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1 Introduction

Quantum stochastic calculus shows that the Gaussian white noise Ẇt is not an ele-

mentary object, but a composite sum of annihilation and creation densities:

Ẇt = a−t + a+t .

The importance of a−t and a+t lies not only in the construction of new non-commutative

stochastic processes, but also on their probabilistic interpretation and links with sto-

chastic calculus. Namely,

i) a−t and a+t are mutually adjoint,

ii) a−t identifies to the white noise (space) derivative,
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iii) a+t dt is an anticipative (Hitsuda-Skorokhod) differential,

iv) the commutator [a−s , a
+
t ] = δ(t− s) is closely linked to the quadratic variation of

Brownian motion.

It is natural to ask whether the Poisson noise a◦t is itself elementary or composite, in

particular if it has a decomposition into a sum of creation and annihilation, which

would differ from the product decomposition a◦t = a+t a
−
t .

In this paper, the compensated Poisson noise a◦t is written as a composite sum:

a◦t = a⊖t + a⊕t . (1.1)

Letting ã−t = a−t +a⊖t and ã+t = a+t +a⊕t and denoting by (Nt−t)t∈IR+ the compensated

Poisson process, we also have

˙︷ ︷
(Nt − t) = ã−t + ã+t ,

where

i) ã−t and ã+t are mutually adjoint,

ii) ã−t identifies to a time derivative with respect to the Poisson process jump times,

iii) ã+t dt is an anticipative (Skorokhod type) differential,

iv) a modification of the commutator [ã−t , ã
+
t ] gives the quadratic variation noise Ṅt

of the Poisson process.

The discrete time compensated gamma process can be realized as the space-time dual

of the Poisson process

k − Tk = NTk
− Tk,

where Tk denotes the k-th jump time of (Nt)t∈IR+ . Our first step is to use the decom-

position of NTk
− Tk provided by a⊖t and a⊕t to construct discrete time realizations

of the compensated gamma process and of the continuous binomial process (with

independent, hyperbolic cosine distributed increments). The proofs use the general

framework of [1] for Lévy processes on sl2.

The second step is to construct continuous time realizations of these processes.

In [11], a realization of the gamma (or exponential) process of [3] has been constructed

in terms of a−t , a
+
t , a

◦
t and appropriate cocycles. We will obtain a different realization

of this process and of the continuous binomial process in continuous time, using the

2



operators a⊖t and a⊕t .

Due to the non-differentiability of Nt as a function of its jump times, the pow-

ers of ã−t and ã+t lead to infinities. Moreover, Ã−
t =

∫ t

0
ã−s ds and Ã+

t =
∫ t

0
ã+s ds are not

adapted processes, thus quantum stochastic calculus can not be constructed in the

usual way for the decomposition (1.1). Using a renormalized commutator table for

which [Ã−
t , Ã

+
t ] is the quadratic variation Nt of (Nt − t)t∈IR+ and Ã−

t , Ã
+
t are treated

as adapted processes, we obtain a representation of the finite difference algebra in

relation to the Poisson process. In this sense, t 7→ Ã−
t + Ã+

t and t 7→ i(Ã−
t − Ã+

t )

respectively become continuous time realizations of the gamma process of [4] and of

the continuous binomial process, cf. Sect. 5.4.1 of [8], which are constructed as Lévy

processes on the finite difference algebra fd.

We proceed as follows. In Sect. 2 we recall the definitions and properties of the

gradient operator D̃ to be used in this paper, with its associated integration by parts

formula. In Sect. 3 we obtain the expression of a⊖t and a⊕t on the symmetric Fock

space and interpret the integration by parts on Poisson space as a second quantiza-

tion of the classical integration by parts on IR+. In Sect. 4 we construct in discrete

time the gamma and continuous binomial processes. In Sects. 5 and 6, a redefined

operator composition is introduced in order to cancel infinities and state a closed

commutator table for the noises a⊖t and a⊕t . This allows one to construct continuous

time realizations of the gamma and continuous binomial processes in Sect. 7.

2 Integration by parts on Poisson space

Let (Nt)t∈IR+ be a right-continuous standard Poisson process with jump times (Tk)k≥1,

and T0 = 0, i.e.

Nt =
∞∑
k=1

1[Tk,∞)(t), t ∈ IR+.

Of particular interest in the analysis on Poisson space is a version of the gradient

operator D̃ of [5], [7], defined on the space

S = {F = f(T1, . . . , Tn) : f ∈ C∞
b (IRn

+)}

of smooth functionals of jump times.

Definition 2.1 Let

D̃tF = −
k=n∑
k=1

1[0,Tk](t)∂kf(T1, . . . , Tn), t ∈ IR+, F ∈ S.
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In variational terms, i.e. by infinitesimal time changes on the Poisson process paths,

we have:

⟨D̃F, u⟩ = lim
ε→0

1

ε
(f(T1 + εũ(T1), . . . , Tn + εũ(Tn))− f(T1, . . . , Tn))

where ⟨·, ·⟩ denotes the scalar product in L2(IR+), and

ũ(t) = −
∫ t

0

u(s)ds, t ∈ IR+.

Let F(a,b] denote the σ-algebra generated by {Nt − Ns, a < s < t ≤ b}, and let

(Ft)t∈IR+ = (F(0,t])t∈IR+ denote the filtration generated by (Nt)t∈IR+ . Then the operator

D̃ satisfies the property

1(t,∞)(s)D̃sG = 0, s ∈ IR+, (2.1)

if G ∈ S is Ft-measurable.

Proposition 2.1 The operator D̃ admits a closable adjoint δ̃ which satisfies

E[⟨D̃F, u⟩] = E[F δ̃(u)],

and

δ̃(Fu) = F

∫ ∞

0

u(t)d(Nt − t)− ⟨D̃F, u⟩, F ∈ S, u ∈ L2(IR+), (2.2)

for all square-integrable adapted process u ∈ L2(Ω× IR+).

