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Abstract.
Let (Zt)t∈R+ be a martingale in L4 having the chaos representation property and angle
bracket d⟨Zt, Zt⟩ = dt. We show that the positive functionals F of (Zt)t∈R+ satisfy the
modified logarithmic Sobolev inequality

E[F logF ]− E[F ] logE[F ] ≤ 1

2
E

[
1

F

∫ ∞

0
(2− it)(DtF )2dt

]
,

where D is the gradient operator defined by lowering the degree of multiple stochastic
integrals with respect to (Zt)t∈R+ and (it)t∈R+ ⊂ {0, 1} is a process given by the structure
equation satisfied by (Zt)t∈R+ .

Résumé.
Soit (Zt)t∈R+ une martingale dans L4 qui satisfait la propriété de représentation chaotique,
avec d⟨Zt, Zt⟩ = dt. On montre que les fonctionnelles positives F de (Zt)t∈R+ satisfont
l’inégalité de Sobolev logarithmique modifiée

E[F logF ]− E[F ] logE[F ] ≤ 1

2
E

[
1

F

∫ ∞

0
(2− it)(DtF )2dt

]
,

où D est l’opérateur gradient qui abaisse le degré des intégrales stochastiques multiples par
rapport à (Zt)t∈R+ , et (it)t∈R+ ⊂ {0, 1} est un processus donné par l’équation de structure
satisfaite par (Zt)t∈R+ .
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1 Introduction

The multiple stochastic integrals with respect to martingales having deterministic

angle bracket dt (i.e. normal martingales) share the same orthogonality and norm
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properties. As a consequence, a number of common properties hold for all such mar-

tingales, and in particular for Brownian motion, the compensated Poisson process

and Azéma’s martingales. Examples of such properties are the coincidence of the

divergence operator with the stochastic integral on adapted processes (3), the Clark

formula (4), and variance and spectral gap inequalities (5). Although the second mo-

ments of such martingales are the same, higher order moments may differ. In fact the

structure of each martingale implies a particular multiplication formula for multiple

stochastic integrals, see § IV.3 of [10] and [12], which corresponds to a particular

probabilistic interpretation of Fock space. In practice, few properties of chaos expan-

sions remain common to all such martingales, for example the gradient operator D

defined by lowering the degree of multiple stochastic integrals satisfies the chain rule

of derivation only in the Brownian case.

The entropy of a random variable F under a given probability measure π, defined as

Entπ[F ] = Eπ[F logF ]− Eπ[F ] logEπ[F ],

is independent of the dimension of the probability space. The variance and entropy

operators share the same product property, cf. Prop. 2.2 of [8]. This makes the

entropy a good candidate in order to states inequalities that are independent of the

probabilistic interpretation chosen for the Fock space.

Corollary 5.3 of [8] (see also [3]) states that

Entπ[f(Y )] ≤ θEπ

[
1

f(Y )
(f(Y + 1)− f(Y ))2

]
, (1)

where Y is a Poisson distributed random variable on N with mean θ > 0, and it is

pointed out in [8] that the constant θ is the best possible. This inequality has been

extended in [1], [2], [13], [14], to functionals of the Poisson process. Although the

proof of (1) relies on the particularities of the Poisson law, its extension will appear

to be valid not only on Poisson space but also for a large family of normal martingales,

and distributions: the law of e.g. the Azéma martingale is connected to the arcsine

law, cf. [6] and Ch. 15 of [15].

In Sect. 2 we will show that the proof of modified logarithmic Sobolev inequalities on

Poisson space of [1], [2], [3], [4] extends to the general setting of normal martingales,
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see Cor. 1. We also consider the extension, in the context of normal martingales, of

the inequalities given in [14], cf. Prop. 1. The case of normal martingales satisfying

deterministic structure equations is given particular attention in Sect. 3.

2 Modified logarithmic Sobolev inequality for nor-

mal martingales

Let (Zt)t∈R+ be a martingale such that

(i) (Zt)t∈R+ has deterministic angle bracket d⟨Zt, Zt⟩ = dt.

We denote by (Ft)t∈R+ the filtration generated by (Zt)t∈R+ . The multiple stochastic

integral In(fn) is defined as

In(fn) = n!

