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Abstract

We propose an algorithm for the closed-form recursive computation of joint mo-
ments and cumulants of all orders of k-hop counts in the 1D unit disk random graph
model with Poisson distributed vertices. Our approach uses decompositions of k-hop
counts into multiple Poisson stochastic integrals. As a consequence, using the Stein
and cumulant methods we derive Berry-Esseen bounds for the asymptotic convergence
of renormalized k-hop path counts to the normal distribution as the density of Poisson
vertices tends to infinity. Computer codes for the recursive symbolic computation of
moments and cumulants of any orders are provided as an online resource.
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1 Introduction

The Poisson random-connection model (RCM) Gg(n) is a random graph whose vertex set
is given by a Poisson point process n with intensity A on R¢, d > 1, and in which every

pair of vertices is randomly connected with a location-dependent probability given by a
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connection function H : R x R? — [0,1]. This setting has the ability to model physical

systems in e.g. wireless networks, complex networks, and statistical mechanics.

When H is a function of the distance between pairs of points of 7, i.e. H(x,y) :=
o(|z — y||) for some measurable function ¢ : R, — [0,1], the resulting graph is also
known as a soft random geometric graph, see [Pen91, Penl6, LNS21]. When ¢ takes the
form ¢(u) = l{u<y,), for some 79 > 0, the random-connection model becomes a random
geometric graph, c.f. the monograph [Pen03], in which a pair of vertices is connected by an
edge if and only if the distance between them is less than the fixed threshold ry, see also

[WDG20] for the soft connection model.

In this paper, we focus on the one-dimensional unit disk random connection model with

d = 1 and connection radius r > 0 on a finite interval, see [Dro97], as illustrated Figure 1.
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Figure 1: Unit disk random connection model.

Here, the nodes are distributed on [0, kr], & = 1, according to a Poisson point process

(Nt)ieqo,kr) With intensity A(ds) of the form

k
Mds) = 3 v (s)N(lr — ds), (1.1)

I=1
where A\i(ds) = A\(s)ds, ..., A\(ds) = \x(s)ds are absolutely continuous intensity measures
on [0,7], 1 =1,..., k. In addition, two nodes located s,t € [0, kr] are said to be connected

if and only if |t — s| < r, and for k¥ > 2, a k-hop is a path connecting two fixed points
x,y € [0,kr] via k — 1 nodes, see Figure 2 for an example with £k =5, = 0, y = 4.5 and

r=1.
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Figure 2: Graph of seven 5-hop paths linking x = 0 to y = 4.5 with r = 1.



We are interested in the count o () of k-hops connecting the additional nodes located
respectively at 0 and t for some ¢ € [0,kr]. In this context, the distribution of k-hop
counts has been expressed by a combinatorial approach in [KGKP21]. We will consider the
statistics and asymptotic behavior of k-hop connectivity as the intensity of the underlying
Poisson process tends to infinity. For this, we will use the Stein method, see [RS13],
[ET14], [LRR16], [DP17], [PS22], and the cumulant method, see [RSS78], [SS91], [Kho0§],
[GT18], [DE13], [Jan19], [DJS22], which has been recently applied to moderate deviation in
random geometric graphs and weighted random-connection models in [ST23], [HHO23], and
to normal approximation for subgraph counts in the multidimensional random-connection

model in [LP24].

The moments of k-hop counts in the random-connection model have been expressed
in [Pril9] as summations over non-flat partition diagrams, however, those expressions are
difficult to apply to the derivation of explicit bounds. In this paper we use a different
approach based on the representation of k-hop counts in terms of multiple Poisson stochastic
integrals, which allows us to derive explicit expressions for moments and cumulants of all

orders by recursive formulas.

In Proposition 4.1 we provide a combinatorial expression for the computation of the
joint moments of k-hop counts at different endpoint locations within [(k — 1)r, kr]. This

expression is then specialized to the computation of variance in Proposition 4.2 and Corol-

lary 4.3.

In Proposition 5.1, a recursive algorithm on k-hop orders is derived for the closed-
form computation of joint moments, using the representation of k-hop counts as multiple
Poisson stochastic integrals. A related recursion formula is derived in Proposition 6.1 for

the computation of joint cumulants, and yields a cumulant bound in Proposition 7.2.