Proof. The proof consists in several steps, cf. e.g. [12]:

i) For u ∈ L2(IR+) and F ∈ S, the relation

E

[∫ ∞

0

D̃tFu(t)dt

]
= E

[
F

∫ ∞

0

u(t)d(Nt − t)

]
follows by integration by parts on (T1, . . . , Tn) in the simplex ∆n = {(t1, . . . , tn) ∈
IRn

+ : 0 ≤ t1 < · · · < tn}.

ii) The operator D̃ has the derivation property and this implies that it has a closable

adjoint δ̃ which satisfies the classical divergence formula (2.2).

iii) From the property (2.1), Relation (2.2) extends to simple predictable processes,

and by density to all square-integrable predictable processes in L2(Ω × IR+).

Finally we remark that the spaces of predictable and adapted processes coincide

in L2(Ω× IR+).

□
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In particular we have for all square-integrable adapted process u ∈ L2(Ω× IR+):

E

[∫ ∞

0

D̃tFu(t)dt

]
= E

[
F

∫ ∞

0

u(t)d(Nt − t)

]
,

and

δ̃(u) =

∫ ∞

0

u(t)d(Nt − t).

The scalar product between D̃F and u is taken as an integral with respect to dt, and

as a consequence, D̃t can be used to define a quantum noise.

Definition 2.2 Given an adapted process u ∈ L2(Ω×IR+), the operators ã
−(u), ã+(u)

and ã+(u) are defined on S as

ã−(u)F = ⟨u, D̃F ⟩, ã+(u)F = δ̃(uF ), ã◦(u)F = δ̃(uD̃F ), F ∈ S.

We will use the generic notation at to denote operator densities, and At to denote

operator processes, i.e.

At = a(1[0,t]) =

∫ t

0

asds, t ∈ IR+.

Relation (2.2) implies that the compensated Poisson stochastic integral
∫∞
0

u(t)d(Nt−
t) can be decomposed in a sum of annihilation and creation operators as∫ ∞

0

u(t)d(Nt − t) = ã−(u) + ã+(u), (2.3)

where u ∈ L2(Ω× IR+) is adapted.

3 Second quantization of the integration by parts

on IR+

Let

Γ(L2(IR+; C)) =
∞⊕
n=0

L2(IR+; C)
◦n,

denote the symmetric Fock space on L2(IR+; C), where “◦” denotes the symmetric

tensor product. In practice we will only consider real-valued functionals to simplify

the notation. All statements can be transferred to the complex case.
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In this section we express the integration by parts formula (2.2) as the second quan-

tization of the usual integration by parts on IR+:∫ ∞

0

ũ(t)v(t)dt =

∫ ∞

0

u(t)v(t)dt−
∫ ∞

0

ṽ(t)u(t)dt, u, v ∈ C∞
c (IR+),

cf. Prop. 3.1. This allows in particular to determine the action of ã−(u) and ã+(u) on

Γ(L2(IR+; C)), which will be essential to determine the commutator tables of Sect. 6.

Let Ψf , f ∈ L2(IR+), denote the exponential vector

Ψf =
∞∑
n=0

1

n!
f ◦n,

with

⟨Ψf ,Ψg⟩ = e⟨f,g⟩, f, g ∈ L2(IR+).

where the notation ⟨·, ·⟩ is also used to denote the complex scalar product on Γ(L2(IR+; C)).

We recall the definition of the annihilation and creation operators a−(u), a+(u) and

conservation operator a◦(u) on the symmetric Fock space Γ(L2(IR+; C)) as

a−(u)Ψf = ⟨u, f⟩Ψf , a+(u)Ψf = u ◦Ψf , and a◦(u)Ψf = (uf) ◦Ψf ,

or in terms of matrix elements:

⟨a−(u)Ψf ,Ψg⟩ = ⟨u, f⟩⟨Ψf ,Ψg⟩ = ⟨Ψf , a
+(u)Ψg⟩,

and

⟨a◦(u)Ψf ,Ψg⟩ = ⟨uf, g⟩⟨Ψf ,Ψg⟩.

From now on we work in the Poisson probabilistic interpretation of Γ(L2(IR+; C)), i.e.

Ψf = exp

(
−
∫ ∞

0

f(s)ds

) ∞∏
k=1

(1 + f(Tk)), f ∈ C∞
c (IR+).

Definition 3.1 Let a⊖(u) and a⊕(u) be defined on E as

⟨a⊖(u)Ψf ,Ψg⟩ = ⟨ũf ′, g⟩⟨Ψf ,Ψg⟩ = ⟨Ψf , a
⊕(u)Ψg⟩, f, g ∈ C∞

c (IR+),

where ũ is the function ũ(t) = −
∫ t

0
u(s)ds, t ∈ IR+, and u ∈ L2(IR+).

We have

a⊖(u)Ψf = (ũf ′) ◦Ψf , and a⊕(u)Ψf = (uf − ũf ′) ◦Ψf .
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Proposition 3.1 The sum of a⊖(u) and a⊕(u) is the conservation or number operator

a◦(u):

a⊖(u) + a⊕(u) = a◦(u).

Proof. We have

⟨a⊖(u)Ψf ,Ψg⟩+ ⟨a⊕(u)Ψf ,Ψg⟩ = ⟨ũf ′, g⟩⟨Ψf ,Ψg⟩+ ⟨ũg′, f⟩⟨Ψf ,Ψg⟩
= ⟨uf, g⟩⟨Ψf ,Ψg⟩.

□

The operator ã−(u) is closable and its closed domain contains the linear space E
generated by the exponential vectors Ψf , f ∈ C∞

c (IR+).

Proposition 3.2 We have the decompositions on E:

ã−(u) = a−(u) + a⊖(u) and ã+(u) = a+(u) + a⊕(u), u ∈ L2(IR+).

Proof. Let f, g ∈ C∞
c (IR+) with support in [0, t], and

F =
∞∏
k=1

(1 + f(Tk)), G =
∞∏
k=1

(1 + g(Tk)).

