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Abstract

Using finite difference operators, we define a notion of boundary and sur-
face measure for configuration sets under Poisson measures. A Margulis-Russo
type identity and a co-area formula are stated with applications to deviation
inequalities and functional inequalities, and bounds are obtained on the associ-
ated isoperimetric constants.
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1 Introduction

Isoperimetry consists in determining sets with minimal surface measure, among sets

of given volume measure. In probability theory, isoperimetry is generally formulated

by expressing the volume of sets via a probability measure, and surface measures

using the expectation of an appropriate gradient norm. Gaussian isoperimetry is

a well-known subject, see, e.g., [15] for a review. A notion of surface measure on

configuration spaces has been recently introduced in [6] using differential operators.

Discrete isoperimetry is also possible on graphs and Markov chains, by defining the

surface measure of a set A as an average of the number of elements in A that are

connected to an element in Ac, cf. e.g. [10], [14], without requiring any smoothness
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on A. In this framework, an isoperimetric result has been obtained in [3], Prop. 3.6,

for i.i.d. Poisson vectors in Nd.

In this paper we consider the problem of isoperimetry on configuration space

in finite volume, i.e. on the space Ω of a.s. finite configurations ω = {x1, . . . , xn},
n ≥ 1, of a metric space X. The configuration space Ω is equipped with a Poisson

measure π with intensity σ, where σ is a finite diffuse Borel measure on X. Working

with the configuration space instead of finite Poisson distributed i.i.d. vectors is

similar to working with measurable functions on R instead of step functions. Each

(π-a.s. finite) configuration ω ∈ Ω has a set of “forward” neighbors of the form

ω ∪ {x}, x ∈ ωc = X \ ω, and a set of “backward” neighbors of the form ω \ {x},
x ∈ ω. A Markov chain and a graph of unbounded degree can both be constructed

on Ω. In the Markov case one adds a point distributed according to the normalized

intensity measure to a given configuration. In the graph case, a point chosen at

random is removed from a given configuration. Such operations of additions and

subtraction of points are also frequently used in statistical mechanics and in connection

with logarithmic Sobolev inequalities, see, e.g., [9]. Here they allow to construct

two notions of neighbor (respectively denoted forward and backward) for a given

configuration. It turns out that the graph and Markov kernels are mutually adjoint

under the Poisson measure, and we will work with a symmetrized kernel in order

to take both the graph and Markov structures into account. We emphasize that it

is necessary here to use the graph and Markov approaches simultaneously (i.e. to

consider both forward and backward neighbors), since considering only the Markov

part or the graph part separately yields trivial values of the isoperimetric constants

h±p = 0. In fact the classical discrete isoperimetric results that hold in our setting are

those which are valid both in the Markov and graph cases. This notion of neighbors is

used to define the inner and outer boundary and the surface measure πs of arbitrary

sets of configurations. Isoperimetry and the related isoperimetric constants are then

studied by means of co-area formulas. We can define dimension free isoperimetric

constants

h1 = inf
0<π(A)< 1

2

πs(∂A)

π(A)
,
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and

h∞ = inf
0<π(A)< 1

2

π(∂A)

π(A)
.

Let λ2 = 1 denote the optimal constant in the Poincaré inequality on configuration

space for the finite difference operator D. We have 1
2
≤ h1 ≤ 2 + 2

√
σ(X), and

max

(
1√

πσ(X)
,

1

2σ(X)

)
≤ h∞ ≤ 4

(
1

σ(X)
+

1√
σ(X)

)
.

Margulis-Russo type identities are also obtained and yield asymptotic estimates for

the probability of monotone sets.

Isoperimetry for graphs and Markov chains is often applied to determine bounds

on the spectral gaps λ2, λ∞, providing an estimate of the speed of convergence to equi-

librium for stochastic algorithms ans in statistical mechanics. In such situations the

values of the isoperimetric constants are easily computed as infima on finite sets. In

the configuration space case the situation is different since λ2 and λ∞ are known and

used to deduce bounds on the isoperimetric constants.

We proceed as follows. In Sect. 2 we construct a finite difference gradient on

Poisson space and recall the associated integration by parts formulas, as well as the

Clark formula. We also extend the isoperimetric result of [3] (see [2] on Gaussian space

and [7] on Wiener space and path space), and state a Margulis-Russo type identity, in

the general setting of configuration spaces under Poisson measures. In Sect. 3, a graph

is constructed on configuration space by addition or deletion of configuration points.

The inner and outer boundaries of subsets of configurations and their surface measures

are defined in Sect. 4, e.g. a configuration ω ∈ A belongs to the inner boundary of A if

it has “at least” a (forward or backward) neighbor in Ac. A deviation result in terms

of the intensity parameter is obtained from the Margulis-Russo identity on Poisson

space. Co-area formulas for the finite difference gradient, which differ from the Gauss

type formulas of [11], are proved in Sect. 5. Boundary measures and surface measures

are defined by averaging the norms of finite difference gradients, which represent the

measure of the flow in and out a given set. An equivalence criterion for functional

inequalities is also proved. In Sect. 6, the main isoperimetric constants are introduced,

and bounds are stated on these constants. Sect. 7 is devoted to a generalization of
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Cheeger’s inequality, following the arguments of [5], [12], [13].

2 Preliminaries

Let X be a metric space with Borel σ-algebra B(X) and let σ be a finite and diffuse

measure on X. Let Ω denote the set of Radon measures

Ω =

{
ω =

i=N∑
i=1

δxi : (xi)
i=N
i=1 ⊂ X, xi 6= xj, ∀i 6= j, N ∈ N ∪ {∞}

}
,

where δx denotes the Dirac measure at x ∈ X. For convenience of notation we identify

ω =
∑i=n

i=1 δxi with the set ω = {x1, . . . , xn}. Let F denote the σ-algebra generated

by all applications of the form ω 7→ ω(B), B ∈ B(X), and let π denote the Poisson

measure with intensity σ on Ω, defined via

π({ω ∈ Ω : ω(A1) = k1, . . . , ω(An) = kn}) =
i=n∏
i=1

σ(Ai)
ki

ki!
e−σ(Ai), k1, . . . , kn ∈ N,

on the σ-algebra F generated by sets of the form

{ω ∈ Ω : ω(A1) = k1, . . . , ω(An) = kn},

for k1, . . . , kn ∈ N, and disjoint A1, . . . , An ∈ B(X). Let In(fn) denote the multiple

Poisson stochastic integral of the symmetric function fn ∈ L2(X, σ)◦n, defined as

In(fn)(ω) =

∫
∆n

fn(t1, . . . , tn)(ω(dt1)−σ(dt1)) · · · (ω(dtn)−σ(dtn)), fn ∈ L2
σ(Xn)◦n,

with ∆n = {(t1, . . . , tn) ∈ Xn : ti 6= tj, ∀i 6= j}. We recall the isometry formula

E[In(fn)Im(gm)] = n!1{n=m}〈fn, gm〉L2
σ(X)◦n ,

see [19]. As is well-known, every square-integrable random variable F ∈ L2(ΩX , P )

admits the Wiener-Poisson decomposition

F =
∞∑
n=0

In(fn)

in series of multiple stochastic integrals.

The gradient chosen here on Poisson space is a finite difference operator (see [6] for a

different construction using derivation operators).
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Definition 2.1 For any F : Ω −→ R, let

DxF (ω) = (F (ω)− F (ω + δx))1{x∈ωc} + (F (ω)− F (ω − δx))1{x∈ω},

for all ω ∈ Ω and x ∈ X.

Now, given u : Ω×X → R with sufficient integrability properties, we let

δσ(u) =

∫
X

u(x, ω)σ(dx)−
∫
X

u(x, ω − δx)ω(dx),

and

δω(u) =

∫
X

u(x, ω)ω(dx)−
∫
X

u(x, ω + δx)σ(dx).

Note that in the definition of δω(u), the integral over the diffuse measure σ makes

sense since σ(dx)-a.s., x /∈ ω. Note that

DxF (ω + δx) = F (ω + δx)− F (ω) = −DxF (ω), x /∈ ω,

and

DxF (ω − δx) = F (ω − δx)− F (ω) = −DxF (ω), x ∈ ω.

The following relations are then easily obtained:

δσ(uF ) = Fδσ(u) + δσ(uDF )− 〈u,DF 〉L2(X,σ), (2.1)

δω(uF ) = Fδω(u) + δω(uDF )− 〈u,DF 〉L2(X,ω), (2.2)

and

δσ(u) =

∫
X

u(x, ω)(σ(dx)− ω(dx)) +

∫
X

Dxu(x, ω)ω(dx), (2.3)

δω(u) =

∫
X

u(x, ω)(ω(dx)− σ(dx)) +

∫
X

Dxu(x, ω)σ(dx). (2.4)

As shown in Prop. 2.2 below, the operators δσ and δω are adjoint of D, with respect

to scalar products respectively given by σ and ω.

Proposition 2.2 We have for F : Ω→ R and v : Ω×X → R:

E[Fδσ(v)] = E[〈DF, v〉L2(σ)], (2.5)

and

E[Fδω(v)] = E[〈DF, v〉L2(ω)], (2.6)

provided the corresponding quantities are integrable.
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Proof. We first show that E[δω(v)] = 0. For simple processes, this can be proved

using the characteristic function of
∫
X
hdω which satisfies

E

[
exp

(
iz

∫
X

hdω

)]
= exp

∫
X

(eizh − 1)dσ, z ∈ R.

