

∣∣∣∣∣1− p̃
(i)
n

p
(i)
n

∣∣∣∣∣
]
.

The last inequality in (4.10) follows since
√
p

(i)
n q

(i)
n =

√
p

(i)
n (1− p(i)

n ) ≤ 1/2 and

d∑
i=0

√
p

(i)
n q

(i)
n ≤ (d+ 1)

d∑
i=0

1

d+ 1

√
p

(i)
n ≤ (d+ 1)

√√√√ d∑
i=0

1

d+ 1
p

(i)
n =

√
d+ 1.

5 Applications

In the next subsections we provide upper bounds on the total variation distance between the laws

of two discrete-time Markov chains with finite state space on the one hand, and between those of two
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random walks on Z on the other hand. Without loss of generality, we shall assume that the above

stochastic processes are defined on a same probability space (A,A, P ), denoting by E the expectation

under P .

5.1 Markov chains

In this section, we use Corollary 4.3 to bound the total variation distance between two Markov

chains. We start by constructing a finite state space Markov chain in our framework.

Let (Xn)n∈{0,...,N} be a Markov chain on (A,A, P ) with state space {0, . . . , d}, and define

p
(i)
0 := P (X0 = i) ∈ (0, 1),

i ∈ {0, . . . , d}, and for each n ∈ {1, . . . , N},

α(k,i)
n := P (Xn = i | Xn−1 = k) ∈ (0, 1), k ∈ {0, . . . , d}.

For ω ∈ Ω = {0, . . . , d}{0,...,N}, we define the predictable sequence (p
(i)
n )n∈{0,...,N}, i ∈ {0, . . . , d},

by {
p

(i)
n (ω) := α

(ωn−1,i)
n , 1 ≤ n ≤ N,

p
(i)
0 (ω) := p

(i)
0 .

A straightforward computation shows that, under P, (πn)n∈{0,...,N} has the same distribution as

(Xn)n∈{0,...,N}.

In the following, we shall provide bounds on the total variation distance between the laws of

(Xn)n∈{0,...,N} and of another Markov chain (X̃n)n∈{0,...,N} with state space {0, . . . , d}. For concrete-

ness, we assume that (X̃n)n∈{0,...,N} is also defined on (A,A, P ) and we put

p̃
(i)
0 := P (X̃0 = i) ∈ (0, 1),

i ∈ {0, . . . , d}, and for each n ∈ {1, . . . , N},

α̃(k,i)
n := P (X̃n = i | X̃n−1 = k) ∈ (0, 1), k ∈ {0, . . . , d},

and we construct analogously the predictable sequence (p̃
(i)
n )n∈{0,...,N}, i ∈ {0, . . . , d}. Hereafter,

we denote by L (respectively L̃) the law of (Xn)n∈{0,...,N} (respectively (X̃n)n∈{0,...,N}). The in-

equality (5.4) below is an immediate consequence of Corollary 4.3, and (5.5) follows by a simple

conditioning argument.
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Corollary 5.1. Assume either that N < ∞ or that N = ∞ and that there exists i0 ∈ {0, . . . , d}
such that ∑

n≥1

E
[
α̃(X̃n−1,i)
n

]
<∞, ∀i ∈ {0, . . . , d} \ {i0}, (5.1)

∑
n≥1

α(X̃n−1,i)
n <∞, P-a.s., ∀i ∈ {0, . . . , d} \ {i0}, (5.2)

and

∑
n≥1

E

[
α̃(X̃n−1,j)
n

√√√√α
(X̃n−1,i)
n (1− α(X̃n−1,i)

n )(1− α(X̃n−1,j)
n )

α
(X̃n−1,j)
n

]
<∞, ∀i, j ∈ {0, . . . , d}. (5.3)

Then we have

dTV(L, L̃) ≤ d
d∑

i,j=0

(√√√√p
(i)
0 (1− p(i)

0 )(1− p(j)
0 )

p
(j)
0

∣∣∣p(j)
0 − p̃

(j)
0

∣∣∣
+

N∑
n=1

E

[√√√√α
(X̃n−1,i)
n (1− α(X̃n−1,i)

n )(1− α(X̃n−1,j)
n )

α
(X̃n−1,j)
n

∣∣∣α(X̃n−1,j)
n − α̃(X̃n−1,j)

n

∣∣∣]) (5.4)