We have

⟨ã−(u)F,G⟩ =
∞∑
n=1

E

ũ(Tn)f
′(Tn)

∞∏
k=1
k ̸=n

(1 + f(Tk))
∞∏
l=1

(1 + g(Tl))


=

∞∑
m=1

n=m∑
n=1

e−t

m!
⟨ũf ′, 1 + g⟩L2([0,t])(⟨1 + f, 1 + g⟩L2([0,t]))

m−1

= ⟨ũf ′, 1 + g⟩L2([0,t])

∞∑
m=0

e−t

m
(⟨1 + f, 1 + g⟩L2([0,t]))

m

= ⟨ũf ′, 1 + g⟩L2([0,t])⟨F,G⟩
= ⟨u, f⟩⟨F,G⟩+ ⟨ũf ′, g⟩⟨F,G⟩.

Using the Poisson probabilistic interpretations

Ψf = F exp

(
−
∫ ∞

0

f(s)ds

)
and Ψg = G exp

(
−
∫ ∞

0

g(s)ds

)
of Ψf and Ψg, we obtain

⟨ã−(u)Ψf ,Ψg⟩ = ⟨a−(u)Ψf ,Ψg⟩+ ⟨a⊖(u)Ψf ,Ψg⟩.

By duality we immediately obtain the relation ã+(u) = a+(u) + a⊕(u). □
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4 Realizations of Lévy processes in discrete time

The space-time dual of the Poisson process, i.e. the discrete time compensated gamma

process (Tk − k)k≥1, can be realized by integration of 1[0,Tk] with respect to the com-

pensated Poisson process (Nt − t)t∈IR+ , as

k − Tk = NTk
− Tk =

∫ ∞

0

1[0,Tk](t)d(Nt − t).

Therefore it is natural to study the discrete time quantum stochastic processes

Ã−
Tk

= ã−(1[0,Tk]), Ã+
Tk

= ã+(1[0,Tk]), Ã◦
Tk

= ã◦(1[0,Tk]),

A−
Tk

= a−(1[0,Tk]), A+
Tk

= a+(1[0,Tk]), A◦
Tk

= a◦(1[0,Tk]),

A⊖
Tk

= a⊖(1[0,Tk]), A⊕
Tk

= a⊕(1[0,Tk]), k ≥ 1,

as well as their increments, e.g. ã−(1(Tk−1,Tk]) and ã+(1(Tk−1,Tk]), k ≥ 1. (For adapted

u ∈ L2(Ω × IR+) we define a⊖(u) and a⊕(u) on S as a⊖(u) = ã−(u) − a−(u) and

a⊕(u) = ã+(u)− a+(u), which is consistent with Prop. 3.2). Let

QTk
= q(1[0,Tk]) = A−

Tk
+ A+

Tk
, PTk

= p(1[0,Tk]) = i(A−
Tk

− A+
Tk
),

Q̃Tk
= q̃(1[0,Tk]) = Ã−

Tk
+ Ã+

Tk
, P̃Tk

= p̃(1[0,Tk]) = i(Ã−
Tk

− Ã+
Tk
),

Q◦
Tk

= q(1[0,Tk]) = A⊖
Tk

+ A⊕
Tk

= A◦
Tk
, P ◦

Tk
= p◦(1[0,Tk]) = i(A⊖

Tk
− A⊕

Tk
), k ≥ 1.

Proposition 4.1 We have the decomposition

k − Tk =

∫ ∞

0

1[0,Tk](t)d(Nt − t) = Ã−
Tk

+ Ã+
Tk

= Q̃Tk
= QTk

+Q◦
Tk
, k ≥ 1.

Proof. It suffices to rewrite (2.2) or (2.3) for the predictable process u = 1[0,Tk].

□

It has been noticed in [13] that {− i
2
(Q̃Tk

+ 2Ã◦
Tk
),− i

2
P̃Tk

, i(k
2
+ Ã◦

Tk
)} generates the

Segal-Shale-Weil representation of sl2. In fact the triple {Ã−
Tk
, Ã+

Tk
, Ã◦

Tk
} can also be

used to generate the representation {M,B−, B+} of sl2, with

[B−, B+] = M, [M,B−] = −2B−, [M,B+] = 2B+.

Proposition 4.2 A family (jkl)0≤k<l of representations of sl2 is defined by

jkl(M) = (l − k)1+ 2ã◦(1(Tk,Tl])

jkl(B
−) = −e−iφ(ã−(1(Tk,Tl]) + ã◦(1(Tk,Tl])),

jkl(B
+) = −e+iφ(ã+(1(Tk,Tl]) + ã◦(1(Tk,Tl])), 1 ≤ k < l.

8



Proof. Let u ∈ L2(Ω× IR+) be adapted. We have for F ∈ S:

ã−(u)F =

∫ ∞

0

u(t)D̃tFdt, ã+(u)F = F

∫ ∞

0

u(t)d(Nt − t)−
∫ ∞

0

u(t)D̃tFdt.

Moreover, from Relation (2.2) applied to the process u1[0,Tk] and to the random vari-

able ∂kf(T1, . . . , Tn), we obtain

ã◦(u)F =

∫ ∞

0

u(t)D̃tFd(Nt − t)−
n∑

k=1

∫ ∞

0

u(t)1[0,Tk](t)D̃t∂kf(T1, . . . , Tn)dt.