∫ ∞

0

∫ t−n

0

· · ·
∫ t−2

0

fn(t1, . . . , tn)dZt1 · · · dZtn , fn ∈ L2(R+)
◦n, n ≥ 1,

with

Eπ[In(fn)Im(gm)] = n!1{n=m}⟨fn, gm⟩L2(R+)◦n . (2)

We assume that

(ii) (Zt)t∈R+ has the chaos representation property,

i.e. every F ∈ L2(Ω,F , π) has a decomposition as F =
∑∞

n=0 In(fn). A martingale

satisfying (i) is called a normal martingale in [5]. Let D : Dom(D) −→ L2(Ω ×
R+, dπ × dt) denote the closable, unbounded gradient operator defined as

DtF =
∞∑
n=1

nIn−1(fn(∗, t)), dπ × dt− a.e.,

with F =
∑∞

n=0 In(fn). The adjoint δ of D is defined by the duality

Eπ[Fδ(u)] = Eπ[⟨DF, u⟩L2(R+)], F ∈ Dom(D), u ∈ Dom(δ),

and it coincides with the stochastic integral with respect to (Zt)t∈R+ for every pre-

dictable square-integrable process (u(t))t∈R+ , cf. Prop. 4.4 of [9]:

δ(u) =

∫ ∞

0

u(t)dZt. (3)
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The Clark formula is a consequence of the chaos representation property for (Zt)t∈R+ ,

see e.g. [9], and states that any F ∈ Dom(D) ⊂ L2(Ω,F , P ) has a representation

F = Eπ[F ] +

∫ ∞

0

Eπ[DtF | Ft− ]dZt. (4)

It admits a simple proof via the chaos expansion of F :

F = Eπ[F ] +
∞∑
n=1

n!

∫ ∞

0

∫ t−n

0

· · ·
∫ t−2

0

fn(t1, . . . , tn)dZt1 · · · dZtn

= Eπ[F ] +
∞∑
n=1

n

∫ ∞

0

In−1(fn(∗, tn)1{∗<tn})dZtn = Eπ[F ] +

∫ ∞

0

Eπ[DtF | Ft− ]dZt.

The Clark formula shows the spectral gap inequality

varπ(F ) ≤ Eπ[∥DF∥2L2(R+)]. (5)

The spectral decomposition of δD is completely known in terms of multiple stochastic

integrals since δDIn(fn) = nIn(fn), fn ∈ L2(R+)
◦n. However, apart from the Brown-

ian and Poisson cases, such integrals may not be expressed as polynomials, see [12].

If (Zt)t∈R+ is in L4 then the chaos representation property implies that it satisfies the

structure equation

d[Zt, Zt] = dt+ ϕt−dZt, t ∈ R+, (6)

where (ϕt)t∈R+ is a predictable square-integrable process. Let it = 1{ϕt=0} and jt =

1− it = 1{ϕt ̸=0}, t ∈ R+. The continuous part of (Zt)t∈R+ is given by dZc
t = itdZt and

the eventual jump of (Zt)t∈R+ at time t ∈ R+ is given as ∆Zt = ϕt on {∆Zt ̸= 0},
t ∈ R+, see [6], p. 70.

In the following two cases, we have the chaotic representation property for (Zt)t∈R+

satisfying (6):

a) (ϕt)t∈R+ is deterministic. Then from Prop. 4 of [6], (Zt)t∈R+ can be represented as

dZt = itdBt + ϕt(dNt − λtdt), t ∈ R+, Z0 = 0, (7)

with λt = (1− it)1/ϕ
2
t , t ∈ R+, where (Bt)t∈R+ is a standard Brownian motion,

and (Nt)t∈R+ a Poisson process independent of (Bt)t∈R+ , with intensity νt =∫ t

0
λsds, t ∈ R+, cf. Prop. 4 of [6].
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b) Azéma martingales where ϕt = βZt, β ∈ [−2, 0[, see Prop. 6 of [6].

We now show that the modified logarithmic Sobolev inequality stated in [1] for the

Poisson process extends to all normal martingales in L4 with the chaos representation

property, that is in particular to the Azéma martingale. We proceed by first stating

the analog of the logarithmic Sobolev of [13], [14]. Let

Ψ(u, v) = (u+ v) log(u+ v)− u log u− (1 + log u)v, u, u+ v > 0.

Proposition 1 Let F ∈ Dom(D) be bounded and FT -measurable, with F > η for

some η > 0. We have

Entπ[F ] ≤ Eπ

[∫ T

0

jt
1

ϕ2
t

Ψ(F, ϕtDtF )dt+
1

2

∫ T

0

it
1

F
(DtF )2dt

]
. (8)

Proof. We follow [2] and [14]. Let Mt = Eπ[F | Ft], 0 ≤ t ≤ T . We have the

predictable representation

MT = M0 +

∫ T

0

HtdZt,

with Ht = Eπ[DtF | Ft− ], 0 ≤ t ≤ T . The Itô formula for (Zt)t∈R+ , see Prop. 2 of [6]

states that for f ∈ C2(R),

f(MT )− f(M0) =

∫ T

0

f(Mt− + ϕtHt)− f(Mt−)

ϕt

dZt

+

∫ T

0

f(Mt− + ϕtHt)− f(Mt−)− ϕtHtf
′(Mt−)

ϕ2
t

dt.