≤ d
d∑

i,j=0

(√√√√p
(i)
0 (1− p(i)

0 )(1− p(j)
0 )

p
(j)
0

∣∣∣p(j)
0 − p̃

(j)
0

∣∣∣
+

N∑
n=1

d∑
k=0

√
α

(k,i)
n (1− α(k,i)

n )(1− α(k,j)
n )

α
(k,j)
n

∣∣α(k,j)
n − α̃(k,j)

n

∣∣). (5.5)

For Markov chains with two and three states, we remark that the bound provided by Corollary 5.1

can be slightly improved by a direct application of Corollaries 4.1 and 4.2, respectively. Taking α̃

depending on a parameter θ ∈ Θ, one can minimize the right-hand side of (5.5) to obtain the optimal

estimation of (Xn) in a parametrized class of Markov chains (Xθ
n).

In the following example we apply Corollary 5.1 to estimate the total variation distance between

two particular finite state space Markov chains.

Example 1. We consider two finite state space Markov chains and compute an upper bound to their

total variation distance by applying Corollary 5.1. Here, (X̃n) is the Markov chain obtained via a

multiplicative perturbation of the transition matrix and the initial law of (Xn). More specifically,

for ε ∈ (0, 1) we set

p̃
(i)
0 := (1− ε)p(i)

0 ,

α̃(k,i)
n := (1− ε)α(k,i)

n ,
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and

α̃(k,0)
n := 1− (1− ε)

d∑
i=1

α(k,i)
n , p̃

(0)
0 := 1− (1− ε)

d∑
i=1

p
(i)
0 .

For k ∈ {0, . . . , d} and n ∈ {1, . . . , N} we have∣∣p(i)
0 − p̃

(i)
0

∣∣ = εp
(i)
0 ,

∣∣α(k,i)
n − α̃(k,i)

n

∣∣ = εα(k,i)
n , i ∈ {1, . . . , d}, (5.6)

and ∣∣p(0)
0 − p̃

(0)
0

∣∣ = ε(1− p(0)
0 ),

∣∣α(k,0)
n − α̃(k,0)

n

∣∣ = ε(1− α(k,0)
n ). (5.7)

We assume that ∑
n≥1

α(k,i)
n <∞, ∀k ∈ {0, . . . , d}, ∀i ∈ {1, . . . , d}, (5.8)

and either N <∞ or N =∞ and∑
n≥1

√
α

(k,i)
n (1− α(k,i)

n )α
(k,j)
n (1− α(k,j)

n ) <∞, ∀i, j, k ∈ {0, . . . , d}, (5.9)

as well as ∑
n≥1

√
α

(k,i)
n (1− α(k,i)

n )(1− α(k,0)
n )3

α
(k,0)
n

<∞, ∀i, k ∈ {0, . . . , d}. (5.10)

In this case, for any i, k ∈ {0, . . . , d} we have

∑
n≥1

α̃(k,j)
n

√
α

(k,i)
n (1− α(k,i)

n )(1− α(k,j)
n )

α
(k,j)
n

= (1− ε)
∑
n≥1

√
α

(k,i)
n (1− α(k,i)

n )α
(k,j)
n (1− α(k,j)

n ) <∞,

for any j ∈ {1, . . . , d}, and

∑
n≥1

α̃(k,0)
n

√
α

(k,i)
n (1− α(k,i)

n )(1− α(k,0)
n )

α
(k,0)
n

=
∑
n≥1

(α(k,0)
n + ε(1− α(k,0)

n ))

√
α

(k,i)
n (1− α(k,i)

n )(1− α(k,0)
n )

α
(k,0)
n

=
∑
n≥1

√
α

(k,i)
n (1− α(k,i)

n )α
(k,0)
n (1− α(k,0)

n ) + ε
∑
n≥1

√
α

(k,i)
n (1− α(k,i)

n )(1− α(k,0)
n )3

α
(k,0)
n

<∞,

and so (5.3) holds. By Corollary 5.1, (5.6) and (5.7), we have

dTV(L, L̃) ≤ dε
d∑
i=0

[√√√√p
(i)
0 (1− p(i)

0 )(1− p(0)
0 )3

p
(0)
0

+
N∑
n=1

d∑
k=0

√
α

(k,i)
n (1− α(k,i)

n )(1− α(k,0)
n )3

α
(k,0)
n
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+
d∑
j=1

(√
p

(i)
0 (1− p(i)

0 )p
(j)
0 (1− p(j)

0 ) +
N∑
n=1

d∑
k=0

√
α

(k,i)
n (1− α(k,i)

n )α
(k,j)
n (1− α(k,j)

n )

)]
≤ Cε,

where C > 0 is an explicit constant which does not depend on ε.

