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Abstract

We define a Skorohod type anticipative stochastic integral that extends
the Itô integral not only with respect to the Wiener process, but also with
respect to a wide class of stochastic processes satisfying certain homogeneity
and smoothness conditions, without requirements relative to filtrations such
as adaptedness. Using this integral, a change of variable formula that extends
the classical and Skorohod Itô formulas is obtained.
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1 Introduction

The Skorohod integral, defined by creation on Fock space, is an extension of the Itô

integral with respect to the Wiener or Poisson processes, depending on the probabilis-

tic interpretation chosen for the Fock space. This means that it coincides with the

Itô integral on square-integrable adapted processes. It can also extend the stochastic

integral with respect to certain normal martingales, cf. [10], but it always acts with

respect to the underlying process relative to a given probabilistic interpretation. The

Skorohod integral is also linked to the Stratonovich, forward and backward integrals,

and allows to extend the Itô formula to a class of Skorohod integral processes which

contains non-adapted processes that have a certain structure.

In this paper we introduce an extended Skorohod stochastic integral on Wiener space

that can act with respect to processes other than Brownian motion. It allows in par-

ticular to write a Itô formula for a class of stochastic processes that do not need

to own any property with respect to filtrations. As a counterpart they are assumed

to satisfy some smoothness and homogeneity conditions. The construction can be

extended by means of an approximation procedure. In the particular case of inte-

gration with respect to Brownian motion our integral coincides with the classical
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Skorohod integral. The definition of a new integral is justified if this integral plays a

role in an analog of the “fundamental theorem of calculus”, i.e. in a change of vari-

ables formula. If the underlying process has absolutely continuous trajectories, then

only one choice of integral makes sense. If the trajectories of the process have less

regularity, e.g. in the adapted Brownian case, then at least two notions of integral

coexist (Itô and Stratonovich) and give rise to different change of variable formulas.

For processes (Xt)t∈[0,1] that satisfy certain smoothness conditions (but no condition

relative to the Brownian filtration) we obtain in Th. 1 the change of variable formula

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dX
u
s +

1

2

∫ t

0

(usDXs, DXs)f
′′(Xs)ds, t ∈ [0, 1],

where D is the gradient on Wiener space, (uts)s,t∈[0,1] is a function of two variables

and dXu
s is an anticipating stochastic differential with zero expectation, defined in

Def. 8. The processes considered in Th. 1 have absolutely continuous trajectories

but this is not necessarily restrictive for applications since the “non-zero quadratic

variation” property can sometimes be viewed as a limiting case not attained in phys-

ical situations. The case of processes with non zero quadratic variation is considered

in Corollary 1.

The main existing approaches to anticipating Itô calculus can be compared as follows

to our construction.

• The Itô formula is extended to forward integral processes in [1], and to more

general anticipating processes in [16], using the forward, backward and Stratonovich

integrals constructed by Riemann sums. However, the stochastic integrals used

in this framework do not have zero expectation in the anticipating case.

• The fact that the adapted Itô integral has zero expectation is essential in

stochastic calculus and the Skorohod integral carries this property to the antic-

ipative setting. The Itô formula for Skorohod integral processes was developed

in [13], [18], cf. also [11] for a list of recent references. Skorohod integral pro-

cesses represent a very particular class of stochastic integral processes, which is

less natural from the point of view of applications than the processes considered

in trajectorial approaches in e.g. [15].

The extension of the Skorohod integral introduced in this paper aims to combine

the advantages of the trajectorial and Skorohod integrals. Namely, it has zero ex-

pectation and at the same time it yields a change of variable formula which is not
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restricted to Skorohod integral processes. The purpose of this construction is not to

replace the Skorohod integral with another anticipating integral, since the Skorohod

integral plays in fact an essential role in the definition of our extension. Rather, we

suggest to modify the Skorohod integral in order to adapt it to the treatment of a

larger class of processes.

This paper is organized as follows. In Sect. 2 the basic tools relative to the

Fock space and its creation and annihilation operators are introduced. Sect. 3 is

concerned with the definition of the extended Skorohod stochastic integral and its

properties. A gradient operator (which coincides with the Malliavin calculus gradient

in the case of integration with respect to Brownian motion) is also constructed as the

adjoint of this Skorohod integral, and an integration by parts formula is obtained. In

Sect. 4 we define the tools of our stochastic calculus, namely the analogs of the Itô

and Stratonovich differentials and “quadratic covariation” without using the notion

of filtration. This covariation is linked to the “carré du champ” operator associated

to the Gross Laplacian on the Wiener space. Sect. 5 contains the main results of this

paper. The Itô formula for our extended stochastic integral is stated in Th. 1, Th. 2,

and Corollary 1. Our “quadratic covariation” bracket has several properties that

make it different from its trajectorial analogues. In particular it is not symmetric

and may be non zero even for processes with absolutely continuous trajectories, but

in some cases (e.g. for Brownian motion) it coincides with its classical counterpart.

This difference comes from the fact that even in the absolutely continuous case, our

formula provides a decomposition of the process into a zero expectation “stochastic

integral” part and a quadratic variation term. Since this stochastic integral term dif-

fers from the trajectorial forward integral, the quadratic variation terms also have to

differ from their classical analogues. In Sect. 6 we examine the relationship between

our change of variable formula and the Itô formula for the Skorohod integral. In par-

ticular we show that the Itô formula for Skorohod integral processes can be proved as

a consequence of our result, which thus also extends the classical adapted Itô formula

for Brownian motion. In Sect. 7 we deal with a class of non-Markovian processes that

are not covered by the Skorohod change of variable formula and includes fractional

Brownian motion with Hurst parameter in ]− 1, 1[.
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2 Notation and preliminaries

In this section we introduce the basic operators used in this paper, including the

Skorohod integral. Let (W,H, µ) be the classical Wiener space with Brownian motion

(Bt)t∈[0,1], where H = L2([0, 1]) has inner product (·, ·). As a convention, any function

f ∈ L2([0, 1]) is extended to a function defined on IR with f(x) = 0, ∀x /∈ [0, 1]. The

Fock space Γ(H) on a normed vector space H, is defined as the direct sum

Γ(H) =
⊕
n≥0

H�n,

where “�” denotes the symmetrization of the completed tensor product of Hilbert

spaces “⊗”. The symmetric tensor product H�n is endowed with the norm

‖ · ‖2H�n= n! ‖ · ‖2H⊗n , n ∈ IN.

The annihilation and creation operators D : Γ(H) −→ Γ(H) ⊗ H and δ : Γ(H) ⊗
H −→ Γ(H) are densely defined by linearity and polarization as

Dh�n = nh�n−1 ⊗ h, and δ
(
h�n ⊗ g

)
= h�n � g, n ∈ IN.

Throughout this paper, Γ(H) is identified to L2(W ) via the Itô-Wiener multiple

stochastic integral isometric isomorphism. Namely, any hn ∈ H�n is associated to

its multiple stochastic integral In(hn) defined as

In(hn) = n!