If ϕt = 0 the terms (f(Mt− + ϕtHt) − f(Mt−))/ϕt and (f(Mt− + ϕtHt) − f(Mt−) −
ϕtHtf

′(Mt−))/ϕ
2
t have to be replaced by their limits as ϕt → 0, that is Htf

′(Mt−)

and 1
2
H2

t f
′′(Mt−) respectively. Since (Mt)t∈R+ is uniformly bounded from below by a

strictly positive constant, we may apply this formula to f(x) = x log x to obtain:

F logF − Eπ[F ] logEπ[F ]

=

∫ T

0

jt
(Mt− + ϕtHt) log(Mt− + ϕtHt)−Mt− logMt−

ϕt

dMt +

∫ T

0

itHtf
′(Mt)dMt

+

∫ T

0

jt
(Mt− + ϕtHt) log(Mt− + ϕtHt)−Mt− logMt− − ϕtHt(1 + logMt−)

ϕ2
t

dt

+
1

2

∫ T

0

it
H2

t

Mt

dt,
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with Mt = Mt− + ϕtHt > η, 0 ≤ t ≤ T . We have

Entπ[F ] = Eπ

[∫ T

0

jt
1

ϕ2
t

Ψ(Mt− , ϕtHt)dt

]
+

1

2
E

[∫ T

0

it
H2

t

Mt

dt

]
≤ Eπ

[∫ T

0

jtEπ

[
1

ϕ2
t

Ψ(F, ϕtDtF ) | Ft

]
dt

]
+

1

2F
E

[∫ T

0

it(DtF )2dt

]
= Eπ

[∫ T

0

jt
1

ϕ2
t

Ψ(F, ϕtDtF )dt+
1

2F

∫ T

0

it(DtF )2dt

]
,

where we applied Jensen’s inequality:

Ψ(Mt− , ϕtHt) ≤ Eπ [Ψ(F, ϕtDtF ) | Ft]

to the convex function Ψ as in [13], and the Cauchy-Schwarz inequality

(Eπ[itDtF | Ft])
2 ≤ Eπ

[
1

F
it(DtF )2 | Ft

]
Eπ[F | Ft],

to itDtF . □

The modified logarithmic Sobolev inequality is obtained as a Corollary of Prop. 1.

Corollary 1 Let F ∈ Dom(D) be bounded and FT -measurable, with F > η for some

η > 0. We have

Entπ[F ] ≤ 1

2
Eπ

[
1

F

∫ T

0

(2− it)(DtF )2dt

]
. (9)

Proof. We apply Prop. 1 with the inequality Ψ(u, v) ≤ |v|2/u, u > 0, u + v > 0, cf.

[2] and Cor. 2.1 of [14]:

Entπ[F ] ≤ Eπ

[∫ T

0

jt
1

ϕ2
t

Ψ(F, ϕtDtF )dt+
1

2F

∫ T

0

it(DtF )2dt

]
≤ 1

2
Eπ

[
1

F

∫ T

0

(2− it)(DtF )2dt

]
.

□

Another proof of (9) consists in using the bound b log b− a log a− (b− a)(1+ log a) ≤
(b− a)2/a, a, b > 0 directly as in [2], Th. 4.1.

Corollary 2 Let F ∈ Dom(D) be bounded and FT -measurable, with F > η for some

η > 0. We have

Entπ[F ] ≤ Eπ

[∫ T

0

jt
DtF

ϕt

(log(F + ϕtDtF )− logF )dt+
1

2F

∫ T

0

it(DtF )2dt

]
. (10)
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Proof. We apply Prop. 1 and the bound Ψ(u, v) ≤ v(log(u + v) − log u), u > 0,

u+ v > 0, as in Cor. 2.2 of [14]. □

For the Azéma martingale with parameter β ∈ [−2, 0[ we have it = 0 a.e., hence

Entπ[F ] ≤ Eπ

[∫ T

0

1

β2Z2
t

Ψ(F, βZtDtF )dt

]
≤ Eπ

[∫ T

0

1

F
(DtF )2dt

]
,

and from Cor. 2:

Entπ[F ] ≤ Eπ

[∫ T

0

DtF

βZt

(log(F + βZtDtF )− logF )dt

]
.

3 Deterministic structure equations

In this section, (ϕt)t∈R+ is a deterministic function, i.e. (Zt)t∈R+ is written as in (7).