Differentiating each of those two expressions with respect to z yields

E

[∫
X

hdω exp

(
iz

∫
X

hdω

)]
= E

[∫
X

heizhdσ exp

(
iz

∫
X

hdω

)]
,

hence

E

[∫
X

hd(σ − ω) exp

(
iz

∫
X

hdω

)]
= E

[
〈h, 1− eizh〉L2(X,σ) exp

(
iz

∫
X

hdω

)]
= E

[〈
h,D exp

(
iz

∫
X

hdω

)〉
L2(X,σ)

]
,

where we used the relation Dx exp(iz
∫
X
hdω) = (1−eizh(x)) exp(iz

∫
X
hdω), σ(dx)-a.e.

From (2.4) this implies E[δω(u)] = 0 for all u of the form

u =
n∑
i=1

1Aie
iz1ω(B1)+···+iznω(Bn).

By martingale convergence arguments, e.g. as in the proof of Th. 3.4 of [29], the

formula is extended to general u. This in turn implies E[δσ(v)] = 0 from (2.3), and

(2.5) using (2.1). �

Note that the relation E[δω(v)] = 0 can be seen as a consequence of Th. 1 or Cor. 1

in [20], and (2.6) follows from (2.2). We have

δσDF (ω) =

∫
X

(F (ω)− F (ω + δx))σ(dx)−
∫
X

(F (ω − δx)− F (ω))ω(dx),

and

δωDF (ω) =

∫
X

(F (ω)− F (ω − δx))ω(dx)−
∫
X

(F (ω + δx)− F (ω))σ(dx),

so that

δσDF (ω) = δωDF (ω) =

∫
X

DxF (ω)ω(dx) +

∫
X

DxF (ω)σ(dx) (2.7)
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= (σ(X) + ω(X))F (ω)−
∫
X

F (ω + δx)σ(dx)−
∫
X

F (ω − δx)ω(dx).

From the definition of In(fn) it can also be easily shown that

δσDIn(fn) = δωDIn(fn) = nIn(fn),

cf. e.g. [23]. It follows that the spectral gap of δσD is λ2 = 1, a fact which is recovered

below by a different method. In the sequel we shall uniquely use the operator δσ, and

denote it by δ. Let

D+
x F (ω) = max(0, DxF (ω))

= (F (ω)− F (ω + δx))
+1{x∈ωc} + (F (ω)− F (ω − δx))+1{x∈ω}.

and

D−x F (ω) = −min(0, DxF (ω))

= (F (ω)− F (ω + δx))
−1{x∈ωc} + (F (ω)− F (ω − δx))−1{x∈ω}.

We have D+
x F = D−x (−F ),

D+
x F (ω + δx) = D−x F (ω), D−x F (ω + δx) = D+

x F (ω), x /∈ ω,

and

D+
x F (ω − δx) = D−x F (ω), D−x F (ω − δx) = D+

x F (ω), x ∈ ω,

which implies

δσ(D+F )p(ω) = −δω(D−F )p(ω) =

∫
X

(D+
x F (ω))pσ(dx)−

∫
X

(D−x F (ω))pω(dx), (2.8)

and

δσ(D−F )p(ω) = −δω(D+F )p(ω) =

∫
X

(D−x F (ω))pσ(dx)−
∫
X

(D+
x F (ω))pω(dx). (2.9)

We also have |DxF |p = |D+
x F |p + |D−x F |p, and

|DF (ω)|pLp = |D+F (ω)|pLp + |D−F (ω)|pLp .
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Lemma 2.3 We have

E[|D+F |pLp(σ)] = E[|D−F |pLp(ω)],

and

E[|D−F |pLp(σ)] = E[|D+F |pLp(ω)].

Proof. Using (2.8) and (2.9) we have

E[|D±F |pLp(σ)]− E[|D∓F |pLp(ω)] = E[δσ((D±F )p)] = 0.

�

Similarly, (2.7) will imply

E

[∫
X

DxFσ(dx)

]
= −E

[∫
X

DxFω(dx)

]
. (2.10)

In the particular case F = 1{ω(A)=k}, Lemma 2.3 simply states the following easily

verified equality:

E[|D+1{ω(A)=k}|L1(σ)] = σ(A)E[1{ω(A)=k}] = (k+1)E[1{ω(A)=k+1}] = E[|D−1{ω(A)=k}|L1(ω)].

We also have

E
[
|D+F |p

Lp(σ+ω
2

)

]
= E

[
|D−F |p

Lp(σ+ω
2

)

]
=

1

2
E
[
|DF |pLp(σ)

]
=

1

2
E
[
|DF |pLp(ω)

]
,

in particular the Dirichlet forms Eσ(F,G) and Eω(F,G) defined as

Eσ(F, F ) =
1

2
E[|DF |2L2(σ)], Eω(F, F ) =

1

2
E[|DF |2L2(ω)]

coincide:

Eσ(F, F ) = Eω(F, F ).

This result can also be seen as a consequence of the relation δσD = δωD, or of

Prop. 2.2.

The Clark formula given next yields the predictable representation of a random

variable using the operator D. Take X = [0, 1] and σ the Lebesgue measure and let

Nt(ω) = N[0,t](ω) = ω([0, t]), t ∈ R+, ω ∈ Ω,

i.e. (Nt)t∈[0,1] is a standard Poisson process under π.
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Proposition 2.4 ([21], Th. 1) We have the following Clark formula, for F ∈ L2(Ω, π):

F = E[F ]−
∫ 1

0

E[DtF | Ft]dÑt, (2.11)

where the stochastic integral is taken in the Itô sense.

The formula is first proved for F ∈ Dom(D) and then extended to L2(Ω) by continuity

of F 7→ (E[DtF | Ft])t∈R+ from L2(Ω, π) into L2(Ω× [0, 1]). The Clark formula (2.4)

yields the Poincaré inequality:

Var (F ) ≤ E[|DF |2L2(σ)], F ∈ Dom(D). (2.12)

This inequality is in fact valid for an arbitrary Polish space X with diffuse measure

σ. Note that if F = 1A then the Poincaré inequality implies

π(A)(1− π(A)) ≤ σ(X),

in particular if σ(X) ≤ 1/4 then we have either

π(A) ≤ (1−
√

1− 4σ(X))/2

or

π(A) ≥ (1 +
√

1− 4σ(X))/2,

and if π(A) ≤ 1/2 then

π(A) ≤ 2π(A)(1− π(A)) ≤ 2σ(X).

The following result gives a version of isoperimetry on Poisson space which is indepen-

dent of dimension and generalizes the result of [3], p. 274. Let ϕ denote the standard

Gaussian density, and let Φ denote its distribution function. Let I(t) = ϕ(Φ−1(t)),

0 ≤ t ≤ 1 denote the Gaussian isoperimetric function, with the relations I(x)I ′′(x) =

−1 and I ′(x) = −Φ−1(x), x ∈ [0, 1].

Proposition 2.5 For every random variable F : Ω→ [0, 1] we have

I(E[F ]) ≤ E
[√

I(F )2 + 2|DF |2L2(σ)

]
. (2.13)
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Proof. Let Xn denote the Nn-valued random variable defined as

Xn(ω) = (ω(A1), . . . , ω(An)) , ω ∈ Ω.

If F = f ◦Xn is a cylindrical functional we have

DxF (ω) =
k=n∑
k=1

1Ak(x)(f(Xn(ω))− f(Xn(ω) + ek)),

f : Nn → R, where (ek)1≤k≤n denotes the canonical basis of Rn. For the cylindrical

functional F , (2.13) follows by application of Relation (3.13) in [3] and tensorization.

The extension to general random variables can be done by martingale convergence,

e.g. as in the proof of Th. 3.4 of [29]. �

This also implies that the optimal constant b2 in the inequality

I(E[F ]) ≤ E

[√
I(F )2 +

1

b2

|DF |2
L2(σ+ω

2
)

]
satisfies b2 ≥ 1. Using the equivalence I(ε) ' ε

√
2 log 1/ε and the Schwarz inequality,

Relation (2.13) allows to recover the modified logarithmic Sobolev inequality of [1],

[30]:

E[F logF ]− E[F ] logE[F ] ≤ 1

2
E

[
1

F
|DF |22

]
.

Note that the analog Gaussian isoperimetry result can also be transferred to the

Poisson space for the Carlen-Pardoux gradient [8], writing the exponential interjump

times of the Poisson process as half sums of squared Gaussian random variables as

in [22]. Let πλ, λ > 0, denote the Poisson measure of intensity λσ(dx) on Ω, and let

Eλ denote the expectation under πλ. We refer to [18] for the following type of result,

obtained by differentiation of the intensity parameter.

Proposition 2.6 Assume that DF ∈ L1(πλ ⊗ σ) and F ∈ L1(πλ), λ ∈ (a, b). We

have

∂

∂λ
Eλ[F ] = −Eλ

[∫
X

DxFσ(dx)

]
= Eλ

[∫
X

DxFω(dx)

]
, λ ∈ (a, b).

Proof. Given the representation

F (ω) = f01{|ω|=0} +
∞∑
n=1

1{|ω|=n}fn(x1, . . . , xn),
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where ω = {x1, . . . , xn} when |ω| = n, we have

Eλ[F ] = e−λσ(X)f0 + e−λσ(X)

∞∑
n=1

λn

n!