∫ 1

0

∫ tn

0

· · ·
∫ t2

0

hn(t1, . . . , tn)dBt1 · · · dBtn .

Under this identification, D becomes a derivation operator whose domain is denoted

by ID2,1. We denote by ID2,2 the set of functionals F ∈ ID2,1 such that DtF ∈ ID2,1,

dt-a.e., with

E

[∫ 1

0

∫ 1

0

(DsDtF )2dsdt

]
<∞.

Let C2b (IR) denote the set of twice continuously differentiable real functions that

are bounded together with their derivatives. Let P(IR) denote the space of real

polynomials, and let C1c ([0, 1]) denote the set of continuously differentiable functions

on [0, 1] that vanish on {0, 1}.

Definition 1 Let S denote the set of compositions of functions in C2b (IR) ∪ P(IR)

with elements of the vector space generated by

{In(f1 � · · · � fn), f1, . . . , fn ∈ C1c ([0, 1])}.
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We denote by U the set of processes v ∈ L2(W )⊗L2([0, 1]) such that vt ∈ S, dt-a.e.

and (vt)t∈[0,1] has bounded support.

We have that S is dense in L2(W ) and U is dense in L2(W ) ⊗ L2([0, 1]). From the

multiplication formula between n-th and first order Wiener integrals

In(f�n)I1(g) = In+1(g � f�n) + n(f, g)In−1(f
�(n−1)), (1)

f, g ∈ L2([0, 1]), we check that S is an algebra, with S ⊂ ∩p≥2Lp(W ). The operator

δ is identified to the Skorohod integral, cf. [17]. It satisfies

‖ δ(u) ‖2L2(W )=‖ u ‖2L2(W )⊗L2([0,1]) +E

[∫ 1

0

∫ 1

0

DsutDtusdsdt

]
, v ∈ U ,

hence in particular U ⊂ Dom(δ). Let ∂ denote the operator of differentiation of

functions of real variable. We now introduce a weighted Gross Laplacian.

Definition 2 Let D denote the set of functionals F ∈ ID2,2 such that lims↑tDsDtF

exists dP ⊗ dt a.e. and belongs to L2(W ) ⊗ L2([0, 1]). For u ∈ C1c ([0, 1]) we define

on D the operator Gu : L2(W )→ L2(W ) as

GuF =
1

2

∫ 1

0

lim
s↑t

DsDtF∂tutdt.

If ut = t, t ∈ [0, 1], then Gu is identical to the classical Gross Laplacian, cf. [8], and

it acts on compositions of smooth functions with elements of S ⊂ D in the following

way.

Proposition 1 We have for f ∈ C2b (IR) ∪ P(IR) and u ∈ C1c ([0, 1]):

Guf(F ) = f ′(F )GuF +
1

2
f ′′(F )(DF,DF∂u), F ∈ S. (2)

Proof. We have

1

2
DsDtf(F ) =

1

2
f ′(F )DsDtF +

1

2
f ′′(F )DsFDtF, s, t ∈ [0, 1].

Moreover, (DsF )s∈[0,1] has continuous trajectories since F ∈ S.
2

This weighted Gross Laplacian can be viewed as an infinite dimensional realization

of the generator of Brownian motion, from the relation

Gu [f(Bt)] =

[
1

2
∂2
]
f(Bt),
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if
∫ t
0
usds = 1. We also define the “carré du champ” operator Γu : S × S → S

associated to Gu as

Γu(F,G) = Gu(FG)− FGu −GGuF, F,G ∈ S.

This operator bilinear and symmetric but not necessarily positive. We have from

Prop. 1:

Γu(F,G) = (∂uDF,DG), F,G ∈ S.

As a consequence of the identity

δ(uF ) = Fδ(u)− (u,DF ), F ∈ S, u ∈ U , (3)

cf. [12], we have the following result which will be essential in the proof of our

extended Itô formula. Let C10([0, 1]) = {u ∈ C1c ([0, 1]) : u0 = 0}.

Proposition 2 Let u ∈ C10([0, 1]) and f ∈ C2b (IR) ∪ P(IR). We have

δ(u∂Df(F )) = f ′(F )δ(u∂DF ) +
1

2
f ′′(F )(DF,DF∂u), F ∈ S.

Proof. We have

δ(u∂Df(F )) = δ(f ′(F )u∂DF ) = f ′(F )δ(u∂DF )− (Df ′(F ), ∂DF∂u)

= f ′(F )δ(u∂DF ) +
1

2
f ′′(F )(∂uDF,DF ). 2

We note that as a consequence of Prop. 1 and Prop. 2, F 7→ δ(u∂DF ) − GuF is a

derivation operator and for f ∈ C2b (IR) ∪ P(IR),

δ(u∂Df(F ))− Guf(F ) = f ′(F )(δ(u∂DF )− GuF ), F ∈ S. (4)

Moreover, from (3), the “carré du champ” Γu also satisfies

Γu(F,G) = (∂uDF,DG) = −(uDF, ∂DG)− (uDG, ∂DF )

= δ(u∂D(FG))− Fδ(u∂DG)−Gδ(u∂DF ), F,G ∈ S. (5)

Hence Γu(F, F ) and −Γu(F, F ) are exactly the terms that compensate each-other so

that F 7→ δ(u∂DF )−GuF becomes a derivation. Let h ∈ C10([0, 1]) with ‖ h ‖∞< 1,

and νh(t) = t+ ht, t ∈ [0, 1]. For F in the vector space A generated by

{In(h1 � · · · � hn) : h1, . . . , hn ∈ L2([0, 1]), n ∈ IN},
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let

F = f(I1(g1), . . . , I1(gm))

be a polynomial in single stochastic integrals. We define

UhF = f(I1(g1 ◦ νh), . . . , I1(gm ◦ νh)).

The definition of the operator Uh extends to D by linearity since polynomial in single

stochastic integrals form a basis of D. It also extends to functionals of the form f(F ),

f ∈ C(IR), F ∈ A, and to S. If F is a random variable defined for every trajectory of

(Bt)t∈[0,1], let ThF denote the functional F ∈ S evaluated at time-changed trajectories

are given by the time-changed Brownian motion Bh
νh(t)

= Bt, t ∈ [0, 1]. Single Wiener

stochastic integrals can be defined everywhere provided their integrand belongs to

C1c ([0, 1]) and multiple stochastic integrals in S can be expressed as polynomials in

single stochastic integrals, hence for any F ∈ S there is a version F̂ of F such that

TεhF̂ = UεhF , ε ∈ [−1, 1], a.s. We are using Uh instead of Th because the former is

defined on a set of L2 functionals, whereas Th is not.