In this case itDt is still a derivation operator, and we have the product rule

Dt(FG) = FDtG+GDtF + ϕtDtFDtG, t ∈ R+, (11)

cf. Prop. 1.3 of [11]. In fact Dt can be written as

Dt = jt
1

ϕt

∆ϕ
t + itDt,

where ∆ϕ
t is the finite difference operator defined on random functionals by addition

at time t of a jump of height ϕt to (Zt)t∈R+ . If ϕt ̸= 0, this implies

Dte
F =

eF

ϕt

(eϕtDtF − 1),

which converges to eFDtF as ϕt → 0. The following proposition extends Cor. 2.2 of

[14] and Th. 2.1 of [13], which are valid for ϕt = 1, t ∈ R+. It can also be viewed

as a tensorisation of logarithmic Sobolev inequalities for independent Brownian and

Poisson processes.

Corollary 3 Let F ∈ Dom(D) be bounded and FT -measurable, with F > η for some

η > 0. We have

Entπ[F ] ≤ 1

2
Eπ

[∫ T

0

(2− it)DtFDt logFdt

]
. (12)
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Proof. We apply Cor. 2 and the relation ϕtDte
F = eF (eϕtDtF − 1) which shows that

for positive F ,

ϕtDt logF = log(F + ϕtDtF )− logF.

□

The following corollary is the analog of the sharp inequality Cor. 5.8 of [8]. For ϕt = 1,

t ∈ R+, it coincides with Th. 3.4 of [13] and Cor. 2.3 of [14].

Corollary 4 Let F ∈ Dom(D) be bounded and FT -measurable, with F > η for some

η > 0. We have

Entπ[e
F ] ≤ Eπ

[
eF

∫ T

0

jt
1

ϕ2
t

(ϕtDtFeϕtDtF − eϕtDtF + 1)dt+
eF

2

∫ T

0

it|DtF |2dt
]
.

(13)

Proof. We use the relations F + ϕtDtF = log(eF + ϕtDte
F ) and eF + ϕtDte

F =

eF eϕtDtF :

Ψ(eF , ϕtDte
F ) = (eF + ϕtDte

F ) log(eF + ϕtDte
F )− FeF − ϕt(1 + F )Dte

F

= eF eϕtDtF (F + ϕtDtF )− FeF − (1 + F )eF (eϕtDtF − 1)

= eF (ϕtDtFeϕtDtF − eϕtDtF + 1),

and apply Prop. 1. □

In Cor. 4 the limit of the term in ϕt

eF
∫ T

0

1

ϕ2
t

(ϕtDtFeϕtDtF − eϕtDtF + 1)dt

as ϕt tends to zero is exactly the term in it: e
F 1

2

∫ T

0
it

1
F
|DtF |2dt. If ϕt = 0, i.e. it = 1,

t ∈ R+, then (Mt)t∈R+ is a Brownian motion and from Cor. 1 we obtain the classical

modified Sobolev inequality

Entπ[F ] ≤ 1

2
Eπ

[
1

F
∥DF∥2L2([0,T ])

]
. (14)

If ϕt = 1, t ∈ R+ then it = 0, t ∈ R+, (Mt)t∈R+ is a standard compensated Poisson

process and from Cor. 1 we obtain the modified Sobolev inequality of [1], [2]:

Entπ[F ] ≤ Eπ

[
1

F
∥DF∥2L2([0,T ])

]
. (15)
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Remark a) It is known that Dt is a derivation only in the Brownian case, cf. [9],

[12], hence only in this case can the modified Sobolev inequality (14) be transformed

into the standard Sobolev inequality Entπ[F
2] ≤ 2Eπ[∥DF∥2L2([0,T ])] of [7].

b) It follows from Prop. 6 of [12] that for the Azéma martingale, ϕtDt is not a finite

difference operator, hence (12) and (13) do not hold in this case.
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Probabilités XXXIII, volume 1709 of Lecture Notes in Math., pages 120–216. Springer, 1999.

[9] J. Ma, Ph. Protter, and J. San Martin. Anticipating integrals for a class of martingales.
Bernoulli, 4:81–114, 1998.

[10] P.A. Meyer. Quantum Probability for Probabilists, volume 1538 of Lecture Notes in Mathematics.
Springer-Verlag, 1993.

[11] N. Privault. Independence of a class of multiple stochastic integrals. In R. Dalang, M. Dozzi, and
F. Russo, editors, Seminar on Stochastic Analysis, Random Fields and Applications (Ascona,
1996), volume 45 of Progress in Probability, pages 249–259. Birkhäuser, Basel, 1999.
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9