∫
X

· · ·
∫
X

fn(x1, . . . , xn)σ(dx1) · · ·σ(dxn),

and

∂

∂λ
Eλ[F ] = −σ(X)Eλ[F ]

+e−λσ(X)

∞∑
n=1

λn−1

(n− 1)!

∫
X

· · ·
∫
X

fn(x1, . . . , xn)σ(dx1) · · ·σ(dxn)

= −σ(X)Eλ[F ] + Eλ

[∫
X

F (ω + δx)σ(dx)

]
= −Eλ

[∫
X

DxF (ω)σ(dx)

]
.

The second relation follows from (2.10). �

As a corollary we will obtain a Margulis-Russo type equality [16], [25] for monotone

sets under Poisson measures.

Definition 2.7 A measurable set A ⊂ Ω is called increasing if

ω ∈ A =⇒ ω + δx ∈ A, σ(dx)− a.e. (2.14)

It is called decreasing if

ω ∈ A =⇒ ω − δx ∈ A, ω(dx)− a.e. (2.15)

Note that if A is decreasing then Ac is increasing but the converse is not true. In fact,

saying that A is decreasing is equivalent to the following property on Ac:

ω ∈ Ac =⇒ ω + δx ∈ Ac, ∀x ∈ ωc, (2.16)

which is stronger than saying that Ac is increasing. The set A is said to be monotone

if it is either increasing or decreasing. The sets {ω(B) ≥ n}, resp. {ω(B) ≤ n}, are

naturally increasing, resp. decreasing. Another example of monotone set is given by{
ω ∈ Ω :

∫
X

fdω > K

}
, K ∈ R,

which is increasing, resp. decreasing, if f ≥ 0, resp. f ≤ 0. Clearly, a set A is

increasing, resp. decreasing, if and only if Dx1A ≤ 0 (i.e. Dx1A = −D−x 1A, or

D+
x 1A = 0) σ(dx)-a.e., resp. ω(dx)-a.e. As a corollary of Prop. 2.6 we have:
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Corollary 2.8 Let A ⊂ Ω be an increasing set. We have

∂

∂λ
πλ(A) = Eλ

[∫
X

D−x 1Aσ(dx)

]
= Eλ

[∫
X

D+
x 1Aω(dx)

]
.

If A ⊂ Ω is decreasing we have

∂

∂λ
πλ(A) = −Eλ

[∫
X

D−x 1Aω(dx)

]
= −Eλ

[∫
X

D+
x 1Aσ(dx)

]
.

We also have if A is monotone:

∂

∂λ
πλ(A) = Eλ

[
‖D1A‖L1(σ)

]
= Eλ

[
‖D1A‖L1(ω)

]
.

3 Forward-backward kernels and reversibility on

configuration space

Given ω ∈ Ω, the set of forward neighbors of ω is defined to be

N+
ω = {ω + δx : x ∈ ωc},

and similarly the set of backward neighbors of ω is

N−ω = {ω − δx : x ∈ ω}.

We let

Nω = N+
ω ∪N−ω .

We define two measure kernels K+(ω, dω̃) and K−(dω̃, ω) which are respectively sup-

ported by N+
ω and N−ω .

Definition 3.1 Let for A ∈ F :

K+(ω,A) =

∫
X

1A(ω + δx)σ(dx), K−(A, ω) =
∑
x∈ω

1A(ω − δx).

It is a classical fact that since π is a Poisson measure, the image under ω+ δx 7→ x of

the measure

π(dω̃ | ω̃ ∈ N+
ω )
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coincides with the (normalized) measure σ on X:

σ(B)

σ(X)
= π({ω̃ : ω̃ = ω + δx : x ∈ B} | ω̃ ∈ N+

ω ), B ∈ B(X).

Hence the forward kernel satisfies

K+(ω, dω̃) = σ(X)π(dω̃ | ω̃ ∈ N+
ω ),

and (σ(X))−1K+(ω, dω̃) is of Markov type. Similarly, the image under ω− δx 7→ x of

the measure

π(dω̃ | ω̃ ∈ N−ω )

coincides with the normalized counting measure on ω:

ω(B)

ω(X)
= π({ω̃ : ω̃ = ω − δx, x ∈ B} | ω̃ ∈ N−ω ),

hence the backward kernel satisfies

K−(dω̃, ω) = ω(X)π(dω̃ | ω̃ ∈ N−ω ) =
∑
x∈ω

δω−δx(dω̃),

and (ω(X))−1K−(dω̃, ω) is Markovian provided ω 6= ∅. The kernel K−(dω̃, ω) itself is

not Markovian, instead it is of graph type, i.e.

K−({ω̃}, ω) =

{
1 if ω̃ = ω − δx for some x ∈ X (i.e. ω̃ ∈ Nω),
0 otherwise (i.e. ω̃ /∈ Nω).

We have for p ∈ [1,∞):

|DF (ω)|pLp(σ) =

∫
X

|F (ω)− F (ω + δx)|pσ(dx) =

∫
Ω

|F (ω)− F (ω̃)|pK+(ω, dω̃),

and

|DF (ω)|pLp(ω) =

∫
X

|F (ω)− F (ω − δx)|pω(dx) =

∫
Ω

|F (ω)− F (ω̃)|pK−(ω, dω̃).

For p =∞ we have

|DF (ω)|L∞(σ) = ess supσ(dx) |F (ω)− F (ω + δx)| = ess supK+(ω,dω̃) |F (ω)− F (ω̃)|,

and

|DF (ω)|L∞(ω) = ess supω(dx) |F (ω)− F (ω − δx)| = ess supK−(ω,dω̃) |F (ω)− F (ω̃)|.
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We also have

E
[
|D+1A|Lp(σ+ω

2
)

]
=

∫
A

K̄(ω,Ac)1/pπ(dω), E
[
|D−1A|Lp(σ+ω

2
)

]
=

∫
Ac
K̄(ω,A)1/pπ(dω).

The following proposition shows a reversibility property, which is an analog of Lemma 2.3.

Proposition 3.2 The kernels K+(ω, dω̃) and K−(dω̃, ω) are mutually adjoint under

π(dω̃), i.e.

π(dω)K+(ω, dω̃) = K−(dω, ω̃)π(dω̃).

Proof. We have∫
Ω

∫
Ω

F (ω)G(ω̃)K+(ω, dω̃)π(dω) =

∫
Ω

F (ω)G(ω + δx)π(dω)σ(dx)

= −E[F 〈DG, 1〉L2(σ)] + σ(X)E[FG]

= −E[Gδσ(1XF )] + σ(X)E[FG]

=

∫
Ω

G(ω)
∑
x∈ω

F (ω − δx)π(dω)

=

∫
Ω

∫
Ω

G(ω̃)F (ω)K−(dω, ω̃)π(dω̃).

�

In particular we have E[K−F ] = σ(X)E[F ]:∫
Ω

∫
Ω

F (ω̃)K−(dω̃, ω)π(dω) = σ(X)

∫
Ω

F (ω)π(dω),

and E[K+F ] = E[ω(X)F ]:∫
Ω

∫
Ω

F (ω̃)K+(ω, dω̃)π(dω) =

∫
Ω

ω(X)F (ω)π(dω),

which is Lemma 1.1 in [29] and is similar to the Mecke identity [17]. This also implies∫
A

K+(ω,Ac)π(dω) = E[|D+1A(ω)|pLp(σ)] = E[|D−1A(ω)|pLp(ω)] =

∫
Ac
K−(A, ω)π(dω),∫

Ac
K+(ω,A)π(dω) = E[|D−1A(ω)|pLp(σ)] = E[|D+1A(ω)|pLp(ω)] =

∫
A

K−(Ac, ω)π(dω).

The proof of Lemma 2.3 can be reformulated using reversibility of forward and back-

ward kernels.

14



Proof. We have

E[|D±F |pLp(σ)] =

∫
Ω

((F (ω)− F (ω̃))±)pK+(ω, dω̃)π(dω)

=

∫
Ω

((F (ω)− F (ω̃))±)pK−(dω, ω̃)π(dω̃)

=

∫
Ω

((F (ω̃)− F (ω))∓)pK−(dω, ω̃)π(dω̃)

= E[|D∓F |pLp(ω)].

�

Let K̄(ω, dω̃) denote the symmetrized kernel

K̄(ω, dω̃) =
K+(ω, dω̃) +K−(dω̃, ω)

2
.

We have

|DF (ω)|p
Lp(ω+σ

2
)

=
1

2
|DF (ω)|pLp(σ) +

1

2
|DF (ω)|pLp(ω) =

∫
Ω

|F (ω)− F (ω̃)|pK̄(ω, dω̃),

and for p =∞:

|DF (ω)|L∞(σ+ω) = ess supK̄(ω,dω̃) |F (ω)− F (ω̃)|.

We also have

E
[
|D1A|Lp(σ+ω

2
)

]
= E

[
|D+1A|Lp(σ+ω

2
)

]
+ E

[
|D−1A|Lp(σ+ω

2
)

]
=

∫
A

K̄(ω,Ac)1/pπ(dω) +

∫
Ac
K̄(ω,A)1/pπ(dω),

since D+
x FD

−
x F = 0, x ∈ X. Let

Γ±(F, F ) =
1

2
|D±F |2

L2(σ+ω
2

)
.