Lemma 1 Let u ∈ C10([0, 1]). We have

d

dε
UεuF|ε=0 = δ(u∂DF )− GuF, a.s., F ∈ S. (6)

Proof. Given (4) it suffices to notice that (6) holds for a single stochastic integral

F = I1(h) ∈ S:

d

dε
UεuI1(h)|ε=0 =

d

dε
I1(h ◦ νεu)|ε=0 = I1(u∂h), a.s. 2

The Wick product of F,G ∈ S is defined by linearity from

In(fn) � Im(gm) = In+m(fn � gm), n,m ∈ IN.

Using the smoothed Brownian motion and white noise respectively written as

Bφ
t =

∫ 1

0

φtsdBs and W φ
t = −

∫ 1

0

∂sφ
t
sdBs, φ ∈ C1([0, 1]), (7)

where φ has support in ]−∞, 1] and φts = φ(s− t), s, t ∈ [0, 1], we have

δ(φ ∗ v) =

∫ 1

0

vs �W φ
s ds,

cf. [7], and if Wt = I1(δt), t ∈ [0, 1], denotes white noise in the sense of Hida

distributions, then

δ(v) =

∫ 1

0

vs �Wsds.
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3 Skorohod integration with respect to non-adapted

processes

In this section we construct a Skorohod type integral that acts with respect to a

class of not necessarily Markovian or adapted processes. If u = (uts)s,t∈[0,1] is a family

of functions we adopt the conventions ut = (uts)s∈[0,1], t ∈ [0, 1], and us = (uts)t∈[0,1],

s ∈ [0, 1].

Definition 3 Let V denote the set of couples (X, u) where X = (Xt)t∈[0,1] is a family

of random variables contained in D and u = (uts)s,t∈[0,1] is a family of functions such

that ut ∈ C10([0, 1]), 0 ≤ t ≤ 1.

We now define the extended Skorohod integral with respect to a given process

(X, u) ∈ V . The interpretation of this operator as a stochastic integral will result

from the change of variable formula of Th. 1.

Definition 4 For (X, u) ∈ V such that (Xt)t∈[0,1] ⊂ S we define the unbounded

operator δX,u : L2(W )⊗ L2([0, 1])→ L2(W ) on U as

δX,u(v) = −
∫ 1

0

δ(vsu
s∂DXs)ds, v ∈ U . (8)

From (3) we have

δX,u(v) = −
∫ 1

0

vsδ(u
s∂DXs)ds+

∫ 1

0

(Dvs, u
s∂DXs)ds, v ∈ U . (9)

We note that if v is of the form vs = f ′(Xs), f ∈ C1b (IR) ∪ P(IR), then t 7→
δX,u(f ′(X·)1[0,t](·)) is absolutely continuous with

dδX,u(f ′(X·)1[0,t]) = −δ(us∂Df(Xt))dt. (10)

Using the notation δ(v) =
∫ 1

0
vtδBt we may also write

δX.u(v) = −
∫ 1

0

(vut, ∂tDtX)δBt = −
∫ 1

0

∫ 1

0

vsu
t
s∂tDtXsdsδBt.

In the particular case where the process X is written as Xt =
∫ 1

0
htsdBs, i.e. Xt

belongs to the first Wiener chaos, t ∈ [0, 1], then

δX,u(v) = −
∫ 1

0

δ(vsu
s∂DXs)ds = −

∫ 1

0

δ(vsu
s∂hs)ds = −

∫ 1

0

vs � I1(us∂hs)ds,
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and if X = Bφ is the approximation (7) of Brownian motion obtained by convolution,

then

δB
φ,u(v) = −

∫ 1

0

vs � I1(us∂φs)ds.

If further φs = 1, s ≤ 0, and uss = 1, s ∈ [0, 1], then us∂φs = ∂φs and −I1(us∂φs) =

Wφs , hence

δB
φ,u(v) = −

∫ 1

0

vs �Wφsds = δ(φ ∗ v),

and as φ approaches 1]−∞,0] in distribution, δB
φ,u(v) converges in the sense of Hida

distributions to the Skorohod integral δ(v) of v, cf. [7] and the references therein.

We now turn to the definition of the gradient operator DX,u adjoint of δX,u.

Definition 5 Let (X, u) ∈ V. We define the operator DX,u : L2(W ) → L2(W ) ⊗
L2([0, 1]) on S as

DX,u
s F = (∂(usDF ), DXs), s ∈ [0, 1], F ∈ S.

We remark that if (Xt)t∈[0,1] ⊂ S, then by integration by parts,

DX,u
s F = −(usDF, ∂DXs), s ∈ [0, 1], F ∈ S. (11)

If X = B and utt = 1, t0 ≤ t ≤ 1, then DB,u is the gradient D of the Malliavin

calculus since

DB,u
t F =

∫ t

0

∂s(u
t
sDsF )ds = uttDtF − ut0D0F = DtF, F ∈ S, 0 ≤ t ≤ 1. (12)

Proposition 3 Let (X, u) ∈ V such that (Xt)t∈[0,1] ⊂ S. The operators DX,u and

δX,u are closable and the following duality relation holds:

E[FδX,u(v)] = E[(DX,uF, v)], F ∈ S, v ∈ U . (13)

Proof. If (Xt)t∈[0,1] ⊂ S we may integrate by parts and obtain, since us0 = 0, s ∈ [0, 1]:

E[(DX,uF, v)] = E

[∫ 1

0

vs

∫ 1

0

∂t(u
s
tDtF )DtXsdtds

]
= −E

[∫ 1

0

vs

∫ 1

0

ustDtF∂tDtXsdtds

]
= −E

[∫ 1

0

DtF

∫ 1

0

vsu
s
t∂tDtXsdsdt

]
= −E

[
Fδ

(∫ 1

0

vsu
s∂DXsds

)]
= E[FδX,u(v)],

hence (13). The closability of δX,u and DX,u follows from this duality relation and

the fact that δX,u and DX,u have dense domains.
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2

We now extend the definition of δX,u as a closable operator to (X, u) ∈ V .

Definition 6 For (X, u) ∈ V, let Dom(δX,u) be the set of v ∈ L2(W ) ⊗ L2([0, 1])

such that there is a constant C > 0 such that

| E[(DX,uF, v)] |≤ C ‖ F ‖2L2(W ), F ∈ S.

For v ∈ Dom(δX,u) we denote by δX,u(v) the random variable that satisfies

E[(DX,uF, v)] = E[FδX,u(v)], F ∈ S.

From Prop. 3, if X ∈ V satisfies (Xt)t∈[0,1] ⊂ S, then U ⊂ Dom(δX,u). Moreover if

X = B and utt = 1, 0 ≤ t ≤ 1, δB,u is the Skorohod integral since DB,u = D from

(12). The following result follows from the fact that DX,u is a derivation operator

adjoint of δX,u.

Proposition 4 For (X, u) ∈ V such that (Xt)t∈[0,1] ⊂ S, we have for any v ∈
Dom(δX,u) and F ∈ S such that FδX,u(v)− (v,DX,uF ) ∈ L2(W ):

δX,u(vF ) = FδX,u(v)− (v,DX,uF ), F ∈ S.