Letting τk = Tk − Tk−1, k ≥ 1, denote k-th interjump time of the Poisson process, we

deduce the representations

ã−(1(Tk−1,Tk])f(τ1, . . . , τn) = −τk∂kf(τ1, . . . , τn),

ã+(1(Tk−1,Tk])f(τ1, . . . , τn) = (1− τk)f(τ1, . . . , τn) + τk∂kf(τ1, . . . , τn),

ã◦(1(Tk−1,Tk])f(τ1, . . . , τn) = −(1− τk)∂kf(τ1, . . . , τn)− τk∂
2
kf(τ1, . . . , τn),

f ∈ C∞
c (IRn

+). In other terms, the operators ã◦(1(Tk−1,Tk]), ã
+(1(Tk−1,Tk]), ã

−(1(Tk−1,Tk])

act on smooth functions in L2(IR+; C, e
−τdτ) as

ã◦ = −(1− τ)∂τ − τ∂2
τ , ã+ = (1− τ) + τ∂τ , ã− = −τ∂τ , (4.1)

and the eigenvectors of ã◦ are the Laguerre polynomials. The following relations are

then easily proved by algebraic computation using the representation (4.1), cf. [13]:

[ã−(1(Tk−1,Tk]), ã
+(1(Tl−1,Tl])] = 1{k=l} − ã−(1(Tk−1,Tk])− ã+(1(Tl−1,Tl]),

[ã◦(1(Tk−1,Tk]), ã
+(1(Tl−1,Tl])] = (ã◦(1(Tk−1,Tk]) + ã+(1(Tk−1,Tk]))1{k=l},

[ã−(1(Tk−1,Tk]), ã
◦(1(Tl−1,Tl])] = (ã◦(1(Tk−1,Tk]) + ã−(1(Tk−1,Tk]))1{k=l}.

These relations imply

[ã−(1[0,Tk]), ã
+(1[0,Tl])] = k ∧ l − ã−(1[0,Tk∧l])− ã+(1[0,Tk∧l]),

[ã◦(1[0,Tk]), ã
+(1[0,Tl])] = ã◦(1[0,Tk∧l]) + ã+(1[0,Tk∧l]),

[ã−(1[0,Tk]), ã
◦(1[0,Tl])] = ã◦(1[0,Tk∧l]) + ã−(1[0,Tk∧l]),

which in turn yields the desired representation. □

We use the notation and definitions of [1] regarding Lévy processes on Lie algebras.

The family (jlk)0≤l<k also defines a representation of the current algebra

gIN =

{
i=n∑
i=1

Xi1(i−1,i] : Xi ∈ g, i = 1, . . . , n, 0 ≤ t0 < · · · < tn, n ≥ 1

}
,
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and we have jkl(B
−)∗ = jkl(B

+) and jkl(M)∗ = jkl(M). Moreover, jkl(B
−)1 = 0 and

jkl(T )1 = (l− k)1, where 1 denotes the vacuum state in Γ(L2(IR+; C)). Hence jkl has

same law as the process of Example 3.1 in [1].

Proposition 4.3 i) The process

Ã−
Tk

+ Ã+
Tk

= QTk
+Q◦

Tk
= Q̃Tk

= A−
Tk

+ A+
Tk

+ A◦
Tk
, k ≥ 1,

is a discrete time compensated gamma process.

ii) The process

i(Ã−
Tk

− Ã+
Tk
) = PTk

+ P ◦
Tk

= P̃Tk
= i(A−

Tk
− A+

Tk
+ A⊖

Tk
− A⊕

Tk
), k ≥ 1,

is a discrete time continuous binomial process.

Proof.

i) We have

Tk = k − ã−(1[0,Tk])− ã−(1[0,Tk]),

which obviously has a gamma law with parameter k ≥ 1, since Tk is the k-th

jump time of a standard Poisson process. This result follows independently for

φ = 0 from the relation

k1− (ã−(1[0,Tk]) + ã−(1[0,Tk])) = j0,k(T ) = j0,k(B
− +B+ +M)

and the analysis of Example 4.2 of [1] which shows that j0,k(B
− +B+ +M) has

a gamma law with parameter k ≥ 1.

ii) From [13],

i(ã−(1[0,Tk])− ã+(1[0,Tk]))

has characteristic function u 7→ (coshu)−k. Writing for φ = π/2:

i(ã−(1[0,Tk])− ã+(1[0,Tk])) = j0,k(B
− +B+),

it follows from [1] that its density is

x 7→ 2k−1

π(k − 1)!

∣∣∣∣Γ(
k + ix

2

)∣∣∣∣2 .
□
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The density of i(ã−(1(Tk−1,Tk])− ã+(1(Tk−1,Tk])) is the hyperbolic cosine density

1

cosh((πx)/2)
,

cf. p. 502 of [9], which implies in particular the relation

1

π

∣∣∣∣Γ(
1 + ix

2

)∣∣∣∣2 = 1

cosh((πx)/2)
, x ∈ IR.

Moreover it follows in general from Example 4.2 in [1] that for |β| > 1,

−k/2− sgn(β)(c− 1/c)−1j0,k(βM +B− +B+)

has a negative binomial law with parameter (c2, k), with c = βsgn(β)−
√

β2 − 1. In

discrete time this result has been obtained in [13] with two other parameterizations

which are now shown to be part of the more general framework of [1].

Proposition 4.4 ([13]) Let s ∈ IR.

i) The operator

Ã◦
Tk

+ isÃ+
Tk

− isÃ−
Tk

+ s2Tk

has a negative binomial law with parameter (s2/(1 + s2), k).

ii)

e−2sÃ◦
Tk

− 1

2
sinh(2s)

(
Ã−

Tk
+ Ã+

Tk

)
+ k sinh(s)2

has a negative binomial law with parameter (tanh2(s), k).

Proof. We use the relation

ã◦(1[0,Tk]) + isã+(1[0,Tk])− isã−(1[0,Tk]) + s2Tk

= −k/2− sgn(β(s))(c(s)− 1/c(s))−1j0,k
(
β(s)M +B− +B+

)
,

with

c(s) =
|s|√
1 + s2

, β(s) =
−(1 + 2s2)

2s
√
1 + s2

, (c(s)− 1/c(s))−1 = −|s|
√
1 + s2,

eiφ(s) = (−s2 + is)(s
√
1 + s2)−1, and the fact that from Example 4.2 of [1],

−k/2− sgn(β)(c(s)− 1/c(s))−1j0,k
(
β(s)M +B− +B+

)
11



has a negative binomial law with parameter (c2(s), k) = (s2/(1 + s2), k). The second

property is proved similarly, since

e−2sã◦(1[0,Tk])−
1

2
sinh(2s)

(
ã+(1[0,Tk]) + ã−(1[0,Tk])

)
+ k sinh(s)2

= −k

2
− sgn(β(s))(c(s)− 1/c(s))−1j0,k

(
β(s)M +B− +B+

)
,

with φ(s) = 0 and

c(s) = tanh(|s|), (c(s)−1/c(s))−1 = −sinh(2|s|)
2

and β(s) =
1

2
coth(s)+

1

2
tanh(s).