As an example of sequence satisfying conditions (5.8), (5.9) and (5.10), one can take α(k,i)
n = an,

for any i ∈ {1, . . . , d}, k ∈ {0, . . . , d} and n ∈ {1, 2, . . . }. Here, an is a deterministic sequence with

values in (0, 1/d) which is assumed to satisfy
∑

n≥1 an <∞.

5.2 Random walks

In this section, we use Corollaries 4.1 and 4.2 to bound the total variation distance between two

different random walks on Z. As will be made precise in Remark 5 below, the processes considered

here are not in general Markov chains. Thus, the results of this section do not follow from those one

in Section 5.1.

5.2.1 Nearest neighbor random walks

Let (Xn)n∈{0,...,N} be a sequence of (not necessarily i.i.d.) {−1,+1}-valued random variables

defined on (A,A, P ) and characterized by

p0 := P (X0 = +1) ∈ (0, 1),

and, for each n ∈ {0, . . . , N − 1},

αn+1(x0, . . . , xn) := P (Xn+1 = +1 | X0 = x0, . . . , Xn = xn) ∈ (0, 1), {x0, . . . , xn} ∈ {−1,+1}n+1.

(5.11)

We define the associated random walk by

Sn :=
n∑
l=0

Xl, n ∈ {0, . . . , N}.

Next, we note that the process (Xn)n∈{0,...,N} can be replicated in our framework by setting d = 1 and

applying Corollary 4.1. For ω ∈ Ω = {0, 1}{0,1,...,N}, we define the predictable sequence (p
(1)
n )n∈{0,...,N}

by

p(1)
n (ω) := αn

(
(−1)1+π0(ω), . . . , (−1)1+πn−1(ω)

)
, n ≥ 1, p

(1)
0 (ω) = p0.

We accordingly define the predictable sequence (p
(0)
n )n∈{0,...,N} by p

(0)
n := 1 − p

(1)
n . A straightfor-

ward computation shows that, under P, ((−1)1+πn)n∈{0,...,N} has the same law as the increments
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(Xn)n∈{0,...,N}. Consequently, under P, (
∑n

l=0(−1)1+πl)n∈{0,...,N} has the same law as (Sn)n∈{0,...,N}. In

the following, we shall provide bounds on the total variation distance between the laws of (Sn)n∈{0,...,N}

and of another random walk (S̃n)n∈{0,...,N} defined according to another sequence (X̃n)n∈{0,...,N} ⊂
{−1,+1} on (A,A, P ). We put

p̃0 := P (X̃0 = +1) ∈ (0, 1),

and for each n ∈ {1, . . . , N},

α̃n+1(x0, . . . , xn) := P (X̃n+1 = +1 | X̃0 = x0, . . . , X̃n = xn) ∈ (0, 1), {x0, . . . , xn} ∈ {−1,+1}n+1,

and we construct analogously the predictable sequence (p̃
(i)
n )n∈{0,...,N}, i ∈ {0, 1}. Hereafter, we

denote by L (respectively L̃) the law of (Sn)n∈{0,...,N} (respectively (S̃n)n∈{0,...,N}). The following

bound on the total variation distance between the (laws of the) two nearest neighbor random walks

is an immediate consequence of the above construction and Corollary 4.1.

Corollary 5.2. If either N <∞, or N =∞ and

max

{∑
n≥1

E[αn(X̃0, . . . , X̃n−1)],
∑
n≥1

E[α̃n(X̃0, . . . , X̃n−1)]

}
<∞,

then

dTV(L, L̃) ≤ |p0 − p̃0|+
N∑
n=1

E
[
|αn(X̃0, . . . , X̃n−1)− α̃n(X̃0, . . . , X̃n−1)|

]
. (5.12)

Remark 5. Note that (Sn)n∈{0,...,N} is in general not a Markov chain. Indeed, with obvious notation,

P
(
Sn = sn | Sn−1 = sn−1, . . . , S0 = s0

)
= P

(
Xn = sn − sn−1 | Xn−1 = sn−1 − sn−2, . . . , X1 = s1 − s0, X0 = s0

)
= fn(sn−1 − sn−2, . . . , s1 − s0, s0),

where fn = αn if sn = sn−1 + 1 and fn = 1 − αn otherwise. The above is in general not equal to

P
(
Sn = sn | Sn−1 = sn−1

)
.