Proof. It suffices to prove that for F,G ∈ S and v ∈ U ,

E[GδX,u(vF )] = E[(v, FDX,uG)] = E[(v,DX,u(FG)−GDX,uF )]

= E[G(FδX,u(v)− (v,DX,uF ))]. 2

4 Stochastic differentials, quadratic covariation and

the “carré du champ”

We define a class of families of random variables which will play the role of Itô pro-

cesses in our construction and introduce the notions of Itô differential, Stratonovich

differential, and “quadratic covariation” of such processes, in connection to the “carré

du champ” Γu. These operators have been introduced in [14] in the case of Lévy

processes.

Definition 7 We denote by HV the class of processes (X, u) ∈ V such that

• (Xt)t∈[0,1] ⊂ S,
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• t 7→ Xt is differentiable in L2(W ) with respect to t and satisfies the homogeneity

condition
d

dt
Xt = − d

dε
UεutXt |ε=0, a.s., 0 ≤ t ≤ 1. (14)

We note that HV is stable under the composition by functions in C1b (IR)∪P(IR), i.e.

if (X, u) ∈ HV , then (f(X), u) ∈ HV , f ∈ C1b (IR) ∪ P(IR). Processes in HV have

absolutely continuous trajectories, hence the process (B, u) does not belong to HV .

Remark 1 The approximation (Bφ, u) of (B, u) defined at the end of Sect. 2 does

belong to HV, provided φs = 1, s ≤ 0, and ut ∈ C10([0, 1]) satisfies uts = 1, 1 ≥ s ≥
t/2, since in this case

Uεutf(Bφ
t ) = f(Bφ

t−ε), a.s., 0 ≤ ε ≤ t/2, f ∈ C(IR).

The following is an analytic definition of the tools of stochastic calculus. Terms that

do not necessarily coincide with their classical definitions are quoted.

Definition 8 Let (X, u) ∈ V.

• We define the “Itô differential” dXu
t and its associated stochastic integral as∫ 1

0

vsdX
u
s = δX,u(v) +

∫ 1

0

vsGusXsds, v ∈ Dom(δX,u).

• We define the “quadratic covariation” of (X, u) and (Y, v) ∈ V with (Xt)t∈[0,1] ⊂
S to be the process ([X, Y ]ut )t∈[0,1] satisfying [X, Y ]u0 = 0 and

d[X, Y ]ut = −2(ut∂DXt, DYt)dt = 2DX,u
t Ytdt, t ∈ [0, 1].

• If (X, u) ∈ V with (Xt)t∈[0,1] ⊂ S then we define the Stratonovich differential

◦dXu
t and its associated stochastic integral as∫ 1

0

vs ◦ dXu
s =

∫ 1

0

vs(GusXs − δ(us∂DXs))ds, v ∈ U .

We make the following remarks.

• The “quadratic covariation” [X, Y ]ut depends on X, Y and u, but not on v. The

application ((X, u), (Y, v)) 7→ [X, Y ]u is bilinear but not symmetric. If u = v,

then [X, Y ]ut + [Y,X]ut is defined for (X, u), (Y, v) ∈ V (without requiring X or

Y to take values in S), with

d[X, Y ]ut + d[Y,X]ut = 2(DXt, DYt∂u
t)dt = 2DX,u

t Ytdt+ 2DY,u
t Xtdt, t ∈ [0, 1],
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and in particular,

d[X,X]ut = (DXt, DXt∂u
t)dt = 2DX,u

t Xtdt, t ∈ [0, 1].

The relationship between the covariation bracket [X, Y ]ut and the “carré du

champ” Γu is

Γu
s

(Xs, Ys)ds =
1

2
(d[X, Y ]us + d[Y,X]us ),

i.e. Γu
s
(Xs, Ys) is the density of the symmetrization of the covariation bracket

of X and Y , and in particular,

Γu
s

(Xs, Xs)ds = d[X,X]us .

• We have for (X, u), (Y, v) ∈ V with (Xt)t∈[0,1] ⊂ S:

d[f(X), g(Y )]ut = f ′(Xt)g
′(Yt)d[X, Y ]ut , t ∈ [0, 1], f, g ∈ C1b (IR),

since D is a derivation operator.

• We already noticed that Γu can be defined equivalently from Gu or from F 7→
δ(u∂DF ), with the same formula. In some sense, Γu measures the “difference”

between such operators and derivation operators. In particular, (5) can be

rewritten as

Γu
s

(f(Xs), g(Ys))ds = d(f(Xs)g(Ys))
u − f(Xs)dg(Ys)

u − g(Ys)df(Xs)
u, (15)

f, g ∈ C1b (IR) ∪ P(IR), (X, u) ∈ HV , (Y, u) ∈ HV , where

f(Xs)dg(Ys)
u = −δ(usf(Xs)∂Dg(Ys))ds+ f(Xs)Gusg(Ys), (16)

g(Ys)df(Xs)
u = −δ(usg(Ys)∂Df(Xs))ds+ g(Ys)Gusf(Xs), (17)

and

d(f(Xs)g(Ys))
u = −δ(us∂D(f(Xs)g(Ys)))ds+ Gus(f(Xs)g(Ys))ds.

Hence Γu
s
(f(Xs), g(Ys)) is the density of the correction term in the product of

“Itô differential”, and this property is directly linked to the analytic definition

of Γu from the weighted Gross Laplacian Gu. This fact can be viewed as

an infinite-dimensional realization, for a finite dimensional process, of a well-

known situation in stochastic calculus and potential theory, cf. e.g. Ch. XV

of [4] and the references therein.
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• One has to be careful here that the differential dXu behaves differently in gen-

eral from classical stochastic differentials. In particular, in (15), f(Xs)dg(Ys)
u

and g(Ys)df(Xs)
u, unlike their Stratonovich counterparts, have no interpreta-

tion as a pointwise product of a process and a differential, but hold in the

sense of (16) and (17). In short, the differential dXu acts on the integrand as

an operator, and not necessarily as a multiplication operator.

• For processes (X, u) ∈ V and (Y, u) ∈ V such that (Xt)t∈[0,1] ⊂ S and (Yt)t∈[0,1] ⊂
S, the operator Γu can be expressed with ordinary differentials of absolutely

continuous processes from (5) and (10):

Γu
s

(Xs, Ys)ds = dδXY,u(1[0,s])−Xsdδ
Y,u(1[0,s])− YsdδX,u(1[0,s]).

If (X, u), (Y, v) ∈ HV , then (Xt)t∈[0,1] and (Yt)t∈[0,1] have absolutely continuous tra-

jectories, hence zero quadratic covariation. Therefore [X, Y ]ut is an object which is in

general different from the classical quadratic covariation [X, Y ]t. Moreover [X,X]ut

may be negative, depending on u. Both notions may coincide, e.g. if X = B is the

Brownian motion and utt = 1, 0 ≤ t ≤ 1. The reason why [X,X]u may differ in

general from the trajectorial quadratic variation is that the stochastic term of our

Itô formula is constrained to have zero expectation, unlike e.g. the forward integral

used in [1] and [16]. For (X, u) ∈ HV , i.e. in the absolutely continuous case, there

is only one natural notion of differential which is the Stratonovich differential ◦dXu
t ,

and dXu
t differs from it. The relation between the differentials dXu

t and ◦dXu
t is

given by the following proposition.