□

The above results can be closely related to quantum stochastic calculus on the boson

Fock space. Let α−
x = ∂x, α

−
y = ∂y, α

+
x = x− ∂x, α

+
y = y− ∂y denote the annihilation

and creation operators on the two-dimensional boson Fock space Γ(Ce1 ⊕ Ce2) ≃
L2

(
IR2; C, 1

2π
e−

1
2
(x2+y2)

)
. The operators ã+, ã−, ã◦ can be identified to operators on

Γ(Ce1 ⊕Ce2), acting on the exponential variable τ written as τ = (x2 + y2)/2, where

x, y are independent standard Gaussian variables. Under this identification,

ã◦ =
1

2
(α+

x α
−
x + α+

y α
−
y ),

ã+ = −1

2
((α+

x )
2 + α+

x α
−
x + (α+

y )
2 + α+

y α
−
y ),

ã− = −1

2
((α−

x )
2 + α+

x α
−
x + (α−

y )
2 + α+

y α
−
y ),

P =
i

2
((α+

x )
2 − (α−

x )
2 + (α+

y )
2 − (α−

y )
2).

One can check also that

τ =
1

2
((α+

x + α−
x )

2 + (α+
y + α−

y )
2) =

1

2
(x2 + y2)

is a discrete square of Gaussian white noise. This gives the possibility of defining

gamma and continuous binomial random variables with parameter 1/2 instead of

1. It is natural to ask whether this discrete time analysis with parameter 1 can give

representation of laws of parameter strictly smaller than 1, with classical commutation

relation. It turns out that this it is possible, e.g. for the gamma law with parameter

12



1/2, simply by letting

ã◦ =
1

2
α+
x α

−
x ,

ã+ = −1

2
((α+

x )
2 + α+

x α
−
x ),

ã− = −1

2
((α−

x )
2 + α+

x α
−
x ),

P =
i

2
((α+

x )
2 − (α−

x )
2),

i.e. each distributions is split into two independent halves with parameter 1/2. The

approach proposed in Sect. 6 will allow to go below this limit.

5 Annihilation and creation densities

The annihilation and creation densities associated to a−(u) and a+(u) are defined

from

⟨a−t Ψf ,Ψg⟩ = f(t)⟨Ψf ,Ψg⟩ = ⟨Ψf , a
+
t Ψg⟩,

i.e.

a−t Ψf = f(t)⊗Ψf and a+t Ψf = δ(t− ·) ◦Ψf , f ∈ C∞
c (IR+).

The creation density a+t is meaningful only in distribution sense, a property which

is linked to the non-differentiability of Brownian paths. Similarly, a creation density

can be defined for a⊖(u) and a⊕(u), from

⟨a⊖t Ψf ,Ψg⟩ = −
∫ ∞

t

f ′(s)g(s)ds⟨Ψf ,Ψg⟩

=

(
f(t)g(t) +

∫ ∞

t

f(s)g′(s)ds

)
⟨Ψf ,Ψg⟩ = ⟨Ψf , a

⊕
t Ψg⟩, t ∈ IR+,

i.e.

a⊖t Ψf = −(1[t,∞)f
′) ◦Ψf and a⊕t Ψg = (g(t)δ(t− ·) + 1[t,∞)g

′) ◦Ψg.

The sum of annihilation and creation densities a⊖t and a⊕t equals again the conservation

density:

a⊖t + a⊕t = a◦t = a+t a
−
t .

Due to the fact that D̃ satisfies the property D̃sF = 0, s > t, if F ∈ S is Ft-

measurable, the stochastic integration of adapted operator processes with respect to

dA⊖
t and dA⊕

t can be developed, cf. [15]. However if 0 < s < a and F ∈ S is

13



F(a,b]-measurable we do not have D̃sF = 0, in particular ã−t and ã+t are not quantum

noises in the sense of e.g. [6] and the processes Ã−
t and Ã+

t are not adapted operator

processes. The following Itô table has been proved in [14] in the sense of non-adapted

quantum stochastic calculus:

· dA−
t dA⊖

t dA⊕
t dA+

t

dA+
t 0 0 0 0

dA⊕
t 0 0 0 0

dA⊖
t 0 0 dA◦

t dA+
t

dA−
t 0 0 dA−

t dt

with commutator table

[·, ·] dA−
t dA⊖

t dA⊕
t dA+

t

dA−
t 0 0 dA−

t dt
dA⊖

t 0 0 dA◦
t dA+

t

dA⊕
t −dA−

t −dA◦
t 0 0

dA+
t −dt −dA+

t 0 0

(5.1)

In adapted quantum stochastic calculus, the commutator table

{[Aε
t , A

η
t ], ε, η = −,+, ◦},

is immediately deduced from the commutator table

{[dAε
t , dA

η
t ] ε, η = −,+, ◦},

from the relation

d[Aε
t , A

η
t ] = [dAε

t , dA
η
t ], ε, η = −,+, ◦,

which follows from the adaptedness of A−
t , A

+
t , A

◦
t . However, here the processes A⊖

t

and A⊕
t are not adapted and we only have

d[Aε
t , A

η
t ] = Aε

tdA
η
t − (dAη

t )A
ε
t + Aη

t dA
ε
t − (dAε

t)A
η
t + dAε

t · dA
η
t − dAη

t · dAε
t

= [Aε
t , dA

η
t ] + [Aη

t , dA
ε
t ] + [dAε

t , dA
η
t ], ε, η = ⊖,⊕.

Thus for ε, η = ⊖,⊕, the commutator table of processes does not follow from the

commutator table of differentials (5.1).