Example 2. We apply Corollary 5.2 to elephant random walks (see [12]; see also [4]). Given the

parameters p, r ∈ (0, 1), the elephant random walks is defined as follows. At time zero, the probability

that the random walk goes to the right is r, i.e. p0 = r. At the time step n > 0, one draws an integer

k ∈ {0, . . . , n− 1} with uniform probability. Then random walk makes an increment Xn ∈ {−1,+1}
equal to Xk with probability p, and equal to −Xk with probability 1− p (note that if p = 1/2, then
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the elephant random walk corresponds to the simple and symmetric random walk on Z). It is readily
checked that the transition probabilities αn defined in (5.11) are given by

αn(x0, . . . , xn−1) =
1

2n

n−1∑
k=0

(
1 + (2p− 1)xk

)
, n > 0, x0, . . . , xn−1 ∈ {−1,+1}.

Let L denote the law of (Xn)0≤n≤N and L̃ the law of another elephant random walk (X̃n)0≤n≤N

characterized by the parameters r̃, p̃ ∈ (0, 1). If N <∞, then by Corollary 5.2 we have

dTV(L, L̃) ≤ |r − r̃|+ |p− p̃|
N∑
n=1

E

[∣∣∣ 1
n

n−1∑
k=0

X̃k

∣∣∣]. (5.13)

Due to recent results in [7], we remark that E
[∣∣n−1

∑n−1
k=0 X̃k

∣∣] is asymptotically equivalent to (2q̃ −
1)Γ(2p̃)−1n2(p̃−1) as n goes to infinity, where Γ is the Euler gamma function.

5.2.2 Lazy nearest neighbor random walks

Let (Xn)n∈{0,...,N} be a sequence of (not necessarily i.i.d.) {−1, 0,+1}-valued random variables

defined on (A,A, P ) and characterized by

p0 := P (X0 = 1) ∈ (0, 1), q0 := P (X0 = 0) ∈ (0, 1),

and, for each n ∈ {0, . . . , N − 1} and x0, . . . , xn ∈ {−1, 0,+1},

αn+1(x0, . . . , xn) := P (Xn+1 = 1 | X0 = x0, . . . , Xn = xn) ∈ (0, 1), (5.14)

βn+1(x0, . . . , xn) := P (Xn+1 = 0 | X0 = x0, . . . , Xn = xn) ∈ (0, 1), (5.15)

We define the associated random walk by

Sn :=
n∑
l=0

Xl, n ∈ {0, . . . , N}.

Next, we note that the process (Xn)n∈{0,...,N} can be replicated in our framework by setting d = 2

and applying Corollary 4.2. For ω ∈ Ω = {0, 1, 2}{0,1,...,N}, we define the predictable sequences

(p
(1)
n )n∈{0,...,N}, (p

(2)
n )n∈{0,...,N}, by

p(2)
n (ω) := αn

(
(1− π0(ω))(−1)1+π0(ω), . . . , (1− πn−1(ω))(−1)1+πn−1(ω)

)
, p

(1)
0 (ω) = p0,

p(1)
n (ω) := βn

(
(1− π0(ω))(−1)1+π0(ω), . . . , (1− πn−1(ω))(−1)1+πn−1(ω)

)
, p

(2)
0 (ω) = q0,
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where 1 ≤ n ≤ N . We accordingly define the predictable sequences (p
(0)
n )n∈{0,...,N} by p

(0)
n := 1−p(1)

n −
p

(2)
n . A straightforward computation shows that, under P, ((1− πn)(−1)1+πn)n∈{0,...,N} has the same

law as the increments (Xn)n∈{0,...,N}. As a consequence, under P, (
∑n

l=0(1− πl)(−1)1+πl)n∈{0,...,N} has

the same law as (Sn)n∈{0,...,N}.