Proposition 5 Let (X, u) ∈ V such that (Xt)t∈[0,1] ⊂ S. We have∫ 1

0

vsdX
u
s =

∫ 1

0

vs ◦ dXu
s −

∫ 1

0

DX,u
s vsds

=

∫ 1

0

vs ◦ dXu
s −

1

2

∫ 1

0

[Xs, vs]
u
sds, v ∈ U .

Proof. We have from (9) and (11):∫ 1

0

vsdX
u
s = −

∫ 1

0

δ(vsu
s∂DXs)ds+

∫ 1

0

vsGusXsds

= −
∫ 1

0

vsδ(u
s∂DXs)ds+

∫ 1

0

(Dvs, u
s∂DXs)ds+

∫ 1

0

vsGusXsds

=

∫ 1

0

vs ◦ dXu
s −

∫ 1

0

DX,u
s vsds, v ∈ U . 2

In particular,
∫ 1

0
vsdX

u
s and

∫ 1

0
vs ◦ dXu

s coincide if v is deterministic.
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5 The Itô formula

This section contains the main results of this paper. We start by writing a Stratonovich

type change of variable formula which uses the natural differential ◦dXu
t of processes

(X, u) ∈ HV .

Proposition 6 (Stratonovich formula). Let (X, u) ∈ HV. We have the change of

variable formula

f(Xt) = f(X0) +

∫ t

0

f ′(Xs) ◦ dXu
s , f ∈ C2b (IR) ∪ P(IR). (18)

Proof. We apply Lemma 1 to F = f(Xs) to obtain

f(Xt)− f(X0) = −
∫ t

0

d

dε
Uεusf(Xs)|ε=0ds

= −
∫ t

0

(δ(us∂Df(Xs))− Gusf(Xs))ds

= −
∫ t

0

f ′(Xs)(δ(u
s∂DXs)− GusXs)ds =

∫ t

0

f ′(Xs) ◦ dXu
s , a.s. 2

We can now write the Itô change of variable formula.

Theorem 1 The Itô formula for (X, u) ∈ HV is written as

f(Xt) = f(X0)+

∫ t

0

f ′(Xs)dX
u
s +

1

2

∫ t

0

f ′′(Xs)d[X,X]us , t ∈ [0, 1], f ∈ C2b (IR)∪P(IR).

Proof. We use Prop. 6 and Relation (18) (or Prop. 5 applied to vs = f ′(Xs)) to

obtain

f(Xt) = f(X0) +

∫ t

0

f ′(Xs) (GusXs − δ(us∂DXs)) ds

= f(X0)−
∫ t

0

δ(f ′(Xs)u
s∂DXs)ds+

∫ t

0

f ′(Xs)GusXsds

+
1

2

∫ t

0

(DXs, DXs∂u
s)f ′′(Xs)ds

= f(X0) + δX,u(1[0,t](·)f ′(X·)) +

∫ t

0

f ′(Xs)GusXsds

+
1

2

∫ t

0

(DXs, DXs∂u
s)f ′′(Xs)ds. 2

The Itô correction term reads

1

2

∫ t

0

(DXs, DXs∂u
s)f ′′(Xs)ds =

∫ t

0

DX,u
s f ′(Xs)ds =

∫ t

0

f ′′(Xs)D
X,u
s Xsds.

The proof of Th. 1 generalizes easily to vector-valued processes including an abso-

lutely continuous drift.

14



Theorem 2 Let (X1, u
1), . . . , (Xn, un) ∈ HV and let Yt =

∫ t
0
Vsds, V ∈ U . The Itô

formula for f(X1
t , . . . , X

n
t , Yt) is written for f ∈ C2b (IRn+1, IR) as

f(X1
t , . . . , X

n
t , Yt) = f(X1

0 , . . . , X
n
0 , Y0) +

i=n∑
i=1

∫ t

0

∂if(X1
s , . . . , X

n
s , Ys)dX

i,ui

s

+

∫ t

0

Vs∂n+1f(X1
s , . . . , X

n
s , Ys)ds

+
1

2

n∑
i,j=1

∫ t

0

∂i∂jf(X1
s , . . . , X

n
s , Ys)d[X i, Xj]u

i

s

+
1

2

i=n∑
i=1

∫ t

0

∂i∂n+1f(X1
s , . . . , X

n
s , Ys)d[X i, Y ]u

i

s .

Proof. Although it is similar to that of Th. 1, the proof of this extension is stated

because it shows the important role played here by the quadratic covariation [X i, Y ]u
i

(which always vanishes in the classical case). We have

f(X1
t , . . . , X

n
t , Yt) = f(X1

0 , . . . , X
n
0 , Y0)

+
i=n∑
i=1

∫ t

0

∂if(X1
s , . . . , X

n
s , Ys)

(
Gui,sX i

s − δ(ui,s∂DX i
s)
)
ds

+

∫ t

0

Vs∂n+1f(X1
s , . . . , X

n
s , Ys)ds

= f(X1
0 , . . . , X

n
0 , Y0)−

i=n∑
i=1

∫ t

0

δ(∂if(X1
s , . . . , X

n
s , Ys)u

i,s∂DX i
s)ds

+

∫ t

0

Vs∂n+1f(X1
s , . . . , X

n
s , Ys)ds+

i=n∑
i=1

∫ t

0

∂if(X1
s , . . . , X

n
s , Ys)Gui,sX i

sds

−
n∑

i,j=1

∫ t

0

∂i∂jf(X1
s , . . . , X

n
s , Ys)(u

i,s∂DX i
s, DX

j
s )ds

−
i=n∑
i=1

∫ t

0

∂i∂n+1f(X1
s , . . . , X

n
s , Ys)(u

i,s∂DX i
s, DYs)ds

= f(X1
0 , . . . , X

n
0 , Y0) +

i=n∑
i=1

∫ t

0

∂if(X1
s , . . . , X

n
s , Ys)dX

i,ui

s

+

∫ t

0

Vs∂n+1f(X1
s , . . . , X

n
s , Ys)ds+

1

2

n∑
i,j=1

∫ t

0

∂i∂jf(X1
s , . . . , X

n
s , Ys)d[X i, Xj]u

i

s

+
1

2

i=n∑
i=1

∫ t

0

∂i∂n+1f(X1
s , . . . , X

n
s , Ys)d[X i, Y ]u

i

s .