The classical commutation relations

[a−(u), a◦(v)] = a−(uv), [a◦(u), a+(v)] = a+(uv), [a−(u), a+(v)] = ⟨u, v⟩

are extended to include a⊖(u) and a⊕(u) in the following proposition.

14



Proposition 5.1 We have the commutator table, for u, v ∈ C∞
c (IR+):

[·, ·] a−(v) a⊖(v) a⊕(v) a+(v)

a−(u) 0 a−(ṽu′ − uv) a−(ṽu′) ⟨u, v⟩
a⊖(u) a−(uv − ũv′) 0 a◦(ũv′) a+(ũv′)

a⊕(u) −a−(ũv′) −a◦(ṽu′) 0 a+(uv − ũv′)

a+(u) −⟨v, u⟩ −a+(ṽu′) a+(ṽu′ − uv) 0

Proof. We compute

[a⊖(u), a+(v)]Ψf = (ũv′) ◦Ψf , (5.2)

[a⊕(u), a+(v)]Ψf = ((uv − ũv′)f) ◦Ψf , (5.3)

[a−(u), a⊖(v)]Ψf = ⟨ṽu, f ′⟩ ⊗Ψf = ⟨vu− ṽu′, f⟩ ⊗Ψf , (5.4)

[a−(u), a⊕(v)]Ψf = ⟨ṽu′, f⟩ ⊗Ψf = ⟨uv, f⟩ ⊗Ψf − ⟨ṽu, f ′⟩ ⊗Ψf , (5.5)

[a⊖(u), a⊕(v)]Ψf = (ũv′f) ◦Ψf = (ũ(vf)′ − ũvf ′) ◦Ψf . (5.6)

□

The commutator table in terms of matrix elements

⟨[·, ·]Ψf ,Ψg⟩ a−(v) a⊖(v) a⊕(v) a+(v)
a−(u) 0 ⟨ṽu, f ′⟩ ⟨ṽu′, f⟩ ⟨u, v⟩
a⊖(u) −⟨ũv, f ′⟩ 0 ⟨ũv′f, g⟩ ⟨ũv′, g⟩
a⊕(u) −⟨ũv′, f⟩ −⟨ṽu′f, g⟩ 0 ⟨ũv, g′⟩
a+(u) −⟨v, u⟩ −⟨ṽu′, g⟩ −⟨ṽu, g′⟩ 0

can also be rewritten as

[·, ·] a−(v) a⊖(v) a⊕(v) a+(v)

a−(u) 0 ⟨ṽu, f ′⟩ ⟨uv, f⟩ − ⟨ṽu, f ′⟩ ⟨u, v⟩
a⊖(u) −⟨ũv, f ′⟩ 0 ⟨ũ(vf)′, g⟩ − ⟨ũvf ′, g⟩ ⟨ũv′, g⟩
a⊕(u) ⟨ũv, f ′⟩ − ⟨uv, f⟩ ⟨ṽuf ′, g⟩ − ⟨ṽ(uf)′, g⟩ 0 ⟨uv, g⟩ − ⟨ũv′, g⟩
a+(u) −⟨v, u⟩ −⟨ṽu′, g⟩ ⟨ṽu′, g⟩ − ⟨uv, g⟩ 0

This gives a formal expression for the commutator densities:

[a⊖s , a
+
t ]Ψf = 1[s,∞)(·)δ′·(t) ◦Ψf ,

[a⊕s , a
+
t ]Ψf = δ(s− t)⊗ δ(s− ·) ◦Ψf − (1[s,∞)(·)δ′·(t)) ◦Ψf ,

[a⊖s , a
−
t ]Ψf = 1[s,∞)(t)f

′(t)⊗Ψf ,

[a⊕, a−t ]Ψf = −f(t)δ(s− t)⊗Ψf − 1[s,∞)(t)f
′(t)⊗Ψf ,

[a⊖s , a
⊕
t ]Ψf = −f(t)⊗ (1[s,∞)(·)δ′·(t)) ◦Ψf + 1[s,∞)(t)f

′(t)⊗ δ(t− ·) ◦Ψf .

These relations are only formal, and it is the goal of the next section to remove the

infinities and give a meaning to these relations. In fact, the compositions on S of
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operators such as Ã+
t Ã

+
t = ã+(1[0,t])ã

+(1[0,t]) and Ã−
t Ã

+
t = ã−(1[0,t])ã

+(1[0,t]) are not

defined in L2(Ω), due to the non-differentiability of Nt in the jump times Tk, k ≥ 1.

The redefinition introduced in the next section will be it make it possible to formulate

a closed commutator table and to treat A⊖
t and A⊕

t as if they were adapted processes,

or as if [Aε
t , dA

η
t ] = 0.

6 Renormalized commutator table

It has been shown in [2] that quantum stochastic calculus for powers of annihilation

and creation densities can make sense through a renormalization procedure. For

example we have formally

[a−2
t , a+2

s ] = 2(δ(s− t))2 + 4δ(s− t)a◦t ,

and this relation is given sense by renormalizing the square (δ(s − t))2 of the Dirac

distribution as (δ(s− t))2 = cδ(s− t) where c is an arbitrary constant, which gives

[a−2
t , a+2

s ] = 2cδ(s− t)2 + 4δ(s− t)a◦t .