We have

Γ+(F,G)(ω) =
1

2

∫
Ω×Ω

(F (ω)− F (ω̃))+(G(ω)−G(ω̃))+K̄(ω, dω̃),

Γ−(F,G)(ω) =
1

2

∫
Ω×Ω

(F (ω)− F (ω̃))−(G(ω)−G(ω̃))−K̄(ω, dω̃),

and

E(F, F ) = E[Γ+(F, F )] = E[Γ−(F, F )].

15



Proposition 3.3 The Laplacian associated to the discrete Dirichlet form E(F, F ) is

L = 1
2
δD, with

L =
1

2
δD =

σ(X) + ω(X)

2
Id − K̄.

Proof. Again, reversibility can be employed. We have

E(F,G) =

∫
Ω×Ω

(F (ω)− F (ω̃))(G(ω)−G(ω̃))K+(ω, dω̃)π(dω)

=

∫
Ω×Ω

F (ω)G(ω)K+(ω, dω̃)π(dω) +

∫
Ω×Ω

F (ω̃)G(ω̃)K−(dω, ω̃)π(dω̃)

−
∫

Ω×Ω

F (ω)G(ω̃)K+(ω, dω̃)π(dω)−
∫

Ω×Ω

G(ω)F (ω̃)K+(ω, dω̃)π(dω)

= E[F ((σ(X) + ω(X))G−K+G−K−G)].

�

Note that in the case of cylindrical functionals, L is the generator of Glauber dynamics

considered in statistical mechanics as in e.g. [9], and has the Poisson probability

as invariant measure. Although K−(dω̃, ω) and K+(ω, dω̃) are not Markov, they

leave the Poisson measure invariant under appropriate normalizations, for example

for A = {ω(X) = k}, we have K−(A, ω) = (k + 1)1{ω(X)=k+1}, and

1

σ(X)

∫
Ω

π(dω)K−(A, ω) =
k + 1

σ(X)
π({ω(X) = k + 1}) = π(A).

In particular we have the following result.

Proposition 3.4 The Poisson measure π(dω) is a stationary distribution for the

symmetrized normalized kernel

2

σ(X) + ω̃(X)
K̄(ω, dω̃).

Proof. We have∫
Ω

π(dω)
2

σ(X) + ω(X)
K̄(ω,A) =

∫
A

π(dω)
2

σ(X) + ω(X)
K̄(ω,Ω) = π(A).

�
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4 Inner and outer boundaries

We have

D+
x 1A(ω) = 1{ω∈A and ω+δx∈Ac}1{x∈ωc} + 1{ω∈A and ω−δx∈Ac}1{x∈ω},

and

D−x 1A(ω) = 1{ω∈Ac and ω+δx∈A}1{x∈ωc} + 1{ω∈Ac and ω−δx∈A}1{x∈ω}.

Hence

|D+1A(ω)|pLp(σ) = 1A(ω)σ({x ∈ X : ω + δx ∈ Ac}) = 1A(ω)K+(ω,Ac),

and

|D+1A(ω)|pLp(ω) = 1A(ω)ω({x ∈ X : ω − δx ∈ Ac}) = 1A(ω)K−(Ac, w),

i.e. for ω ∈ A, |D+1A(ω)|pLp(σ) is the measure K+(ω,Ac) on N+
ω of the set of for-

ward neighbors which belong to Ac, and |D+1A(ω)|pLp(ω) is the number (or measure

K−(Ac, ω) on N−ω ) of backward neighbors which belong to Ac. We also have

|D−1A(ω)|pLp(σ) = 1Ac(ω)σ({x ∈ [0, 1] : ω + δx ∈ A}) = 1Ac(ω)K+(ω,A),

and

|D−1A(ω)|pLp(ω) = 1Ac(ω)ω({x ∈ [0, 1] : ω − δx ∈ A}) = 1Ac(ω)K−(A, ω).

i.e. for ω ∈ Ac, |D−1A(ω)|pLp(σ) is the measure K+(ω,A) on N+
ω of the set of forward

neighbors of ω ∈ Ac which belong to A, and |D−1A(ω)|pLp(ω) is the number (measure

K−(A, ω) on N−ω ) of backward neighbors of ω ∈ Ac which belong to A.

Remark 4.1 We have D+
x 1A = D−x 1Ac and |Dx1A| = |Dx1Ac |, x ∈ X.

In particular,

D+
x 1{ω(B)=k} = 1B(x)1{ω(B)=k},

and

D−x 1{ω(B)=k} = 1B(x)1ω(x)1{ω(B)=k+1} + 1B(x)1ωc(x)1{ω(B)=k−1},
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hence

|D+1{ω(B)=k}|pLp(σ) = σ(B)1{ω(B)=k}, |D+1B(ω)|pLp(ω) = k1{ω(B)=k},

and

|D−1{ω(B)=k}|pLp(σ) = σ(B)1{ω(B)=k−1}, |D−1{ω(B)=k}|pLp(ω) = (k + 1)1{ω(B)=k+1}.

Similarly,

|D+1A(ω)|L∞(σ) = 1{ω∈A and σ({x∈X : ω+δx∈Ac})>0} = 1A(ω)1{K+(ω,Ac)>0},

|D+1A(ω)|L∞(ω) = 1{ω∈A and ∃x∈ω : ω−δx∈Ac} = 1A(ω)1{K−(Ac,ω)>0},

|D−1A(ω)|L∞(σ) = 1{ω∈Ac and σ({x∈X : ω+δx∈A})>0} = 1Ac(ω)1{K+(ω,A)>0},

|D−1A(ω)|L∞(ω) = 1{ω∈Ac and ∃x∈ω : ω−δx∈A} = 1Ac(ω)1{K−(A,ω)>0},

i.e. |D+1A(ω)|L∞(σ) = 1, resp. |D−1A(ω)|L∞(σ) = 1, if and only if ω ∈ A, resp.

ω ∈ Ac, has “at least” a forward neighbor in Ac, resp. A, and |D+1A(ω)|L∞(ω) = 1,

resp. |D−1A(ω)|L∞(ω) = 1, if and only if ω ∈ A, resp. ω ∈ Ac, has at least a

backward neighbor in Ac, resp. A. The following definitions are stated independently

of p ∈ [1,∞].

Definition 4.2 Let p ∈ [1,∞].

The inner and outer boundaries of A are defined as:

∂inA = {ω ∈ A : K̄(ω,Ac) > 0} = {|D+1A(ω)|Lp(σ+ω) > 0},

and

∂outA = {ω ∈ Ac : K̄(ω,A) > 0} = {|D−1A(ω)|Lp(σ+ω) > 0}.

The boundary of A is defined as:

∂A = ∂inA ∪ ∂outA

= {ω ∈ Ω : |D1A(ω)|Lp(σ+ω) > 0}

= {ω ∈ Ω : K̄(ω,A) + K̄(ω,Ac) > 0}.
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For instance,

∂in{ω(B) = k} = {ω(B) = k},

∂out{ω(B) = k} = {ω(B) = k − 1} ∪ {ω(B) = k + 1},

∂{ω(B) = k} = {k − 1 ≤ ω(B) ≤ k + 1}.

In particular, Prop. 2.5 shows that the isoperimetric function p 7→ infπ(A)=p πs(∂A)

on Poisson space is greater than 1/
√

2 times the Gaussian isoperimetric function I.

We have D+
x 1A = D−x 1Ac , hence ∂inA = ∂outA

c and ∂A = ∂Ac. We may also define

the interior A◦ of A as

A◦ = {ω : |D+1A(ω)|Lp(σ+ω
2

) = 0} = {ω ∈ A : K̄(ω,A) = 0} = A \ ∂inA,

and the closure Ā of A as

Ā = {ω ∈ Ac : |D−1A(ω)|Lp(σ+ω
2

) = 0}c

= A ∪ {ω ∈ Ω : K̄(A, ω) > 0} = ((Ac)◦)c = A ∪ ∂outA.

More refined definitions of inner and outer boundaries are possible, by distinguishing

between “forward” and “backward” neighbors. Note however that defining the norms

and boundaries with respect to K+ only, resp. K− only, leads to ∂out{ω(B) ≤ k} = ∅
since |D−1{ω(B)≤k}|Lp(σ) = 0, resp. ∂in{ω(B) ≥ k} = ∅ since |D+1{ω(B)≥k}|Lp(σ) = 0,

i.e. the isoperimetric constants h±p defined below have trivial zero value. We have

π(∂inA) = E[|D+1A|L∞(σ+ω)] = π({ω ∈ A : K̄(ω,Ac) > 0}),

π(∂outA) = E[|D−1A|L∞(σ+ω)] = π({ω ∈ Ac : K̄(ω,A) > 0}),

and

π(∂A) = E[|D1A|L∞(σ+ω)] = E[|D+1A|L∞(σ+ω)] + E[|D−1A|L∞(σ+ω)]

= π({ω ∈ A : K̄(ω,Ac) > 0}) + π({ω ∈ Ac : K̄(ω,A) > 0}).
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In discrete settings the surface measure πs(∂A) of ∂A is not defined via a Minkowski

content of the form

πs(∂A) = lim inf
r→0

1

r
(π({ω ∈ ω : d(ω,A) < r})− π(A)).