As a consequence, denoting by c,?i(kr —t;...;kr —t) the cumulant of order n > 2 of

~—
n times

ox(t), for t € [(k — 1)r, kr), we obtain the bound

N (e — ik —t
N n/2 ’
(cm(k'r’ —t kr — t))

Next, denoting by P, the distribution of the 1D unit disk model with constant Poisson



intensity A > 0, by the cumulant method this implies the Komogorov distance bound (8.3)
for the convergence of the renormalized k-hop count

o, (t) — Ex[ox(t)]

ou(t) = Vary [0y ()]

to the normal distribution N as X tends to infinity. In Proposition 8.1 we also obtain the

Berry-Esseen bound

sup A (34(1) < 1) — B < 0)] < C“};)

using the Stein method, together with a bound of same order for the Wasserstein distance.

The content of this paper can be summarized as follows. In Section 2 we show that
k-hop counts can be represented in terms of multiple Poisson stochastic integrals. In Sec-
tion 3 we specialize those expressions when the k-hops are made of a single node per cell.
Section 4 presents moment expressions in terms of sums over non-flat partitions, and Sec-
tions 5-6 develop recursive expressions for the explicit calculation of joint moments and
cumulants of any order. In Sections 7 and 8 we derive moment and cumulant bounds with
application to Berry-Esseen rates for the convergence of normalized k-hop counts to the
normal distribution using the Stein and cumulant methods. The online resources contain
specific moment and cumulant computations, background results on moment computations
for Poisson point processes based on [Pril2, Pril6], and an implementation of moment and

cumulant recursions in Mathematica.

Set partitions, moments, cumulants, and Mobius inversion

This section gathers some preliminary facts on the relationships between joint moments,

cumulants, and sums over partitions that will be useful in the sequel. We let I1[n] denote

the set of partitions of {1,...,n}, and given a symmetric function f(7) = f(m,...,m)
where m = {m,...,m} € II[n] is a partition of {1,...,n} of size | = 1 we will use the
notation .
S m=Y S )
mell[n] =171 U Om={1,...,n}



We will also use the Mébius transform G of a function G on partitions 7 of {1,...,n},
defined as

G(o) =Y. G(r), oellln], (1.2)

<o

where the sum (1.2) runs over all partitions  of {1,...,n} that are finer than o, i.e. 7 < 0.
The Mobius inversion formula, see e.g. [Rot75] or § 2.5 of [PT11], states that the function

G in (1.2) can be recovered from its Mébius transform G as

G(m) = ), ulo,m)G(o), (13)

o<m

where p(o,m) is the Mobius function, with u(o,1) = (Jo| — 1)!(=1)!, where |o| denotes
the cardinality of the block o € II[n] and 1 := {{1,...,n}} is the one-block partition of
{1,...,n}. By (1.2) and (1.3) we also have the relation

G(r) =Y plo,m) Y Gy = > ulo,m)G(n),  weln]. (1.4)

o=<m n=<o n<o<mw

Given X a random variable, its camulants of order [; > 1 are the coefficients x;(X) appear-

ing in the log-moment generating (MGF) expansion

logIE Z l'm

for t in a neighborhood of zero. The moments of X are given from its cumulants by the

joint moment-cumulant relation

= > [ [max i > ]L['ﬂm (1.5)

nell[n] Aem I=1m0u-um={1,..,n} j=1

see Theorem 1 in [Luk55] or Relation (2.9) in [McC87]. The Mébius inversion relation (1.3)

allows us to recover cumulants of X from its moments as

(X)) = Y (o, D) [TEX

o€ll[n] Aeo
= -1 D H]E (XN, (1.6)
=1 T U = {1 7777 TL}] 1

see Theorem 1 of [Luk55] or Corollary 5.1.6 in [Sta99].
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The above relations can be extended to random vectors X = (Xj,...,X,) whose joint
cumulants of order (ly,...,[,) are the coefficients I{(Xil; e ;sz") appearing in the joint
log-MGF' expansion

l PR ln
10gIE [et1X1+--.+tan] _ Z ;11| ;n'K(Xil; o ’Xin)’
Lodpg>1 17700

for (t1,...,t,) in a neighborhood of zero in R". By polarization of (1.5)-(1.6), the joint
moments of (X, ..., X,) are given from its cumulants by the joint moment-cumulant rela-