The annihilation and creation densities a⊖t and a⊕t are in fact already higher powers

of noise, since their sum is a◦t , and their composition itself leads to infinities. In

this section we will define a modified composition of operators for which A⊖
t and A⊕

t

behave as adapted processes, i.e. the commutator table associated to this composition

is identical to (5.1). Consider the integration by parts

⟨ũv′, f⟩ = ⟨uv, f⟩ − ⟨ũv, f ′⟩, u, v, f ∈ C∞
c (IR+), (6.1)

which is the integrated form of

ũ(t)v′(t)f(s)δ(t− s) = u(t)v(t)f(s)δ(t− s) + ũ(t)v(t)f ′(s)δ′t(s) (6.2)

with respect to ds and dt. Redefinition will consist here in removing the term

ũ(t)v(t)f ′(s)δ′t(s)

in (6.2) (i.e. the term −⟨ũv, f ′⟩ in (6.1)), or equivalently in replacing ũv with uv in

(5.2)-(5.6), to get

[a⊖(u), a+(v)]′Ψf = (uv) ◦Ψf = a+(uv)Ψf ,

[a−(u), a⊖(v)]′Ψf = 0,

[a⊖(u), a⊕(v)]′Ψf = (uvf) ◦Ψf = a◦(uv) ◦Ψf ,

[a⊕(u), a+(v)]′Ψf = 0,

[a−(u), a⊕(v)]′Ψf = ⟨uv, f⟩ ⊗Ψf = a−(uv)Ψf , u ∈ L2(IR+) ∩ L4(IR+),
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where the notation [·, ·]′ is used to denote the redefined commutation relation. This

implies the redefined composition rules

a⊖(u)a+(v) := a+(v)a⊖(u) + a+(uv), (6.3)

a⊖(v)a−(u) := a−(u)a⊖(v), (6.4)

a⊕(u)a+(v) := a+(v)a⊕(u), (6.5)

a⊕(v)a−(u) := a−(u)a⊕(v)− a−(uv), (6.6)

a⊖(u)a◦(v) := a◦(v)a⊖(u) + a◦(uv) (6.7)

a⊕(u)a◦(v) := a◦(v)a⊕(u)− a◦(uv), (6.8)

where the right-hand sides make sense as ordinary composition of operators. The

commutator table becomes

[·, ·]′ a−(v) a⊖(v) a⊕(v) a+(v)
a−(u) 0 0 a−(uv) ⟨u, v⟩
a⊖(u) 0 0 a◦(uv) a+(uv)
a⊕(u) −a−(uv) −a◦(vu) 0 0
a+(u) −⟨v, u⟩ −a+(vu) 0 0

(6.9)

u, v ∈ L2(IR+) ∩ L4(IR+), or in terms of matrix elements:

⟨[·, ·]′Ψf ,Ψg⟩ a−(v) a⊖(v) a⊕(v) a+(v)
a−(u) 0 0 ⟨uv, f⟩ ⟨u, v⟩
a⊖(u) 0 0 ⟨uvf, g⟩ ⟨uv, g⟩
a⊕(u) −⟨uv, f⟩ −⟨vuf, g⟩ 0 0
a+(u) −⟨v, u⟩ −⟨vu, g⟩ 0 0

This implies in particular

d[Aε
t , A

η
t ]

′ = [dAε
t , dA

η
t ], ε, η = ⊖,⊕,−,+,

i.e. the table (6.9) is deduced from the table (5.1) as if t 7→ a⊖(1[0,t]) and t 7→ a⊕(1[0,t])

were adapted processes. Let N(u) denote the (non-compensated) Poisson noise:

N(u) =

∫ ∞

0

u(s)ds+ ã−(u) + ã+(u).

The commutator table implies for u, v ∈ L2(IR+) ∩ L4(IR+):

[·, ·]′ ã−(v) ã+(v)
ã−(u) 0 0
ã+(u) 0 N(uv)

(6.10)
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i.e. the commutator [Ã−
t , Ã

+
t ] is the quadratic variation Nt of the compensated Poisson

process Nt − t. For a more probabilistic approach to the above redefinition, we have

the commutation relation

[ã−(u), ã+(v)] =
∞∑
k=1

ũ(Tk)v
′(Tk),

and the above redefinition states that

[ã−(u), ã+(v)]′ =
∞∑
k=1

u(Tk)v(Tk) =

∫ ∞

0

u(t)v(t)dNt.

In particular, the powers of the operators aε(u), ε = −,+,⊖,⊕ are now defined as

operators on S for u ∈ ∩p≥2L
p(IR+).

We close this section with an interpretation of the above renormalization in terms of

operator densities. In

[a⊖s , a
+
t ]Ψf = 1[s,∞)(·)δ′·(t) ◦Ψf ,

[a⊕s , a
+
t ]Ψf = δ(s− t)⊗ δ(s− ·) ◦Ψf − (1[s,∞)(·)δ′·(t)) ◦Ψf ,

we replaced the second quantization

1[s,∞)(·)δ′(t− ·) ◦Ψf

of 1[s,∞)(·)δ′(t− ·) by
δ(s− t)⊗ δ(s− ·) ◦Ψf ,

to obtain:

[a⊖s , a
+
t ]

′Ψf = δ(s− t)⊗ δ(s− ·) ◦Ψf ,

[a⊕s , a
+
t ]

′Ψf = 0.

By duality from the last relation (or using (6.4) and (6.5)), we have

[a⊖s , a
−
t ]

′Ψf = 0,

i.e. in

[a⊖s , a
−
t ]Ψf = 1[s,∞)(t)f

′(t)⊗Ψf ,

we replaced 1[s,∞)(t)f
′(t) by 0. With this rule, from

[a⊕, a−t ]Ψf = −f(t)δ(s− t)⊗Ψf − 1[s,∞)(t)f
′(t)⊗Ψf ,

[a⊖s , a
⊕
t ]Ψf = −f(t)⊗ (1[s,∞)(·)δ′·(t)) ◦Ψf + 1[s,∞)(t)f

′(t)⊗ δ(t− ·) ◦Ψf ,
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we obtain

[a⊕, a−t ]
′Ψf = f(t)δ(s− t)⊗Ψf ,

[a⊖s , a
⊕
t ]

′Ψf = f(t)δ(t− s)⊗ δ(t− ·) ◦Ψf .

To summarize, the commutator densities become

[a⊖s , a
+
t ]

′Ψf = δ(s− t)⊗ δ(s− ·) ◦Ψf ,

[a⊕s , a
+
t ]

′Ψf = 0,

[a⊖s , a
−
t ]

′Ψf = 0,

[a⊕, a−t ]
′Ψf = f(t)δ(s− t)⊗Ψf ,

[a⊖s , a
⊕
t ]

′Ψf = f(t)δ(t− s)⊗ δ(t− ·) ◦Ψf .