Nevertheless, the surface measure of ∂inA, resp. ∂outA, can defined by averaging

1A(ω)K̄(ω,Ac)1/2 = |D+1A(ω)|L2(σ+ω
2

), resp. 1Ac(ω)K̄(ω,A)1/2 = |D−1A(ω)|L2(σ+ω
2

)

with respect to the Poisson measure π(dω).

Definition 4.3 Let

πs(∂inA) = E[|D+1A(ω)|L2(σ+ω
2

)] =

∫
A

K̄(ω,Ac)1/2π(dω),

and

πs(∂outA) = E[|D−1A(ω)|L2(σ+ω
2

)] =

∫
Ac
K̄(ω,A)1/2π(dω).

The above quantities represent average numbers of points in A, resp. Ac, which have

a neighbor in Ac, resp. A, the Poisson measure playing here the role of a uniform

measure. The surface measure of ∂A is

πs(∂A) = πs(∂inA) + πs(∂outA)

= E
[
|D+1A|L2(σ+ω

2
)

]
+ E

[
|D−1A|L2(σ+ω

2
)

]
= E

[
|D1A|L2(σ+ω

2
)

]
=

∫
A

K̄(ω,Ac)1/2π(dω) +

∫
Ac
K̄(ω,A)1/2π(dω).

As a consequence of the Margulis-Russo identity Cor. 2.8 we obtain asymptotic devi-

ation bounds on πλ(A) when A is a monotone set.

Proposition 4.4 Let A be a monotone subset of Ω, and assume that there exists

θ > 0 such that πθ(A) = 1/2. If A is increasing, let

∆− = inf
∂outA
‖D−1A‖L1(σ).

We have for λ > θ:

πλ(A) ≤ Φ
(√

2λ∆− −
√

2θ∆−
)
,

and for λ < θ:

πλ(A) ≥ Φ
(√

2λ∆− −
√

2θ∆−
)
.
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If A is decreasing, let

∆+ = inf
∂inA
‖D+1A‖L1(σ),

then

πλ(A) ≤ Φ
(√

2θ∆+ −
√

2λ∆+
)
, λ > θ,

and

πλ(A) ≥ Φ
(√

2θ∆+ −
√

2λ∆+
)
, λ < θ.

Proof. We adapt an argument of [27], [28] to the Poisson case. We have

Eλ[‖D−1A‖L2(σ)] = Eλ[1{‖D−1A‖L∞(σ)>0}‖D−1A‖L2(σ)]

≤ πλ({‖D−1A‖L∞(σ) > 0})1/2Eλ[‖D−1A‖2
L2(σ)]

1/2

≤ πλ(∂outA)1/2Eλ[‖D−1A‖L1(σ)]
1/2

≤ 1√
∆−

Eλ[‖D−1A‖L1(σ)].

Let f(λ) = πλ(A). Using (2.13) we get

f ′(λ) = Eλ[‖D−1A‖L1(σ)].

≥
√

∆−Eλ[‖D−1A‖L2(σ)]

≥
√

∆−

2λ
I(f(λ))

=
−
√

∆−√
2λI ′′(f(λ))

.

Hence for λ > θ,

Φ−1(f(λ)) = Φ−1(f(λ))− Φ−1(f(θ))

= I ′(f(θ))− I ′(f(λ))

=

∫ θ

λ

I ′′(f(t))f ′(t)dt

≤ −
∫ θ

λ

√
∆−√
2t
dt

=
√

2∆−(
√
λ−
√
θ),

and finally

f(λ) ≤ Φ
(√

2λ∆− −
√

2θ∆−
)
.

21



If A is decreasing and λ > θ we similarly show that

Eλ[‖D+1A‖L2(σ)] ≤ πλ(∂inA)1/2Eλ[‖D+1A‖L1(σ)]
1/2 ≤ 1√

∆+
Eλ[‖D+1A‖L1(σ)],

f ′(λ) = −Eλ[‖D+1A‖L1(σ)].

≤
√

∆+Eλ[‖D+1A‖L2(σ)]

≤
√

∆+

√
2λI ′′(f(λ))

,

and

Φ−1(f(λ)) ≤
∫ θ

λ

√
∆+

√
2t
dt =

√
2∆+(

√
θ −
√
λ).

The case λ < θ is treated in a similar way. �

When λ < θ and ∆− is large, the lower bound is equivalent to

1√
2π(
√

2θ∆− −
√

2λ∆−)
e−(
√

2λ∆−−
√

2θ∆−)2/2.

As an example, for the increasing set {ω(B) ≥ n} we have

∂out{ω(B) ≥ n} = {ω(B) = n− 1},

and

Dx1{ω(B)≥n} = −D−x 1{ω(B)≥n} = −1B(x)1{ω(B)=n−1},

hence

‖D1{ω(B)≥n}‖L1(σ) = σ(B)1{ω(B)=n−1} = σ(B)1∂out{ω(B)≥n},

and ∆− = σ(B). For the decreasing set {ω(B) ≤ n} we have

∂in{ω(B) ≤ n} = {ω(B) = n},

and

Dx1{ω(B)≤n} = −D−x 1{ω(B)≤n} = −1B(x)1{ω(B)=n},

hence

‖D1{ω(B)≤n}‖L1(σ) = σ(B)1{ω(B)=n} = σ(B)1∂in{ω(B)=n},

and ∆+ = σ(B).
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5 Co-area formulas

For p =∞ the next Lemma shows that

E[|D+F |L∞(σ+ω)] =

∫ +∞

−∞
π(∂in{F > t})dt,

E[|D−F |L∞(σ+ω)] =

∫ +∞

−∞
π(∂out{F > t})dt.

Lemma 5.1 We have

E[|D±F |L∞(σ+ω)] =

∫ +∞

−∞
E[|D±1{F>t}|L∞(σ+ω)]dt,

and

E
[
|D+F |L∞(σ+ω)

]
+ E

[
|D−F |L∞(σ+ω)

]
=

∫ ∞
−∞

E
[
|D1{F>t}|L∞(σ+ω)

]
dt.

Proof. The notations ess supω̃∈Nω and ess inf ω̃∈Nω denote respectively ess supK̄(ω,dω̃)

and ess infK̄(ω,dω̃). We have

|D+F (ω)|L∞(σ+ω) = ess supω̃∈Nω(F (ω)− F (ω̃))+ = F (ω)− ess inf ω̃∈Nω F (ω̃),

hence

E[|D+F |L∞(σ+ω)] = E[F ]− E[ess inf ω̃∈Nω F (ω̃)]

=

∫ +∞

−∞
π({F > t})dt−

∫ +∞

−∞
π(ess inf ω̃∈Nω F (ω̃) > t)dt

=

∫ +∞

−∞
π({F > t})dt−

∫ +∞

−∞
π({ess inf ω̃∈Nω F (ω̃) > t and F (ω) > t})dt

=

∫ +∞

−∞
π({F (ω) > t and (σ + ω)({x ∈ X : F (ω ± δx) ≤ t}) > 0})dt

=

∫ +∞

−∞
π({ω ∈ Ω : (σ + ω)({x ∈ X : F (ω) > t and F (ω ± δx) ≤ t}) > 0})dt

=

∫ +∞

−∞
π({ω ∈ Ω : (σ + ω)({x ∈ X : 1{F (ω)>t} − 1{F (ω±δx)>} = 1}) > 0})dt

=

∫ +∞

−∞
π({ω ∈ Ω : |D+1{F>t}|L∞(σ+ω) = 1})dt

=

∫ +∞

−∞
E[|D+1{F>t}|L∞(σ+ω)]dt.
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The proof for D− is similar. Finally we have, since D+
x FD

−
x F = 0:

E[|D+F |L∞(σ+ω)] + E[|D−F |L∞(σ+ω)]

=

∫ ∞
−∞

E[|D+1{F>t}|L∞(σ+ω)]dt+

∫ ∞
−∞

E[|D−1{F>t}|L∞(σ+ω)]dt

=

∫ ∞
−∞

E[|D+1{F>t}|L∞(σ+ω) + |D−1{F>t}|L∞(σ+ω)]dt

=

∫ ∞
−∞

E[|D1{F>t}|L∞(σ+ω)]dt.

�

The next Lemma states a co-area formula in L1.

Lemma 5.2 We have

E[|D±F |L1(σ)] =

∫ +∞

−∞
E[|D±1{F>t}|L1(σ)]dt,

E[|D±F |L1(ω)] =

∫ +∞

−∞
E[|D±1{F>t}|L1(ω)]dt.

Proof. We have for all a, b ∈ R:

(b− a)± =

∫ ∞
−∞

(1{a>t} − 1{b>t})
±dt,

hence

D±x F =

∫ ∞
−∞

D±x 1{F>t}dt.

�

As a consequence we have

E
[
|D±F |L1(σ+ω

2
)

]
=

∫ +∞

−∞
E
[
|D±1{F>t}|L1(σ+ω

2
)

]
dt,

and

E
[
|DF |L1(σ+ω

2
)

]
=

∫ +∞

−∞
E
[
|D1{F>t}|L1(σ+ω

2
)

]
dt.

Proposition 5.3 We have

E[Γ±(F, F )] =

∫ +∞

−∞

∫ +∞

−∞
E[Γ±(1{F>t}, 1{F>s})]dsdt.
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Proof. Again we use the identity

D±x F =

∫ +∞

−∞
D±x 1{F>t}dt.