tion

n l

E[X; - X,] = Z H%((Xi)ieA) = Z Z H“((Xi)iﬂj)7

mell[n] Aem I=1mu-um={1,.,n}j=1
and

o€ll[n] €A
n l

= -1 > []E [HX@] (1.7)
=1 miu-um={1,.,n} j=1 e

see [LS59], [Mal80], and Proposition 3.2.1 in [PT11]. In particular, the cumulant of order
n = 1 of a Poisson distributed random variable X coincides with its intensity parameter

A >0 for all n > 1, with

n

EX" = > M= Zn] S(n, A
=1

I=1mu-um={1,....,n}
where S(n,[) the Stirling number of the second kind, i.e. the number of ways to partition a

set of n objects into [ non-empty subsets, 1 <! < n. For A = 1 this yields the Bell number

B = ism, l) (1.8)

=1

which is the number of partitions of {1,...,n}, i.e. the cardinality of II[n].

2 Multiple stochastic integral representation of k-hop
counts

In what follows, we use the notations u A v := min(u,v) and v v v := max(u,v), u,v >

0. Our approach to the recursive computation of moments and cumulants relies on the
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following stochastic integral representation of k-hop counts with respect to the Poisson

process (Ni)wer, with intensity (1.1).

Proposition 2.1 Let k > 2. The number of k-hops joining 0 to t € [0,kr] can be written

as the (non-compensated) multiple Poisson stochastic integral

t t
O'k(t> :J J fk(sl,...,sk_l)stl---stk_l, te [O,]{T], (21)
0 0
where fi. is the function of k — 1 variables defined as
k—1
fk<517 ct Sk*l) = H 1{Sl+1<81+’f}7 (22>
1=0
S1y- -, 8k—1 € [0,t], with sg := 0 and s, :=t.

Proof. When k = 2 we note that if a node is present at s € [0, ] it connects to every node
inside [0, s), and therefore it generates o1(s~) new nodes, where o;(s~) denotes the almost
sure left limit oy (s™) := lim, »; 01(u). When s € (r,2r], if a node is present at s —r € [0, r]
then the count of 1-hops linking 0 to s — r has to be deducted, which yields the evolution
1r0,(s)o1(s7)dN,, s€[0,r],
doy(s) =
—1p0n(8)01(s™ = 1r)dNs—p, se(r,2r].

hence

rvi

n(s )N~ [ onls = nav.,

rr At

UQ(t) = J

0 r
rrat Ov (t—r)
= ‘J al(s)st—f 01<Si>st
0 0
rr At
= J 01(8_)dN8
Ov (t—r)
p

f oi(s VAN, te[0,r],

f o1(s7)dNs, te (r,2r].
\ t—r

More generally, applying this argument by iterations to any k > 3 leads to the system of
jump stochastic differential equations

1[0u(k—1)r](5>0k71(5_)dNS, se 0, (k—1)r],
dO‘k(S) =
_l[r,kr](s)dk_l(s_ — T)dNS—'r; se ((k’ _ 1)7“’ ]CT],
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or
doi(s) = Lo,(k—1)r](8)ok—1(5")dNs — 1 ) (8)ok—1(s~ —7)dNy—p, s € [0, kr],

hence the recurrence relation

((k=1)r)at rvi
o) = | oo (57)dAN, — f (s~ —r)dN.,
JO r
(((k—l)r)mf Ov (t—r)
= kal(Si)st — J O’kfl(Si)st
JO 0
(‘((k*l)r)At
= O'kfl(Si)st
JOv (t—r)
( (k—1)r
( or_1(s7)dNg, te[(k—1)r kr],
Jt—r

= < (‘t O'kfl(Si)sty te [T’, (k - 1)7’],

Jt—r

t
( o,—1(s7)dNs, te[0,r],

\‘)0

for k > 3. Finally, by induction we obtain

((k=1)r) At ,~((k=2)r)As,_, TASy
O'k<t> = J J J dNSl"'dNSkA

Ov (t—r) Ov(s,_;—T7) Ov(sy —T)
(k=1)r)at p((k—2)r)at rat
- J J f dN,, ---dN,, |, (2.3)
Ov (t—r) Ov(s_,;—7) Ov(sy —r)
and we conclude by letting
fk(sla s 75k—1) = 1{t7r<sk,1<(k71)r}1{sk,1fr<sk,2<(k72)r} T 1{3277“<s1<r}7
81,...,Sk_1€[0,t]. O