We made use of the fact that (f(X1, . . . , Xn, Y ), ui) ∈ V and f(X1
s , . . . , X

n
s , Ys) ∈ S,

s ∈ IR+.
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2

At the present stage, Th. 1 may seem artificial since it addresses only processes with

absolutely continuous trajectories. Its goal is in fact to provide a decomposition of

f(Xt)− f(X0) that includes a zero expectation (or “martingale”) term written with

help of the Skorohod integral. We show in the next corollary that Th. 1 extends to

processes in V under certain conditions. Let ID4,1([0, 1]) denote the Hilbert subspace

of L4(W × [0, 1]) which is the completion of U under the norm

‖ u ‖4ID4,1([0,1])
=‖ u ‖4L4(W×[0,1]) +E

[∫ 1

0

∫ 1

0

| Dsuv |4 dvds
]
.

In the same way, we define H4,1([0, 1]) to be the completion of C1c ([0, 1]) under the

norm

‖ v ‖4H4,1=‖ v ‖4L4([0,1]) +

∫ 1

0

| ∂vuv |4 dv.

Corollary 1 Let (X, u) ∈ V and assume that there is a sequence (Xn, un)n∈IN ⊂ HV
such that (Xn)n∈IN converges to X in ID4,1([0, 1]), and (un)n∈IN converges to u in

H4,1, t ∈ [0, 1]. Then for f ∈ C2b (IR), 1[0,t](·)f ′(X·) ∈ Dom(δX,u) and

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dX
u
s +

1

2

∫ t

0

f ′′(Xs)d[X,X]us , t ∈ [0, 1]. (19)

Proof. We apply Th. 1 to (Xn, un):

δX
n,un(1[0,t](·)f ′(Xn

· )) = f(Xn
t )− f(Xn

0 )−
∫ t

0

f ′(Xn
s )GusXn

s ds

−1

2

∫ t

0

(DXn
s , DX

n
s ∂u

s)f ′′(Xn
s )ds,

n ∈ IN. By duality we have for G ∈ S:

E

[∫ t

0

f ′(Xn
s )DXn,un

s Gds

]
= E

[
G

(
f(Xn

t )− f(Xn
0 )−

∫ t

0

f ′(Xn
s )Gun,sXn

s ds

)
−1

2
G

∫ t

0

(DXn
s , DX

n
s ∂u

n,s)f ′′(Xn
s )ds

]
,

As n goes to infinity (DXn,unG)n∈IN converges toDX,uG in L2(W×[0, 1]), (Gun,·Xn
· )n∈IN

converges to Gu·X· in L1(W×[0, 1]) and ((DXn
· , DX

n
· ∂u

n,·))n∈IN converges to (DX·, DX·∂u
·)

in L1(W × [0, 1]). We obtain in the limit

E

[∫ t

0

f ′(Xs)D
X,u
s Gds

]
= E

[
G

(
f(Xt)− f(X0)−

∫ t

0

f ′(Xs)GusXsds−
1

2

∫ t

0

(DXs, DXs∂u
s)f ′′(Xs)ds

)]
,

hence 1[0,t](·)f ′(X·) ∈ Dom(δX,u) and the Itô formula (19) holds for (X, u).
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2

As Th. 2, this corollary can be extended to the vector-valued case.

Remark 2 Corollary 1 allows to retrieve the classical Itô formula in the Brownian

case. The approximation Bφ of B by convolution given by Remark 1 satisfies the

hypothesis of Corollary 1, because

d[Bφ, Bφ]ut = (φt, φt∂ut)dt =

∫ t/2

0

∂utsφ
2(s− t)dsdt =

∫ t/2

0

∂utsdsdt = utt/2− ut0 = dt,

and GusBφ
s = 0.

Naturally, δB,u(1[0,t]f
′(B·)) coincides with the Skorohod integral δ(1[0,t](·)f ′(B·)) and

with the adapted Itô integral
∫ t
0
f ′(Bs)dBs of 1[0,t](·)f ′(B·). In addition to Brownian

motion, Corollary 1 can also be easily applied to a large class of non-Markovian pro-

cesses, containing polynomials in Brownian motion evaluated at different functions

of time. A specific analysis is required in most examples, and the case of Skorohod

integral processes and fractional Brownian motion is studied in details in the next

sections. In such cases, the classical Skorohod integral δ appears explicitly in final

formulas.

6 The Itô-Skorohod change of variable formula

In this section we show how the Skorohod change of variable of formula, cf. Nualart-

Pardoux [13], can be linked to Th. 2.

Definition 9 Let W denote the class of processes Y ∈ L2(W ) ⊗ L2([0, 1]) of the

form

Y (t, ω) =
i=n−1∑
i=0

1[ai,ai+1[(t)Fi(ω),

0 ≤ a0 < · · · < an, F0, . . . , Fn ∈ S, ∂DFj = 0 a.e. on [ai, ai+1[×W , i, j = 0, . . . n,

n ∈ IN.

We note that W is dense in L2(W )⊗ L2([0, 1]). We proceed by proving a change of

variable formula for Stratonovich integrals of processes in W added to an absolutely

continuous drift. The Skorohod formula will follow as a consequence, and both results

can be extended by standard procedures because of the density of W .
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Proposition 7 Let U, V ∈ W, and

Xt =

∫ t

0

UsdBs +

∫ t

0

Vsds, t ∈ [0, 1].

Then for f ∈ C2b (IR),

f(Xt) = f(0) + δ(U·f
′(X·)1[0,t](·)) +

∫ t

0

f ′(Xs)DsUsds+

∫ t

0

f ′(Xs)Vsds (20)

+
1

2

∫ t

0

f ′′(Xs)U
2
s ds+

∫ t

0

f ′′(Xs)Us

[∫ s

0

DsUαdBα +

∫ s

0

DsVudu

]
ds, t ∈ [0, 1].

Proof. First we will prove

f(Xt) = f(X0) + δ(U·f
′(X·)1[0,t](·)) +

∫ t

0

f ′(Xs)DsUsds+

∫ t

0

f ′(Xs)Vsds (21)

+
1

2

∫ t

0

f ′′(Xs)U
2
s ds+

∫ t

0

f ′′(Xs)Us

[
DsX0 +

∫ s

0

DsUαdBα +

∫ s

0

DsVudu

]
ds,

for

Xt = X0 +

∫ t

0

UsdBs +

∫ t

0

Vsds, 0 ≤ t ≤ a < 1,

the processes U, V being of the form U = 1[0,a]F and V = 1[0,a]G, where F,G ∈ S
satisfy ∂DF = ∂DG = 0 on [0, a]×W , and X0 ∈ S with ∂DX0 = 0 a.e. on [0, a]×W .

Let e ∈ C∞(IR) such that 0 ≤ e(s) ≤ 1, s ∈ IR+, and e(s) = 1, s ∈]−∞, 0] ∪ [1,∞[.

For any η > 0, let eη(s) = 1
η
e(s/η), s ∈ IR, and

Xη
t = Y η

t + Zt, 2η < t < a− 2η < 1,

where

Y η
t = X0 +

∫ 1

2η

eη(s− t)UsdBs, Zt =

∫ t

2η

Vsds, t ∈ [0, 1].