�

We close this section with an application of co-area formulas to an equivalence result

on functional inequalities. Let G be a non-empty set of functions on Ω, and let

L(F ) = sup
G1,G2∈G

E[F+G1 + F−G2]. (5.1)

Several functionals have the representation (5.1), for example the entropy

L(F ) = Ent |F | = E[|F | log |F |]− E[|F |] logE[|F |] = sup
E[eG]≤1

E[|F |G],

the variance

L(F ) = E[(F − E[F ])2] = Var (F ) = inf
a∈R

E[(F − a)2],

and

L(F ) = E[|F −m(F )|] = inf
a∈R

E[|F − a|],

where m(F ) is by definition a median of F . The co-area formula implies the following

equivalence, as in [12], [24]. The norm | · |p denotes either | · |L1(σ) or | · |L1(ω) when

p = 1, and | · |L∞(σ+ω) when p =∞.

Theorem 5.4 Let c ≥ 0. The following are equivalent:

(i) cL(F ) ≤ E[|D±F |p], for all F : Ω→ R,

(ii) cL(1A) ≤ E[|D±1A|p] and cL(−1A) ≤ E[|D±(−1A)|p], for all A ∈ F ,

with p = 1,∞.

Proof. We follow the proof of [12]. In order to show (ii) ⇒ (i) we note that for all

G1, G2 ∈ G,

E[|D±F |p] =

∫ ∞
0

E[|D±1{F>t}|p]dt+

∫ 0

−∞
E[|D±1{F>t}|p]dt
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≥ c

∫ ∞
0

E[G11{F>t}]dt+

∫ 0

−∞
E[|D±(−1{F≤t})|p]dt

≥ cE[G1F
+] + c

∫ 0

−∞
E[1{F≤t}G2]dt

= cE[G1F
+] + cE[F−G2],

hence

E[|D±F |p] ≥ c sup
G1,G2∈G

(E[G1F
+] + E[F−G2]) ≥ cL(F ).

�

6 Some explicit computations

In this section we define the main isoperimetric constants and establish some bounds

on these constants.

Definition 6.1 Let for p ∈ [1,∞]:

h±p = inf
0<π(A)< 1

2

E
[
|D±1A|Lp(σ+ω

2
)

]
π(A)

, hp = inf
0<π(A)< 1

2

E
[
|D1A|Lp(σ+ω

2
)

]
π(A)

.

We have

h+
1 = h−1 = inf

0<π(A)< 1
2

1

π(A)

∫
A

K̄(ω,Ac)π(dω) = inf
0<π(A)< 1

2

1

π(A)

∫
Ac
K̄(ω,A)π(dω),

h+
2 = inf

0<π(A)< 1
2

πs(∂inA)

π(A)
, h−2 = inf

0<π(A)< 1
2

πs(∂outA)

π(A)
, h2 = inf

0<π(A)< 1
2

πs(∂A)

π(A)

and

h+
∞ = inf

0<π(A)< 1
2

π(∂inA)

π(A)
, h−∞ = inf

0<π(A)< 1
2

π(∂outA)

π(A)
, h∞ = inf

0<π(A)< 1
2

π(∂A)

π(A)
.

The following is a functional version of h±p .

Definition 6.2 Let for p ∈ [1,∞]:

h̃±p = inf
0<π(A)<1

E
[
|D±1A|Lp(σ+ω

2
)

]
π(A)π(Ac)

, h̃p = inf
0<π(A)<1

E
[
|D1A|Lp(σ+ω

2
)

]
π(A)π(Ac)

.
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Note that in the definition of the isoperimetric constants we need to integrate with

respect to ω + σ, otherwise integrating with respect to ω or σ only would lead to

vanishing isoperimetric constants, since

{|D+1{ω(B)≤k}|Lp(ω) > 0} = ∅,

and

{|D−1{ω(B)≥k}|Lp(σ) > 0} = ∅.

The next proposition follows the presentation of [26].

Proposition 6.3 We have

a) h1 = 2h+
1 = 2h−1 ,

b) h̃+
p = h̃−p , p = 1,∞,

c) min(h+
p , h

−
p ) < h̃±p < 2 min(h+

p , h
−
p ) ≤ h+

p + h−p ≤ hp < h̃p < 2hp, p ∈ [1,+∞].

Proof. For the first statement we use Lemma 2.3, which implies

E
[
|D+F |p

Lp(σ+ω
2

)

]
= E

[
|D−F |p

Lp(σ+ω
2

)

]
=

1

2
E
[
|DF |p

Lp(σ+ω
2

)

]
.

The second statement follows from Remark 4.1. The last statement follows from the

inequalities, if 0 < π(A) < 1/2:

h+
p ≤

E
[
|D+1A|Lp(σ+ω

2
)

]
π(A)

≤
E
[
|D+1A|Lp(σ+ω

2
)

]
π(A)π(Ac)

=
E
[
|D±1A|Lp(σ+ω

2
)

]
π(A)π(Ac)

≤ 2
E
[
|D±1A|Lp(σ+ω

2
)

]
π(A)

,

and similarly if 1/2 ≤ π(A) < 1:

h−p ≤
E
[
|D−1Ac |Lp(σ+ω

2
)

]
π(Ac)

≤
E
[
|D−1Ac|Lp(σ+ω

2
)

]
π(A)π(Ac)

=
E
[
|D±1Ac |Lp(σ+ω

2
)

]
π(A)π(Ac)

≤ 2
E
[
|D±1Ac|Lp(σ+ω

2
)

]
π(Ac)

.

�
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Definition 6.4 Let for p ∈ [1,∞]:

k±p = inf
F 6=C

E
[
|D±F |Lp(σ+ω

2
)

]
E[(F −m(F ))±]

, kp = inf
F 6=C

E
[
|DF |Lp(σ+ω

2
)

]
E[|F −m(F )|]

.

Proposition 6.5 We have h±1 = k±1 , h±∞ = k±∞, h1 = k1, and k∞ ≤ h∞ ≤ 2k∞.

Proof. First of all we note that since m(1A) = 0 if π(A) ≤ 1/2, we have

k±p π(A) = k±p E[(1A −m(1A))±] ≤ E
[
|D±1A|Lp(σ+ω

2
)

]
,

hence h±p ≥ k±p , p = 1,∞, and similarly

kpπ(A) = kpE[|1A −m(1A)|] ≤ E
[
|D1A|Lp(σ+ω

2
)

]
,

hence hp ≥ kp, p = 1,∞, From the co-area formulas Lemmas 5.1 and 5.2 we have for

p = 1,∞, since π(F > m(F )) ≤ 1/2:

E
[
|D+F |Lp(σ+ω

2
)

]
=

∫ ∞
−∞

E
[
|D+1{F>t}|Lp(σ+ω

2
)

]
dt

≥ h+
p

∫ ∞
−∞

π({F > t})dt

≥ h+
p

∫ ∞
m(F )

π({F > t})dt

= h+
p

∫ ∞
0

π({F −m(F ) > t})dt

≥ h+
p E[(F −m(F ))+].

Hence k+
p ≥ h+

p . Similarly we obtain

E
[
|D−F |Lp(σ+ω

2
)

]
= E

[
|D+(−F )|Lp(σ+ω

2
)

]
≥ h−p E[(−F−m(−F ))+] = h−p E[(F−m(F ))−],

hence k−p ≥ h−p , and

E
[
|DF |L1(σ+ω

2
)

]
=

∫ m(F )

−∞
E
[
|D1{F>t}|L1(σ+ω

2
)

]
dt+

∫ ∞
m(F )

E
[
|D1{F>t}|L1(σ+ω

2
)

]
dt

=

∫ ∞
0

E
[
|D1{−F+m(F )>t}|L1(σ+ω

2
)

]
dt+

∫ ∞
0

E
[
|D1{F−m(F )>t}|L1(σ+ω

2
)

]
dt

≥ h1

∫ 0

−∞
π({−F +m(F ) > t})dt+ h1

∫ ∞
0

π({F −m(F ) > t})dt
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≥ h1E[(F −m(F ))−] + h1E[(F −m(F ))+]

= h1E[|F −m(F )|],

hence k1 ≥ h1. From Lemma 5.1 we also have

2E[|DF |L∞(σ+ω)] ≥ E[|D+F |L∞(σ+ω)] + E[|D−F |L∞(σ+ω)]

=

∫ ∞
−∞

E[|D1{F>t}|L∞(σ+ω)]dt

=

∫ m(F )

−∞
E[|D1{F>t}|L∞(σ+ω)]dt+

∫ ∞
m(F )

E[|D1{F>t}|L∞(σ+ω)]dt

=

∫ ∞
0

E[|D1{−F+m(F )>t}|L∞(σ+ω)]dt+

∫ ∞
0

E[|D1{F−m(F )>t}|L∞(σ+ω)]dt

≥ h∞

∫ 0

−∞
π({−F +m(F ) > t})dt+ h∞

∫ ∞
0

π({F −m(F ) > t})dt

≥ h∞E[(F −m(F ))−] + h∞E[(F −m(F ))+]

≥ h∞E[|F −m(F )|],

hence 2k∞ ≥ h∞. �

Remark 6.6 The above proof also implies, if F ≥ 0 and π(F > 0) ≤ 1/2:

h+
p E[F ] ≤ E

[
|D+F |Lp(σ+ω

2
)

]
,

and

h−p E[F ] ≤ E
[
|D−F |Lp(σ+ω

2
)

]
.