In particular, the 2-hop count is given by
rAt
oo (t) = J AN, = Nilpoy(t) + (Ny — Neo) Lo (0). (2.4)
Ov (t—r)
In the case of 3-hops, we have

(2r)at

os(t) = fo oa(s7)dN,

v(t—r)



e 2r
J o9(s7)dNs = f f dN,dN, = f Ny-_,)dNg, te[2r 3r],
t t—r Js——r

t t t
f o J N,-dN, — J N.-_,dN,
t—r t—r r

1 1
5 (Ne = DNy = S (Nip = 1)Npy — Z Ny, te[r2r],

2 l=1+N;

I
A
[\
—~
%\
~—
U
=
I

t
1
J NedN, = SN~ DN, te[o,r],
0

where (75,)n>1 denotes the jump times sequence of the Poisson process (INV¢)e[o,kr]-

More generally, when ¢ € [({ — 1)r,lr] for some [ € {1,...,k — 1}, by (2.3) we have

(I-1)r r
S N R I At e
Ov (t—r) JOv(s,_;—7) Ov(s; ) Js; —r S5 —T

l

hence the identity in distribution

t+r lr
IO N N N ) NP
v(s,_1—T) Ov (s, —r) Jsy—rJs_—r S5 —T

The multiple compensated Poisson stochastic integral of order n > 1 of a deterministic
symmetric function f, € L*(R}, A®") is defined by
n—1
L(f,) = n‘J J f Faltrs oo t)d(Ney — A(d)) - d(N,, — M),

with the isometry property

E[(1,(f.)?] = (n)) JJ thl,..., DNAL) - Ad), n=1,  (25)

see e.g. Propositions 2.7.1 and 6.2.4 in [Pri09], and references therein. The next corollary of
Proposition 2.1 gives the chaos decomposition of k-hop counts in terms of multiple Poisson

stochastic integrals.

Corollary 2.2 For any t € [0, kr], the number o (t) of k-hops linking x = 0 to y =t can

be represented as the sum of multiple compensated Poisson stochastic integrals

—1
( >fl (]—{*e Otl}J J Feley Stets -y Spo1)dsipr - dsy— 1> ;

(2.6)

Uk

where ]?k is the symmetrization in k — 1 variables of the function fy defined in (2.2).

9



Proof. This is a direct consequence of Proposition 2.1 and the binomial theorem applied

0 (dN;, — A(dty)) -+ (dNy,_, — Mdtp_1)). O

3 Single node per cell

In the case where k-hop paths are constrained to have a single node per cell [(I — 1)r,r],

l=1,...,k, we must have t € [(k — 1)r, kr], and fi(s1,...,Sk_1) = 0 unless
(S1,.-+y8k-1) € [0, 7] x [r,2r] x -+ x [(k—2)r,(k—1)r].
Multiple Poisson stochastic integral expression
In particular, when t € [(k — 1)r, kr] with k£ > 2, Relation (2.3) yields the following identity

in distribution.

Proposition 3.1 Let k = 2. For T € [0,r] we have the identity in distribution

kr —7) JJ f o dNID, (3.1)

where (Ng))se[o N 1s a family of independent Poisson processes with respective intensities
A(ds) = N(s)ds, l=1,...,k—1.

