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Abstract

Asian yield options are priced in the CIR model using conditional moment
matching for the gamma distribution. This method is fast and simple to im-
plement, and it shows a high degree of accuracy without being subject to the
numerical instabilities that can be encountered with more sophisticated ap-
proaches.
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We consider Asian call options priced as

AOc(K,T ) := IE

[
e−ΛT

(
ΛT
T

−K

)+
]

where

ΛT :=

∫ T

0

Stdt,

and (St)t∈R+ is the Cox-Ingersoll-Ross (CIR) solution of the stochastic differential

equation

dSt = (a− bSt)dt+ σ
√
StdWt. (0.1)
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Unconditional gamma approximation

Using moment matching, AOc(K,T ) can be estimated as

AOc(K,T ) := IE

[
e−ΛT

(
ΛT
T

−K

)+
]

(0.2)

≈ θT
(1 + θT )νT+1

(
νTQ

(
1 + νT , KT +

KT

θT

)
−
(
KT +

KT

θT

)
Q

(
νT , KT +

KT

θT

))
under the unconditional gamma approximation, where

θT :=
Var[ΛT ]

IE[ΛT ]
and νT :=

IE[ΛT ]

θT
=

(IE[ΛT ])
2

Var[ΛT ]
,

and

IE[ΛT ] = S0
1− e−bT

b
+ a

e−bT + bT − 1

b2
,

Var[ΛT ] = σ2S0
1− 2bTe−bT − e−2bT

b3
+ σ2a

5− 2bT − e−2bT − 4(bT + 1)e−bT

2b4
.

Conditional gamma approximation

Under the conditional gamma approximation we find

AOc(K,T ) = IE

[
e−ΛT

(
1

T

∫ T

0

Stdt−K

)+
]

(0.3)

≈ 1

T

∫ ∞

0

θT (y)

(1 + θT (y))νT (y)+1

(
νT (y)Q

(
1 + νT (y), KT +

KT

θT (y)

)
−
(
KT +

KT

θT (y)

)
Q

(
νT (y), KT +

KT

θT (y)

))
fST

(y)dy,

see § 4.4 of [4], where

θT (y) :=
Var[ΛT | ST = y]

IE[ΛT | ST = y]
and νT (y) :=

IE[ΛT | ST = y]

θT (y)
=

(IE[ΛT | ST = y])2

Var[ΛT | ST = y]
,

and

IE[ΛT | ST = y] = −σ
2

b2
+

1

b(ebT − 1)2

(
σ2T

2
(e2bT − 1) + (S0 + y)(e2bT − 2bTebT − 1)

+
√
yS0ebT

(
ebT (bT − 2) + bT + 2

)I2a/σ2

(
2b
√
yS0

σ2 sinh(bT/2)

)
+ I2a/σ2−2

(
2b
√
yS0

σ2 sinh(bT/2)

)
I2a/σ2−1

(
2b
√
yS0

σ2 sinh(bT/2)

)
 .
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Var[ΛT | ST = y] = −2
σ4

b4
+ σ2 (e

bT (2bT + 1)− 1)

b2(ebT − 1)

(
σ2

b2
+ IE[ΛT | ST = y]

)
+

1

b(ebT − 1)2

(
−σ4T 2 e

2bT

b
− 2

σ2T

b
(S0 + y)

(
e2bT − ebT (bT + 1)

)

−σ
2T

2b

√
yS0ebT

(
ebT (3bT − 4) + bT + 4

) I2a/σ2

(
4b
√
yS0e−bT

σ2(1−e−bT )

)
+ I2a/σ2−2

(
4b
√
yS0e−bT

σ2(1−e−bT )

)
I2a/σ2−1

(
2b
√
yS0

σ2 sinh(bT/2)

)
+

yS0e
bT

b(1− e−bT )2
(
ebT (bT − 2) + bT + 2

)2(
2 +

I2a/σ2−3 + I2a/σ2+1

I2a/σ2−1

−
(I2a/σ2−2 + I2a/σ2)2

(I2a/σ2−1)2

))
,

with Iz := Iz

(
2b
√
yS0

σ2 sinh(bT/2)

)
, and

Iλ(z) :=
(z
2

)λ ∞∑
k=0

(z2/4)k

k!Γ(λ+ k + 1)
, z, λ ∈ R,

is the modified Bessel function of the first kind, z ∈ R. In (0.3) above, fST
is the

non-central chi-square probability density function

fST
(y) :=

2b

σ2(1− e−bT )
exp

(
−2b(S0 + yebT )

σ2(ebT − 1)

)(
yebT

S0

)a/σ2−1/2

I2a/σ2−1

(
2b
√
yS0

σ2 sinh(bT/2)

)
,

(0.4)

y > 0, and

Γ(λ) :=

∫ ∞

0

xλ−1exdx

denotes the gamma function.