The following is the definition of the Poincaré constants.

Definition 6.7 Let for p ∈ [1,∞]:

λ±p = inf
F 6=C

E
[
|D±F |2

Lp(σ+ω
2

)

]
Var (F )

, λp = inf
F 6=C

E
[
|DF |2

Lp(σ+ω
2

)

]
Var (F )

.

Remark that λ+
p = λ−p , p ∈ [1,∞], since D+

x F = D−x (−F ), and h̃+
1 ≥ λ+

2 . We have

E
[
|DF |2

L2(σ+ω
2

)

]
=

1

2
E
[
|DF |2L2(σ)

]
=

1

2
E
[
|DF |2L2(ω)

]
,
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hence

λ2 = 2 inf
F 6=C

E(F, F )

Var (F )
.

Th. 5.4 shows that

λ±∞ = inf
π(A)>0

E[|D±1A|L∞(σ+ω)]

Var 1A
.

Definition 6.8 Let for p ∈ [1,∞]:

k̃±p = inf
F 6=C

E[|D±F |Lp(σ+ω
2

)]

E[(F − E[F ])±]
, k̃p = inf

F 6=C

E[|DF |Lp(σ+ω
2

)]

E[|F − E[F ]|]
.

Proposition 6.9 We have

k+
∞ = h+

∞ ≤ 2
√
λ∞ =

2√
σ(X)

and k−∞ = h−∞ ≤
2

σ(X)

(
1 +

√
2σ(X)

)
.

Proof. Note that if F ≥ 0,

|D+F 2(ω)|L∞(σ+ω) = ess supω̃∈Nω(F 2(ω)− F 2(ω̃))

= ess supω̃∈Nω(F 2(ω)− F 2(ω̃))1{F (ω)≥F (ω̃)}

= ess supω̃∈Nω(F (ω)− F (ω̃))(F (ω) + F (ω̃))1{F (ω)≥F (ω̃)}

≤ 2 ess supω̃∈Nω(F (ω)− F (ω̃))F (ω)

= 2|D+F |L∞(σ+ω)F (ω).

If π({F > 0}) ≤ 1/2, then by Remark 6.6 applied to F 2,

(h+
∞)2E[F 2]2 ≤ E[|D+F 2|L∞(σ)]

2

≤ 4E[F |D+F |L∞(σ)]
2

≤ 4E[|D+F |2L∞(σ+ω)]E[F 2],

hence
(h+
∞)2

4
E[F 2] ≤ E[|D+F |2L∞(σ)].

In the general case we may assume that m(F ) = 0, i.e.

π({F > 0}) ≤ 1/2, and π({F < 0}) ≤ 1/2.

We have

π({F+ > 0}) ≤ 1/2, and π({F− < 0}) ≤ 1/2,
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hence
(h+
∞)2

4
E[(F+)2] ≤ E[|D+F+|2L∞(σ)],

and
(h+
∞)2

4
E[(F−)2] ≤ E[|D+F−|2L∞(σ)].

We have

|D+F+(ω)|L∞(σ) = ess supω̃∈Nω(F+(ω)− F+(ω̃))

= ess supω̃∈Nω |F (ω)− F (ω̃)|1{F (ω)>0},

and

|D+F−(ω)|L∞(σ) = ess supω̃∈Nω(F−(ω)− F−(ω̃))

= ess supω̃∈Nω |F (ω)− F (ω̃)|1{F (ω)<0}.

Hence

(h+
∞)2

4
VarF ≤ (h+

∞)2

4
E[F 2] =

(h+
∞)2

4
E[F 21{F>0}] +

(h+
∞)2

4
E[F 21{F<0}]

≤ E[1{F>0}|DF |2L∞(σ)] + E[1{F<0}|DF |2L∞(σ)],

from which λ∞ ≥ (h+
∞)2/4. The second statement has a similar proof:

|D−F 2|L∞(σ) = ess supω̃∈Nω(F 2(ω̃)− F 2(ω))

= ess supω̃∈Nω(F (ω̃)− F (ω))(F (ω̃) + F (ω))1{F (ω̃)≥F (ω)}

= ess supω̃∈Nω(F (ω̃)− F (ω))2 + 2(F (ω̃)− F (ω))F (ω)1{F (ω̃)≥F (ω)}

≤ ess supω̃∈Nω(F (ω̃)− F (ω))2 + 2(F (ω̃)− F (ω))F (ω)1{F (ω̃)≥F (ω)}.

By Remark 6.6,

h−∞E[F 2] ≤ E
[
ess supω̃∈Nω(F (ω̃)− F (ω))2 + 2(F (ω̃)− F (ω))F (ω)1{F (ω̃)≥F (ω)}

]
≤ E

[
ess supω̃∈Nω(F (ω̃)− F (ω))2

]
+2E[F 2]1/2E

[
ess supω̃∈Nω(F (ω̃)− F (ω))21{F (ω̃)≥F (ω)}

]1/2
,

hence

(
√

1 + h−∞ − 1)2E[F 2] ≤ E
[
ess supω̃∈Nω(F (ω̃)− F (ω))21{F (ω̃)≥F (ω)}

]
. (6.1)
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In the general case, if 0 is a median of F we have, applying (6.1) to F+ and F−:

E[F 2] = E[(F+)2] + E[(F−)2]

≤ E
[
ess supω̃∈Nω(F+(ω̃)− F+(ω))21{F+(ω̃)≥F+(ω)}

]
+E

[
ess supω̃∈Nω(F−(ω̃)− F−(ω))21{F−(ω̃)≥F−(ω)}

]
≤ 2E

[
ess supω̃∈Nω |F (ω̃)− F (ω)|2

]
,

hence
1

σ(X)
= λ∞ ≥

(
√

1 + h−∞ − 1)2

2
.

�

Proposition 6.10 We have

λ∞ =
1

σ(X)
≥ (
√
h∞ + 1− 1)2

4
.

Proof. We have if m(F ) = 0:

2E[|DF |∞] ≥
∫ +∞

−∞
π(∂{F > t})dt

≥ h∞

∫ +∞

−∞
min(π({F > t}), π({F ≤ t}))dt = h∞E[F ].

Applying the above inequality to (F+)2 we have

h∞E[F+2
] ≤ 2E[|D(F+)2|∞]

≤ 2E[ess supω̃∈Nω |F
+(ω)− F+(ω̃)|(F+(ω) + F+(ω̃))]

≤ 2E[ess supω̃∈Nω |F
+(ω)− F+(ω̃)|(F+(ω̃)− F+(ω))

+2|F+(ω)− F+(ω̃)|F+(ω)]

≤ 2E[ess supω̃∈Nω(F+(ω)− F+(ω̃))2]

+4E[ess supω̃∈Nω |F
+(ω)− F+(ω̃)|F+(ω)]

≤ 2E[ess supω̃∈Nω(F (ω)− F (ω̃))2]

+4E[ess supω̃∈Nω |F (ω)− F (ω̃)|F+(ω)].

Similarly we have

h∞E[(F−)2] ≤ 2E[ess supω̃∈Nω(F (ω)− F (ω̃))2] + 4E[ess supω̃∈Nω |F (ω)− F (ω̃)|F−(ω)].
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Hence

h∞E[F 2] ≤ h∞E[(F+)2] + h∞E[(F−)2]

≤ 4E[|DF |2∞] + 4E[|DF |∞|F |]

≤ 4E[|DF |2∞] + 4E[|DF |2∞]1/2E[F 2]1/2,

which implies

E[|DF |2∞] ≥ E[F 2]
(
√
h∞ + 1− 1)2

4
.

In the general case (m(F ) 6= 0) we use the fact that VarF ≤ E[(F−m(F ))2]. Relation

(6.4) is proved in Prop. 2.5. �

When σ(X) < π/4, Relation (6.5) also improves the lower bound on h∞ given in [3]

in the cylindrical (i.e. finite dimensional) case.

Proposition 6.11 We have

λ2 = 2λ+
2 = 2λ−2 = 1, (6.2)

λ∞ =
1

σ(X)
, (6.3)

1/
√

2π ≤ h2, (6.4)

max

(
1√

πσ(X)
,

1

2σ(X)

)
≤ h∞ ≤

4

σ(X)
+

4√
σ(X)

, (6.5)

1

2
≤ h1 = 2h+

1 = 2h−1 ≤ 4 + 4
√
σ(X), (6.6)

h+
2 ≤

√
1 +

√
σ(X). (6.7)

λ+
∞ ≤

h+
∞
2

=
k+
∞
2
≤
√
λ∞ =

1√
σ(X)

, (6.8)

λ−∞ ≤
h−∞
2
≤ 1

σ(X)
+

√
2

σ(X)
. (6.9)

Proof.

- Proof of (6.2) and (6.3). We have

VarF ≤ E[|DF |2L2(σ)] = E[|DF |2L2(ω)] = E
[
|DF |2

L2(σ+ω
2

)

]
= 2E

[
|D±F |2

L2(σ+ω
2

)

]
≤ σ(X)E[|D±F |2L∞(σ+ω)],
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hence λ2 = 2λ−2 = 2λ+
2 ≥ 1 and λ∞ ≥ 1/σ(X). Letting F (ω) = ω(X), we have

DxF = 1{x∈ω} − 1{x∈ωc},

and

Var (F ) = σ(X) = E[|DF |2L2(σ)] = E[|DF |2
L2(σ+ω

2
)
] = σ(X)E[|DF |2L∞(σ+ω)],

which shows λ2 ≤ 1 and λ∞ ≤ 1/σ(X).