We construct a family (uη,t)t∈[0,1] of C∞c (IR) functions such that (Y η
· , u

η) ∈ HV . For

each t ∈ [0, 1] let uη,t ∈ C∞(IR) with
∫ η
0
∂su

η,t
s ds = 1,

∫ t+2η

t+η
∂su

η,t
s ds = −1, and

uη,ts = 0 for s ∈ [η, t + η] and 1 > s ≥ t + 2η. We note that ∂DF = 0 a.e. on

[0, a]×W implies Uεuη,tF = F , 2η ≤ t ≤ a− 2η. Then, for ε < η:

Uεuη,tY η
t = Uεuη,tX0 + Uεuη,tFUεuη,t

∫ 1

2η

eη(s− t)dBs

= X0 + F

∫ 1

2η

eη(s+ εuη,ts − t)dBs

= X0 + F

∫ 1

2η

eη(s− (t− ε))dBs = Y η
t−ε, 2η ≤ t ≤ a− 2η < 1,
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0 < ε < η. This implies that (Y η
· , u

η) ∈ HV , hence from Th. 2, the Itô formula can

be written as

f(Xη
t ) = f(Xη

2η) + δX
η ,uη,s(U·f

′(Xη
· )1[2η,t]) +

∫ t

2η

f ′(Xη
s )Guη,sXη

s ds

−
∫ t

2η

f ′′(Xη
s )(∂uη,sDY η

s , D(Y η
s + Zs))ds.

We have

DvY
η
s = DvX0 + eη(v − s)F +DvF

∫ 1

2η

eη(α− s)dBα

= DvX0 + eη(v − s)F +

∫ 1

2η

DvUαeη(α− s)dBα, 2η ≤ s ≤ a− 2η.

We now compute successively the terms of the Itô formula.

δX
η ,uη(f ′(Xη

· )1[2η,t](·)) = −
∫ t

2η

δ(f ′(Xη
s )uη,s· ∂·D·X

η
s )ds

= −δ
(∫ t

2η

f ′(Xη
s )uη,s· ∂D·X0ds

)
− δ

(∫ t

2η

f ′(Xη
s )uη,s· e

′
η(· − s)Fds

)
−δ
(∫ t

2η

f ′(Xη
s )uη,s· ∂·D·F

∫ 1

2η

eη(v − s)dBvds

)
−δ
(∫ t

2η

f ′(Xη
s )uη,s·

∫ s

2η

∂·D·Vαdαds

)
= −δ

(∫ t

2η

f ′(Xη
s )e′η(· − s)Fds

)
= −δ

(∫ t

2η

f ′(Xη
s )e′η(· − s)Usds

)
,

2η ≤ t ≤ a− 2η. We compute the “quadratic variation” of Y η as

(∂vu
η,s
v DY η

s , DY
η
s ) =

∫ 1

0

∂vu
η,s
v U2

v e
2
η(v − s)dv + 2

∫ 1

0

∂vu
η,s
v FDvX0eη(v − s)dv

+2

∫ 1

0

eη(α− s)dBα

∫ 1

0

F∂vu
η,s
v eη(v − s)DvFdv

+

∫ 1

0

∂vu
η,s
v (DvF )2

(∫ 1

2η

eη(α− s)dBα

)2

dv

= U2
s + 2Us

(
DsX0 +

∫ 1

0

DsFeη(α− s)dBα

)
,

2η ≤ s ≤ a− 2η. The “quadratic covariation” of Y η and Z is

−2(uη,s∂DY η, DZ) = −2DsG

∫ 1

0

uη,sv ∂DY η
v dv

= 2DsG

∫ 1

0

∂vu
η,s
v

(
DvX0 + eη(v − s)F +DvF

∫ 1

2η

eη(α− s)dBα

)
dv

= 2FDsG = 2UsDsZs.
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The absolutely continuous drift Guη,sY η
s ds is computed from

DvDvY
η
s = eη(v − s)DvF +

∫ 1

2η

eη(α− s)dBαDvDvF +DvFeη(v − s).

Hence

Guη,sY η
s =

1

2

∫ 1

0

∂vu
η,s
v DvDvY

ηsdv = DsUs, 2η ≤ s ≤ a− 2η.

Consequently, we have for 2η ≤ t ≤ a− 2η:

f(Xη
t ) = f(Xη

2η) + δ

(∫ t

2η

e′η(· − s)f ′(Xη
s )ds

)
+

∫ t

2η

f ′(Xη
s )DsUsds

+

∫ t

2η

f ′(Xs)Vsds+
1

2

∫ t

2η

f ′′(Xs)U
2
s ds

+

∫ t

2η

f ′′(Xη
s )Us

(
DsX0 +

∫ 1

0

eη(u− s)DsUαdBα

)
ds

+

∫ t

2η

f ′′(Xη
s )Us

∫ s

0

DsVududs.

As η goes to zero we obtain (21) in the limit. Relation (21) extends by density to

X0 ∈ D such that ∂DX0 = 0 a.e. on [0, a]×W , and then implies (20) by induction.

2

We note that this result is in fact a particular decomposition of the Stratonovich

formula

df(Xt) = f ′(Xs) (GusXs − δ(us∂DXs)) , f ∈ C2b (IR) ∪ P(IR),

with a zero expectation “martingale” term which uses the Skorohod integral. We

now show that it allows to retrieve the Skorohod anticipating change of variable

formula.

Proposition 8 Let U,Z ∈ W and Xt = δ(U1[0,t]) +
∫ t
0
Zsds. Then for f ∈ C2b (IR),

f(Xt) = f(0) + δ(U·f
′(X·)1[0,t](·)) +

∫ t

0

f ′(Xs)Zsds+
1

2

∫ t

0

f ′′(Xs)U
2
s ds

+

∫ t

0

f ′′(Xs)Us

[
δ(DsU·1[0,s](·)) +

∫ s

0

DsZvdv

]
ds. (22)

Proof. The proof of (22) from (20) is classical, cf. e.g. [12]. We apply Prop. 7 with

Vs = DsUs + Zs, s ∈ [0, 1], after checking that V ∈ W , and make use of the relation

δ(DsU·1[0.t](·)) =

∫ s

0

DsUαdBα −
∫ s

0

DαDsUαdα. 2

By density of W , this result can be extended to processes in spaces Lp([0, 1], IDp,k)

using the arguments of [12].
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7 An application to fractional Brownian motion

We show that non-Markovian processes of the family of fractional Brownian motion

can be treated via our approach. We refer to [3] for a study of fractional Brownian

motion in a different framework. For h ∈ L2([0, 1] × [0, 1]) we define the process

(Xh
t )t∈[0,1] as Xh

t =
∫ 1

0
h(t, s)dBs, t ∈ [0, 1].