Numerical results

In Table 1 we compare our results to the joint density (JD) method of [2], [3], with

the parameters of [1].

3



Maturity Maturity
T = 0.1 T = 0.5

Strike Type JD[3] Stratified (0.3) Gamma (0.2) JD[3] Stratified (0.3) Gamma (0.2)

0.08 AOc 0.0199 0.0199 0.0199 0.0201 0.0201 0.0201

0.12 AOc 0.0002 0.0002 0.0002 0.0018 0.0018 0.0018

Strike Type
T = 1 T = 2

JD[3] Stratified (0.3) Gamma (0.2) JD[3] Stratified (0.3) Gamma (0.2)

0.08 AOc 0.0193 0.0193 0.0194 0.0170 0.0170 0.0171

0.12 AOc 0.0023 0.0023 0.0023 0.0019 0.0019 0.0018

Strike Type
T = 5 T = 10

JD[3] Stratified (0.3) Gamma (0.2) JD[3] Stratified (0.3) Gamma (0.2)

0.08 AOc 0.0118 0.0118 0.0118 0.0069 0.0069 0.0069

0.12 AOc 0.0006 0.0006 0.0006 0.0001 0.0001 0.0001

Table 1: Asian prices, S0 = 0.1, a = 0.15, b = 1.5, σ = 0.2.

Figure 1 presents the evolution of prices according to maturity times. All three meth-

ods show consistent numerical results.
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Figure 1: Regular Asian (A) cap prices for T ∈ [0, 1].

Table 2 presents a sample of computation times for comparison of the different meth-

ods, cf. [4] for details.

Parameters Time

S0 a b σ T K Stratified (0.3) Gamma (0.2) Monte Carlo JD[3]

2.1 0.0 -0.05 0.72 1.0 2.0 1.32e-02 2.60e-5 144.46 8.62

Table 2: Computation times in seconds.∗
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Call-put parity

The relations

E
[
eηΛT

]
= e−S0ψ(η)−aϕ(η), (0.5)

where b̄ :=
√
b2 − 2ησ2 and

ψ(η) :=
2η(e−b̄T − 1)

b̄+ b+ e−b̄T (b̄− b)
ϕ(η) :=

1

σ2
(b̄− b)T +

2

σ2
log

b̄+ b+ e−b̄T (b̄− b)

2b̄
,

allow us to estimate the regular Asian floor price as

AOf (K,T ) = IE

[
e−ΛT

(
K − ΛT

T

)+
]

= IE

[
e−ΛT

(
ΛT
T

−K

)+
]
−
(
1

T
IE
[
ΛT e

−ΛT
]
−K IE

[
e−ΛT

])
= AOc(K,T ) +K IE

[
e−ΛT

]
− 1

T
IE
[
ΛT e

−ΛT
]
,

from

IE
[
ΛT e

−ΛT
]
= −(S0ψ

′(−1) + aϕ′(−1))e−S0ψ(−1)−aϕ(−1)

= −S0

(
2b̄(e−b̄T − 1)− 2σ2Te−b̄T

b̄(b̄+ b+ e−b̄T (b̄− b))
− 2σ2(e−b̄T − 1)(1− e−b̄T (b̄− b)T + e−b̄T )

b̄(b̄+ b+ e−b̄T (b̄− b))2

)
E
[
e−ΛT

]
+
a

b̄

(
T + 2

1− e−b̄T (b̄− b)T + e−b̄T

b̄+ b+ e−b̄T (b̄− b)
− 2

b̄

)
E
[
e−ΛT

]
,

with b̄′ = −σ2/b̄ and η = −1, since

ψ′(η) =
2(e−b̄T − 1)

b̄+ b+ e−b̄T (b̄− b)
+

2ηTσ2e−b̄T

b̄(b̄+ b+ e−b̄T (b̄− b))

− 2η(e−b̄T − 1)

(b̄+ b+ e−b̄T (b̄− b))2
(−σ2/b̄+ (σ2T/b̄)e−b̄T (b̄− b)− e−b̄T (σ2/b̄))

=
2b̄(e−b̄T − 1) + 2ηTσ2e−b̄T

b̄(b̄+ b+ e−b̄T (b̄− b))
+

2ησ2(e−b̄T − 1)(1− Te−b̄T (b̄− b) + e−b̄T )

b̄(b̄+ b+ e−b̄T (b̄− b))2
,

and

ϕ′(η) = −T
b̄
+

2(−σ2/b̄+ (σ2T/b̄)e−b̄T (b̄− b) + e−b̄T (−σ2/b̄))

σ2(b̄+ b+ e−b̄T (b̄− b))
+

2(2σ2/b̄)

σ2(2b̄)

= −T
b̄
− 2

1− e−b̄T (b̄− b)T + e−b̄T

b̄(b̄+ b+ e−b̄T (b̄− b))
+

2

b̄2
.
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