- Proof of (6.4). From Th. 2.5, applying (2.13) to F = 1A we get, since I(1A) = 0:

E[|D1A|L2(σ+ω
2

)] ≥
1√
2
E[|D1A|L2(σ)] ≥

1

2
I(π(A)) ≥ 2√

2π
π(A)(1−π(A)) ≥ 1√

2π
π(A),

hence h2 ≥ 1/
√

2π.

- Proof of (6.5). We have

E[|D1A|L∞(σ+ω)] ≥ E[|D1A|L∞(σ)] ≥
1√
σ(X)

E[|D1A|L2(σ)] ≥
1√

πσ(X)
π(A),

where we used the inequality

I(t) ≥
√

2

π
Ivar(t),

with Ivar(t) = t(1− t), 0 ≤ t ≤ 1, hence h∞ ≥ 1/
√
πσ(X). Now if π(A) < 1/2:

λ∞π(A) ≤ 2λ∞π(A)π(Ac) ≤ 2E[|D1A|2L∞(σ+ω)] = 2E[|D1A|L∞(σ+ω)],

hence λ∞ ≤ 2h∞ which, with Prop. 6.10 and h∞ ≥ 1/
√
πσ(X), proves Relation

(6.5).

- Proof of (6.6). The Clark formula and Lemma 2.3 show that when π(A) ≤ 1/2,

1

2
π(A) ≤ Var (1A) ≤ E[|D1A|2L2(σ)] = E[|D1A|L1(σ)]

= 2E
[
|D+1A|L1(σ+ω

2
)

]
= 2E

[
|D−1A|L1(σ+ω

2
)

]
= E

[
|D1A|L1(σ+ω

2
)

]
hence

h1 = 2h−1 = 2h+
1 ≥ 1/2,
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which proves the first part of (6.6). We have

h+
1 π(A) ≤ E[|D+1A|L1(σ+ω

2
)] =

1

2
E[|D1A|L1(σ)]

≤ 1

2
σ(X)E[|D1A|L∞(σ)] ≤

1

2
σ(X)E[|D1A|L∞(σ+ω)],

hence h+
1 ≤ σ(X)h∞/2, which yields the second part of (6.6) from (6.5).

- Proof of (6.7). We also have

(h+
2 )2π(A)2 ≤ E

[
|D+1A|L2(σ+ω

2
)

]2

= E
[
1A|D+1A|L2(σ+ω

2
)

]2

≤ π(A)E
[
|D+1A|2L2(σ+ω

2
)

]
= π(A)E

[
|D+1A|L1(σ+ω

2
)

]
,

hence (h+
2 )2 ≤ h+

1 , which proves (6.7).

- Proof of (6.8) and (6.9). Similarly for π(A) ≤ 1/2 we have

λ±∞π(A) ≤ 2λ±∞π(A)π(Ac) ≤ 2E[|D±1A|2L∞(σ+ω)] = 2E[|D±1A|L∞(σ+ω)],

hence λ±∞ ≤ 2h±∞, and (6.8), (6.9) hold from Prop. 6.9.

�

Clearly the logarithmic Sobolev constants

l±p = inf
0<π(A)< 1

2

E
[
|D±1A|Lp(σ+ω

2
)

]
−π(A) log π(A)

, and lp = inf
0<π(A)< 1

2

E
[
|D1A|Lp(σ+ω

2
)

]
−π(A) log π(A)

vanish, p ∈ [1,+∞], since

l∞ = inf
0<π(A)< 1

2

π(∂A)

−π(A) log π(A)
= 0,

(take Ak = {ω(B) ≥ k}), i.e. from Th. 5.4 the classical logarithmic Sobolev inequal-

ity does not hold on Poisson space. In other terms the optimal constant ρp in the

inequality

ρpEnt [F 2] ≤ E[|DF |2Lp(σ)].

is equal to 0 for all p ≥ 1, cf. [15].

35



7 A remark on Cheeger’s inequality

This section follows the presentation of [13] and [26], adapting it to the configuration

space case. Let N : R→ R be a Young function, i.e. N is convex, even, non-negative,

with N(0) = 0 and N(x) > 0 for all x 6= 0. Let

CN = sup
x>0

xN ′(x)

N(x)
<∞.

The Orlicz norm of F is defined as

‖F‖N = inf

{
λ > 0 : E

[
N

(
F

λ

)]
≤ 1

}
.

Theorem 7.1 For all F such that m(F ) = 0 we have

‖F‖N ≤
CN
k+
p

‖|DF |Lp(σ+ω
2

)‖N ,

and

E[N(F )] ≤ E

[
N

(
CN
k+
p

|DF |Lp(σ+ω
2

)

)]
.

For p = 1 we have h+
1 = k+

1 hence

E[N(F −m(F ))] ≤ E

[
N

(
CN
h+

1

|DF |L1(σ+ω
2

)

)]
.

If N(x) = xp we have CN = p and ‖F‖N = ‖F‖p, hence for some constant C(p),

C(p)‖F − E[F ]‖p ≤ ‖F −m(F )‖p ≤
p

k+
2

‖|DF |L2(σ+ω
2

)‖p.

For p = 2 we have C(2) = 1, hence

VarF ≤ 4

(k+
2 )2

E
[
|DF |2

L2(σ+ω
2

)

]
,

and

k+
2 ≤ 2.

In the particular case N(x) = xp we have the following better result.
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Theorem 7.2 For all F such that m(F ) = 0 we have

E[|F |p] ≤ E

[(
p

h1

|DF |L1(σ+ω
2

)

)p]
,

and

‖F‖p ≤
p

h1

‖|DF |L1(σ+ω
2

)‖p.

We also have the following.

Proposition 7.3 Let Ivar(t) = t(1 − t), 0 ≤ t ≤ 1 and let b̃p denote the optimal

constant in the inequality

Ivar(E[F ]) ≤ E

[√
Ivar(F )2 +

1

b̃p
|DF |2

L2(σ+ω
2

)

]
.

We have b̃p ≥
(

1− 1√
2

)
k+
p .

8 Appendix

In this appendix we state the proofs of Th. 7.1, Th. 7.2 and Prop. 7.3, which are based

on classical arguments, cf. [4], [26].

Proof of Th. 7.1. By the mean value theorem we have

E[|D+N(F )|Lp(σ+ω
2

)] ≤ E[N ′(F )|D+F |Lp(σ+ω
2

)].

On the other hand, if ‖F‖N = 1,

k+
p E[N(F )] = k+

p E[N(F+)] + k+
p E[N(F−)]

≤ E
[
|D+N(F+)|Lp(σ+ω

2
)

]
+ E

[
|D+N(F−)|Lp(σ+ω

2
)

]
≤ E

[
N ′(F+)|D+F+|Lp(σ+ω

2
)

]
+ E

[
N ′(F−)|D+F−|Lp(σ+ω

2
)

]
≤ E

[
N ′(|F |)|D+F |Lp(σ+ω

2
)

]
≤ CN‖|D+F |Lp(σ+ω

2
)‖NE[N(F )],

where we used the generalization of the Hölder inequality

E[N ′(|F |)G] ≤ E[N ′(|F |)|F |]
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which holds since 1 = E[N(G)] ≤ E[N(|F |)] = 1, cf. Lemma 2.1 of [4], applied to |F |
and

G = |D+F |Lp(σ+ω
2

)

(
‖|D+F |Lp(σ+ω

2
)‖N
)−1

.

Hence

k+
p ≤ CN‖|D+F |Lp(σ+ω

2
)‖N .

Since ‖F‖N = 1, we have

‖F‖N ≤
CN
k+
p

‖|D+F |Lp(σ+ω
2

)‖N ,

for all F with m(F ) = 0. The second statement is proved by application of the

preceding to Nα(x) = N(x)/α, α > 0, as in Th. 3.1 of [4].

Proof of Th. 7.2. We note that

E
[
|D|F |p|L1(σ+ω

2
)

]
≤ pE

[
|F |p−1|DF |L1(σ+ω

2
)

]
,

and apply an argument similar to the proof of Th. 7.1, with CN = p.

Proof of Prop. 7.3. The proof is identical to Theorem 4.11 in [26]. The generalization

of Cheeger’s inequality applied to N(x) =
√

1 + x2 − 1 gives CN = 2 and

E[N(F )] ≤ E

[
N

(
2

k+
p

|DF |Lp(σ+ω)

)]
.

We have with c =
√

2− 1 and c1 = k+
p /2:

cIvar(E[F ]) = cVar (F ) + cE[F (1− F )]

≤ cE[F (1− F )] + E[
√

1 + F 2 − 1]

≤ cE

[√
c2(F (1− F ))2 + |DF |2

Lp(σ+ω
2

)
/c2

1

]
,

hence

Ivar(E[F ]) ≤ E[
√
Ivar(F )2 + |DF |2

Lp(σ+ω
2

)
/(cc1)2].
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[4] S.G. Bobkov and C. Houdré. Isoperimetric constants for product probability measures.
Ann. Probab., 25(1):184–205, 1997.
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205–213. Birkhäuser, Basel, 1995.
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