Proof. When t € [(k — 1)r, kr], by the change of variables u; :=lr —s;, [ = 1,...,k — 1,

we have
(k=1)r r(k—2)r r
) = [T v
— Sp_1—T So —T
kr—t
= J J J dN,_ uy 'dN(k—l)r—uk_l-
We note that in the above integral, for [ = 1,...,k —1 we have 0 < u; < kr —t < r and

(I = 1)r < lr —u; < Ir, hence the integration intervals are disjoint. Therefore, by (1.1),

: () o
letting (N )u cfor] =
respective intensities \;(ds) = )\l( Yds, l=1,...,k—1, and

(Nir — Nir—u; )ueo,-] define k& — 1 independent Poisson processes with

Uk1’

kr—t Uy
f f AN - aNFE=D (k—1)r <t <kr

10



U-Statistics formulation

As noted in e.g. [KGKP21], when 7 € [0, r], any node contributing to a k-hop path linking
xo := 0 to xp41 := kr — 7 must belong to one of the lenses pictured in pink in Figure 2, and

defined as the intervals
Lj:=[jr—m,jr] =[0,7] + jr —, j=1,....k—1,

of identical length 7. In particular, any k-hop path linking xq := 0 to x4, := kr — 7 should

have a single node per cell [(j — 1)r,jr], j = 1,...,k, hence it must be realized using a
sequence (z1,...,2,_1) of nodes such that
Tip1 < @x; +71, 1=0,1,...,k,

with x¢ := 0 and z, := kr — 7. Therefore, any k-hop path (z1,...,x,_1) can be mapped to

a sequence (yi,...,yr_1) € [0,7]*71 by the relation

yji=xj; — (jr—1), j=1,...,k—1,

with y; > --- > y;_1. Based on the above description, we can model the random graph

using a Poisson point process w on X := [0,7] x {1,..., k— 1}, with intensity u of the form
p(ds, {i}) := A\(ds) = A\(s)ds, l=1,...,k—1,
and (3.1) can be rewritten as in the next proposition.

Proposition 3.2 When 7 € [0,7], the count op(kr — 7) of k-hop paths can be represented

as the U-statistics

op(kr —71) = Z frlxy, by a1, lk1) (3.2)

(215015 r (g1 ol ))EWk =1
(@,l) (25,0 5),1<ifj<d

of order k—1, where f, : ([0,7] x{1,..., k—1}) "1 — {0, 1} is the function of k—1 variables
in [0,7] x {1,...,k—1} given by

k—1
fT(x17 ll? s 7',1:]{717 lk*l) = H 1{mi<$i+17 li<li+1} = 1{11:1,.‘.,lk,1:k—1}1{0<I1<"~<$k,1<’r}
=0
with (xo,1ly) := (0,0) and (vg, lx) := (t, k).

11



4 Joint moments of k-hop counts

Proposition 4.1 provides a combinatorial expression for the joint moments of (o (kr —

T1)y...,05(kr —1,)) for any 7,...,7, € [0,r], using sums over partitions of {1,...,n}.
Proposition 4.1 Let n > 1. For any 1,...,7, € [0,7], letting T, := mine, 7; for m <
{1,...,n}, we have

]E[Uk(kT—Tl)"'Uk(kT_Tn)]
- Z Jk 1 H 1{z < <zk,1 }Al(dz ) "Ak—l(dzi’f_}l)’ (4’1>

ﬂ.l ﬂ.k 1€H l 1<i<k
7 1<j<|w

ienl
J

where CZ] denotes the block of ™ that contains the index i€ {1,...,n}, and dzfrj = (dzf)ieﬂj,
=1, k—1.

Proof.  For any 71,...,7, € [0,7], by (3.2) and Corollary B.4 in Online Resource B, we

have

Elow(kr —71) - ox(kr — 7,)]

- J ST Faerleriesze sl )Am(@21) - sy (d2),

mell[nx (k—1)] 07“ 7 1<lg<k—1 1<j<|n|
1<qg<|| €T

wAp=0
where 0 := {{1},...,{n}} is the n-block partition of {1,...,n}, 7; denotes the index j €
{1,...,k — 1} of the unique block 1; = ((4,j))i=1,..» containing m;, i = 1,...,|x|, and the
sum is taken over the set NC[n x (k —1)] of partitions 7 in II[n x (k — 1)] that are non-flat,

and non-crossing in the sense that if (k, 1) and (k’,1’) belong to a same block of 7 then we

should have [ = [". This yields

Elo(kr —71) - op(kr — 7)]

||
= 2, J J 2 FCaniassag g ) An(da) - As, (d2a)

mell[nx (k—1)] 1<lg<k—1 1<5<|n|
TAp= O 1<qg<|n| iem;
= Y lmeesmg
mell[nx (k—1)] llg"'él‘ﬂ
71'/\p=6