7 Lévy processes in continuous time on sl2 and on

the finite difference algebra fd

In this section we construct continuous time realizations of the gamma and continuous

binomial processes, using the commutator tables of Sect. 6. We let:

q(u) = a−(u) + a+(u), p(u) = i(a−(u)− a+(u)),

q̃(u) = ã−(u) + ã+(u), p̃(u) = i(ã−(u)− ã+(u)),

q◦(u) = a⊖(u) + a⊕(u) = a◦(u), p◦(u) = i(a⊖(u)− a⊕(u)),

and

Qt = q(1[0,t]) = A−
t + A+

t , Pt = p(1[0,t]) = i(A−
t − A+

t ),

Q̃t = q̃(1[0,t]) = Ã−
t + Ã+

t , P̃t = p̃(1[0,t]) = i(Ã−
t − Ã+

t ),

Q◦
t = q◦(1[0,t]) = A⊖

t + A⊕
t = A◦

t , P ◦
t = p◦(1[0,t]) = i(A⊖

t − A⊕
t ), t ∈ IR+.

The Itô table becomes

· dQt dQ◦
t dP ◦

t dPt

dPt idt idA−
t dA−

t dt
dP ◦

t idA+
t idQ◦

t dQ◦
t dA+

t

dQ◦
t dA+

t dQ◦
t −idQ◦

t −idA+
t

dQt dt dA−
t −idA−

t −idt
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cf. [14], with commutator table

[·, ·]′ Qt Q◦
t P ◦

t Pt

Qt 0 −iPt −iQt -2it
Q◦

t iPt 0 −2iQ◦
t −iQt

P ◦
t iQt 2iQ◦

t 0 iPt

Pt 2it iQt −iPt 0

In particular, the commutator table

[·, ·]′ Q◦
t −iP ◦

t

Q◦
t 0 −2Q◦

t

−iP ◦
t 2Q◦

t 0

is a representation of the Lie algebra of upper triangular 2 × 2 matrices, generated

respectively by [
0 1
0 0

]
,

[
1 0
0 −1

]
,

[
1 0
0 1

]
,

whereas the table
[·, ·] Qt −iPt

Qt 0 −2t
−iPt 2t 0

(7.1)

is the well-known representation of the Heisenberg-Weyl Lie algebra hw. This shows

that Ã−
t and Ã+

t can be used to construct a representation of the finite difference

algebra which is isomorphic to the algebra of triangular 2× 2 matrices.

Let {I,M,B−, B+} be a basis of the Lie algebra gl2 of the linear group GL(2; IR), such

that {M,B−, B+} is a basis of the Lie algebra sl2, i.e.

[B−, B+] = M, [M,B−] = −2B−, [M,B+] = 2B+.

We fix φ ∈ IR and let

T = M + e−iφB− + eiφB+, U = (M − I)/2 + e−iφB−, V = (M − I)/2 + eiφB+.

Then {T, U, V } is a basis of the algebra fd, called the finite difference algebra:

[U, V ] = [T, V ] = [U, T ] = T.

The following proposition is an immediate consequence of the commutator tables (6.9)

or (6.10).
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Proposition 7.1 A family (jst)0≤s<t of representations of the finite difference Lie

algebra fd (or Lévy process on fd) is defined by

jst(T ) = N(1(s,t]), jst(U) = ã−(1(s,t]), jst(V ) = ã+(1(s,t]),

The family (jst)0≤s<t also defines a representation of the current algebra

fdIR+ =

{
i=n∑
i=1

Xi1(ti−1,ti] : Xi ∈ fd, i = 1, . . . , n, 0 ≤ t0 < · · · < tn, n ≥ 1

}
.

We have jst(U)∗ = jst(V ) and jst(T )
∗ = jst(T ). This Lévy process is the restriction

to fd of the Lévy process j̃st on gl2 of Sect. 3.5 in [1] with

j̃st(B
−)1 = 0 and j̃st(T )1 = (t− s)1.

The following result holds only when writing the powers of operators in normal or-

der according to the commutator tables (6.9) or (6.10) (according to the classical

commutator table, Ã−
t + Ã+

t = Qt + Q◦
t = A−

t + A+
t + A◦

t is a compensated Poisson

process).

Proposition 7.2 i) The process

t 7→ Ã−
t + Ã+

t = Qt +Q◦
t = Q̃t = A−

t + A+
t + A◦

t , t ∈ IR+,

is a realization of the compensated gamma process (cf. [3], [4]).

ii) The process

t 7→ i(Ã−
t − Ã+

t ) = Pt + P ◦
t = P̃t = i(A−

t − A+
t + A⊖

t − A⊕
t ), t ∈ IR+,

is the continuous binomial process, cf. Sect. 5.4.1 of [8].

Proof. We have for φ = 0:

t+ ã−(1[0,t]) + ã+(1[0,t]) = j0,t(T ) = j0,t(B
− +B+ +M),

and Cor. 4.2 of [1] shows that j0,t(T ) = j0,t(B
−+B++M) is the gamma or exponential

process with density x 7→ Γ(t)−1xt−1e−x1[0,∞)(x) and mean t. For φ = π/2 we have

i(ã−(1[0,t])− ã+(1[0,t])) = j0,t(B
− +B+) = ij0,t(U − V )

and Cor. 4.2 of [1] also shows that j0,t(B
− +B+) has density

x 7→ 2t−1

πΓ(t)

∣∣∣∣Γ(
t+ ix

2

)∣∣∣∣2 ,
cf. (1.7.2) in [10] and Sect. 4.3.5 of [16], with characteristic function u 7→ (coshu)−t.

□
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In order to construct a representation of sl2 itself, the conservation operator ã◦ has

been used in discrete time in Sect. 4. In this section, only a representation of fd has

been constructed in Prop. 7.1. The definition of an operator density ã+t ã
−
t for Ã◦

t in

order to construct a representation of sl2 seems beyond the redefinition described in

this paper.
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