Lemma 2 Let h ∈ L2([0, 1]× [0, 1]), such that t 7→ h(t, s) is absolutely continuous,

ds-a.e., with ∂1h, h∂1h ∈ L1([0, 1] × [0, 1]). Let Xt =
∫ 1

0
h(t, s)dBs, 0 ≤ t ≤ 1. We

have

f(Xt) = f(X0) + δ

(∫ t

0

∂sh(s, ·)f ′(Xs)ds

)
+

∫ t

0

f ′′(Xs)

∫ 1

0

h(s, v)∂sh(s, v)dvds,

0 ≤ t ≤ 1, f ∈ C2b (IR).

Proof. We start by assuming that h ∈ C∞([0, 1]× [0, 1]) and ∂th(t, s) = 0 whenever

∂sh(t, s) = 0, s, t ∈ [0, 1]. Let uts be defined as

uts = −∂th(t, s)

∂sh(t, s)

if ∂sh(t, s) 6= 0, and uts = 0 if ∂sh(t, s) = 0, with 0 ≤ s, t ≤ 1. Then

d

dt
h(t, ·) = − d

dε
h
(
t, ·+ εut·

)
|ε=0

, a.s., 0 ≤ t ≤ 1,

hence
d

dt
Xt = − d

dε
TεutXt|ε=0, a.s., 0 ≤ t ≤ 1,

i.e. condition (14) of Def. 7 is fulfilled, and (X, u) ∈ HV . Hence from Th. 1,

f(Xt) = f(X0) + δX,u(f ′(X·)1[0,t](·)) +
1

2

∫ t

0

(∂usDXs, DXs)f
′′(Xs)ds

= f(X0)− δ
(∫ t

0

f ′(Xs)u
s
· ∂·D·Xsds

)
−
∫ t

0

f ′′(Xs)

∫ 1

0

usvh(s, v)∂vh(s, v)dvds

= f(X0) + δ

(∫ t

0

∂sh(s, ·)f ′(Xs)ds

)
+

∫ t

0

f ′′(Xs)

∫ 1

0

h(s, v)∂sh(s, v)dvds.

A density argument concludes the proof and shows that v 7→
∫ t
0
∂sh(s, v)f ′(Xs)ds ∈

Dom(δ).
2
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Remark. Using Th. 2, the Itô formula can be written is this way for a large class

of processes whose value at time t is a polynomial in multiple stochastic integrals.

The fractional Brownian motion with Hurst parameter H ∈]0, 1[ can be constructed

as

Xt =

∫ t

0

h(t, s)dBs, 0 ≤ t ≤ 1,

with

h(t, s) = 1[0,t](s)
s1/2−H

γ(H − 1/2)

∫ t

s

αH−1/2(α− s)H−3/2dα, 0 ≤ s, t ≤ 1,

if H > 1/2, and

h(t, s) =
(t− s)H−1/2

γ(H + 1/2)
F (1/2−H,H − 1/2, H + 1/2, 1− t/s)1[0,t](s), (23)

if H < 1/2, γ being the gamma function and F the hypergeometric function (we use

the notation of [3]). In the case H > 1/2, t 7→ h(t, s) is absolutely continuous, in

fact

h(t, s) =
s1/2−H

γ(H − 1/2)

∫ t

0

1[s,∞[(α)αH−1/2(α− s)H−3/2dα, 0 ≤ s, t ≤ 1.

and the functions ∂1h and h∂1h are integrable on [0, 1]× [0, 1], hence Lemma 2 can be

directly applied to fractional Brownian motion with H > 1/2. (In the case H > 1/2,

the function h(t, s) = 1[0,t](s)(t−s)H−3/2 defines another type of fractional Brownian

motion and also satisfies the hypothesis of Lemma 2). If H < 1/2, then h is no

longer absolutely continuous and we need to proceed differently. Let

C∞0 ([0, 1]× [0, 1]) = {h ∈ C∞([0, 1]× [0, 1]) : h(1, r) = h(0, r) = 0, r ∈ [0, 1]},

and denote by H1([0, 1], L2([0, 1])) the completion of C∞0 ([0, 1] × [0, 1]) under the

norm

‖ u ‖2H1=‖ u ‖2L2([0,1]×[0,1]) +

∫ 1

0

∂s

∫ 1

0

u2(s, r)drds.

Let h ∈ H1([0, 1], L2([0, 1])).

Definition 10 We say that u ∈ L2(W ) ⊗ L2([0, 1]) is Xh-integrable if for any se-

quence (hn)n∈IN ⊂ C∞0 ([0, 1]× [0, 1]) converging to h in H1([0, 1], L2([0, 1])), we have∫ 1

0
∂shn(s, ·)usds ∈ Dom(δ), n ∈ IN, and the limit∫ 1

0

usdX
h := lim

n→∞
δ

(∫ 1

0

∂sh(s, ·)usds
)

exists in L2(W ) and is independent of the choice of the sequence (hn)n∈IN.
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With this definition we can state the following corollary of Lemma 2 and apply it to

fractional Brownian motion with parameter H < 1/2.

Corollary 2 Let h ∈ H1([0, 1], L2([0, 1])). For f ∈ C2b (IR), f ′(Xh
· )1[0,t](·) is Xh-

integrable and

f(Xh
t ) = f(0) +

∫ t

0

f ′(Xh
s )dXh

s +
1

2

∫ t

0

f ′′(Xh
s )∂s

∫ 1

0

h2(s, r)drds, 0 ≤ t ≤ 1.

Proof. Let (hn)n∈IN ⊂ C∞0 ([0, 1]×[0, 1]) be a sequence converging inH1([0, 1], L2([0, 1]))

to h. From Lemma 2 we have∫ t

0

f ′(Xhn
s )dXhn

s = f(Xhn
t )− f(0)− 1

2

∫ t

0

f ′′(Xhn
s )∂s

∫ 1

0

h2n(s, r)drds.

The conclusion follows then from Def. 10.
2

If h is given by (23), i.e. Xh is the fractional Brownian motion with parameter

H < 1/2, then h ∈ H1([0, 1], L2([0, 1])) and we obtain

f(Xh
t ) = f(0) +

∫ t

0

f ′(Xh
s )dXh

s +
γ(2− 2H) cos(πH)

π(1− 2H)

∫ t

0

f ′′(Xh
s )s2H−1ds,

since the variance of Xh
t is

E[(Xh
t )2] =

∫ t

0

∫ 1

0

h2(s, r)dsdr =
γ(2− 2H) cos(πH)

πH(1− 2H)
t2H , t ∈ [0, 1].

Note that for H 6= 1/2,
∫ t
0
f ′(Xh

s )dXh
s differs from the forward integral with respect

to Xh defined by Riemann sums, cf. [2], [5], [6], [9], because the latter does not have

zero expectation, due to the dependence property between the increments of Xh. If

H = 1/2, then
∫ t
0
f ′(Xh

s )dXh
s coincides with the Itô integral of f ′(B·)1[0,t](·) with

respect to (Bt)t∈[0,1].
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