12



Tm1 )
J te J H fn (qu, lgzl; ceey quk_l, lqu_l))\ﬁ-l (le) s )\ﬁ-‘ﬂ‘ (dZ‘ﬂ)
0 0 1<j<|n]

’LE‘rrj

Pry P
= Z 1{ﬁ1$"'<ﬁ‘ﬂ‘} . e , 1_.[ 1{Z<El<m<zggk—1}>\ﬁ1 (le) e )\ﬁlﬂ(dzhr‘).
| )

7eNC[nx (k—1)] 1<j<|n
7r/\p:(/j ZETFJ

We conclude to (4.1) by noting that any non-flat and non-crossing partition 7 in NC[n x

(k —1)] can be written as

k-1
T={m1,... T} = Uﬂ'l,
=1

where 7! € [I[n] is a partition of {1,...,n} forevery = 1,...,k — 1. O
Next, we present the application of Proposition 4.1 in the particular cases of first and second

moments.

First moment

When n = 1 there is only one non-flat and non-crossing partition of 1 x (k — 1), which is

given as p = {{(1,1)},...,{(1,k —1)}} and can be represented as in Figure 3 for k = 9.

© © © @0 @O0 @O0 0

Figure 3: Single non-flat and non-crossing partition of 1 x (k — 1) with k£ = 9.

This yields
t t
]E[O’k(k?”f’ _ 7.)] — J Ce J 1{z1<~~-<zk_1})‘1(dzl) . )\k_l(dzk_1)
0 0
t Zk—1 22
B J J s J )\1(d21) ce )\kfl(dzkfl)a (42>
0 JO

0

and when );(s) is the constant density A\; >0 on cell i,i=1,...,k — 1, we find

Elok(kr —7)] = A -+ Mg

Second moment

When n = 2 the count of blocks of non-flat and non-crossing partitions of [2 x (k — 1)]

ranges from k — 1 to 2k — 2, each block has size either one or two, as in Figure 4 for k£ = 9.

13



: o o b Ul

Figure 4: Example of non-flat and non-crossing partition of 2 x (k — 1) with & = 9.

As a consequence, in Proposition 4.2 we obtain the second moment of the count oy (t) of k-
hop paths. Higher cumulants and moments of oy (¢) may also be computed by this method

using Corollary 2.2 above and Corollary 7.4.1 of [PT11].

Proposition 4.2 The variance of the k-hop path count o(kr — 1), T € [0,7], is given by

© ko AT A l 1 L (2]
Vary[oy(kr — 7)] = E A e T i E | | - | | ( _p>_
=1 (Zk —2- l> jo+-+ij=k—1—1 g=1 )\j0+"'+jq71+q p—=0 Jp
JOseees 31=0

Proof. We apply Proposition 4.1 by noting that the blocks of size one are in even number,
and denoting by 41,...,4; their locations with i1 = 2,15 = 3,i3 = 6,14 = 7,45 = 8 in the

above example, when t = t; = t5, and letting zp := 0 and z; := 7, we obtain

k—1
Elo (kr —7)] = A+ Aoy ). > [T N
=0 0=tp<i1<---<i<ijy1=k 1<q<k

o 2
f f J ZZPH Zip)(zpﬂ_lp_l) dz. - -dz
(ipp1 —ip — 1)! " v

where we let 2y := 0 and 2, := 7, To conclude, we check that

2(z —ip—1
le+l Zip) (ZP+1 ' )dZ dZ
((Gpr1 — ip — !)? " !
zp+17ip71)y2ip7p71

- 1—1 HJ Zp+1—lp—1)) W

1 IL[ B(2ip — p, 2(ips1 — ip) — 1)

(=125 ((pra —ip = 1)1)?

l 2 1 — 1)
_ p+
2k — 24'1_[

p=0

((dpr1 — Z10 -2’

where

B(z,y) := Jo N1 =ty dt = (1;(;4{);/(31_1;)', x,y >0,

14



is the beta function, and o
2—(ll+1—lz—1)(2(il+l — i —1))!