In the following, we shall provide bounds on the total variation distance between the laws

of (Sn)n∈{0,...,N} and of another random walk (S̃n)n∈{0,...,N} defined according to another sequence

(X̃n)n∈{0,...,N} ⊂ {−1, 0,+1} on (A,A, P ). We put

p̃0 := P (X̃0 = 1) ∈ (0, 1), q̃0 := P (X̃0 = 0) ∈ (0, 1),

and for each n ∈ {1, . . . , N}, we define

α̃n+1(x0, . . . , xn) := P (X̃n+1 = +1 | X̃0 = x0, . . . , X̃n = xn) ∈ (0, 1),

and

β̃n+1(x0, . . . , xn) := P (X̃n+1 = 0 | X̃0 = x0, . . . , X̃n = xn) ∈ (0, 1),

and we construct analogously the predictable sequence (p̃
(i)
n )n∈{0,...,N}, i ∈ {0, 1, 2}. Hereafter, we

denote by L (respectively L̃) the law of (Sn)n∈{0,...,N} (respectively (S̃n)n∈{0,...,N}). The following

bound on the total variation distance between the (laws of the) two lazy nearest neighbor random

walks is an immediate consequence of the above construction and Corollary 4.2.

Corollary 5.3. If either N <∞, or N =∞ and∑
n≥1

E[αn(X̃0, . . . , X̃n−1) + βn(X̃0, . . . , X̃n−1) + α̃n(X̃0, . . . , X̃n−1) + β̃n(X̃0, . . . , X̃n−1)] <∞,

then

dTV(L, L̃)

≤ 2

∣∣∣∣p0 + q0 − p̃0 − q̃0 +
p̃0q0 − q̃0p0

p0 + q0

∣∣∣∣
+ 2

N∑
n=1

E

[∣∣∣∣αn(X̃0, . . . , X̃n−1) + βn(X̃0, . . . , X̃n−1)− α̃n(X̃0, . . . , X̃n−1)− β̃n(X̃0, . . . , X̃n−1)

+
α̃n(X̃0, . . . , X̃n−1)βn(X̃0, . . . , X̃n−1)− β̃n(X̃0, . . . , X̃n−1)αn(X̃0, . . . , X̃n−1)

αn(X̃0, . . . , X̃n−1) + βn(X̃0, . . . , X̃n−1)

∣∣∣∣]. (5.16)

Note that as in Remark 5, one can easily check that the lazy nearest neighbor random walks

considered above are in general not Markov chains.
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Example 3. A generalization of the elephant random walk considered in Example 2 has been pro-

posed in [9]. Specifically, the random walk is parametrized by p, q, r ∈ (0, 1) and, at time zero, p0 = r

and q0 = 0. At the time step n > 0, one draws an integer k ∈ {0, . . . , n−1} with uniform probability.

Then the random walk makes an increment makes Xn ∈ {−1, 0,+1} equal to Xk with probability p,

equal to −Xk with probability q, and stays put, i.e. Xn = 0, otherwise. The transition probabilities

defined in (5.14) and (5.15) are given by

αn(x0, . . . , xn−1) =
1

2n

n−1∑
k=0

(
x2
k(p+ q) + xk(p− q)

)
, n > 0, x0, . . . , xn−1 ∈ {−1, 0,+1},

and

βn(x0, . . . , xn−1) = 1− p+ q

n

n−1∑
k=0

x2
k, n > 0, x0, . . . , xn−1 ∈ {−1, 0,+1},

see [9]. Let L denote the law of (Xn)0≤n≤N and L̃ the law of another random walk (X̃n)0≤n≤N of this

kind characterized by the parameters p̃, q̃, r̃ ∈ (0, 1). Under the assumption N <∞, by Corollary 5.3

we have

dTV(L, L̃)

≤ 2
∣∣r − r̃∣∣

+ 2
N∑
n=1

E

[∣∣∣∣ 1

2n

n−1∑
k=0

(
X̃k(p− q − (p̃− q̃))− X̃2

k(p+ q − (p̃+ q̃))
)

+
(2n)−1

∑n−1
k=0

(
X̃k(p̃− q̃ − (p− q)) + X̃2

k(p̃+ q̃ − (p+ q))
)

+ n−2
(
pq̃ − p̃q

)∑n−1
k=0 X̃

2
k

∑n−1
i=0 X̃i

1 + (2n)−1
∑n−1

k=0

(
X̃k(p− q)− X̃2

k(p+ q)
) ∣∣∣∣].
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