('il+1 - 7:[ - 1)'

is the number of pair-partitions of 2(i;41 — 4, — 1). 0

Alternatively, Proposition 4.2 can be proved as a consequence of the isometry formula for

multiple Poisson stochastic integrals. For this, we can use the expression

(k=1)r (k—2)r r
op(kr —7) = f J . f dNg, ---dNs,_,

(k‘—l)T—T s;_l—r 55—
e (k=1)r (k—=1)r )
— Z J . f fr(s1, ..., 861) H (Agdsy) H(stz-p — A ds;)
=0 O=ig<in <--<iy<iy1=Fk 0 1<g<d p=1

q¢{i1,..., i}

that follows from Corollary 2.2 and the isometry and orthogonality property (2.5) of multiple

Poisson stochastic integrals, to show that
E[o;(kr — 7))
1

) 2 1
fk‘ 8 ,...,Sk, )\ dS ) dslp
Z J[O’(k—lﬁll (J[oxk—l)r]dl (&1 v I I q | |

=0 0=’i0<i1<~~~<il<il+1=k‘ 1§q<k‘ p=1
q#{i1,..., i}

o

The following table provides variance formulas of k-hop counts computed from Proposi-

tion 4.2 by taking 7 = 1 for simplicity.

Variance
2-hops A1
A1 Ao )\%)\2 + )\1)\3
3-hops > +2 3l
A1 A2 A3 )\%/\2/\3 + )\1)\%/\3 + )\1)\2)\% 4)\%)\2)\% + 6)\%)\%)\3 + 4)\1)\%)\%
4-hops il +2 1 + 5l

Table 1: Variances of k-hop counts.
In case the Poisson intensities are identical on all cells, we obtain the following result.

Corollary 4.3 Assume that A = A\ = -+ = Ay and let 7 € [0,r]. Then, the variance of
the k-hop path count oy (kr — 7) is given by

1 Sk-1 e D((k=1=1)/2+1)
Var)\[ak(k:’r’—T)]z—(k_l)!;J( z )(M) S (CEE e (4.3)
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where I' denotes the gamma function defined as

0
['(z):= f ¥ e dz, z>0.

0
Proof. Let Xo,...,X; be independent standard normal random variables. From the

moment relation IE [XQJ”] = 2797(2j5,)!/7,! and the fact that the sum X3 + -+ + X7 has a

Chi square distribution, we have

! : k—1—1 l
2 2 k—1-1)! .
2 H<'jp):k i 2 (-'—-u) [ x5
Jo++ij=k—1—1 p=0 Jp ( - ) Jotrtdp=k—1-1 Jo: gt =0
Jos--»J1 =0 | Goyedy20

1 [ k—1—1
_ 22(k 1-1) E Xg S X12
(k—1—1) 2

_ ey Dk = 11+ (1+1)/2)
k—1-DI0((+1)/2)

Hence, from Proposition 4.2 we find

o () 201D P~ 14 (1-1)/2)
(

M

Elog(kr —7)] = Sk—2-Dl(k—1-0l T(I+1)/2)
B e QZIF((I{;*1+Z+1)/2)
= Z k—1+0) ' T((k—1-1+1)/2)

-1 o141 (K =1 —1)/2)!
- (k—1)!§( l )W) (k—1+0)/2)0

O

The following table provides variance formulas of k-hop counts obtained from Corollary 4.3,

by taking A = 1 for simplicity.
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Variance
2-hops T
,7_2 ,7_3
3h T 49T
ops 5 + 3
T3 7_4 T5
Ah T 4T 1o
Ops ETIREERRT:
5-h LS sl
- O S JE— JE— JR— PR
p 4715 T 24" 315
6-h N 5
-hops R PR P _
PS BT T 72 T 105 T 288 T 2835

Table 2: Variances of k-hop counts.

Using the Legendre duplication formula (2k — 3)!T'(3/2) = 22*~4(k — 2)!T'(k — 1/2), Corol-
lary 4.3 also yields the following asymptotic variance. For f and g two nonvanishing func-
tions on R, we write f(A\) ~ g(A) if limy o, f(A)/g(A) = 1.

Proposition 4.4 We have the equivalence
(2\7)2k=3
Var,\[ak(kr — T)] X m

as A tends to infinity, for k =2 and T € [0,r].

5 Joint moments recursion

In the one-hop case we simply have o;(f) = 1 and m?,{ =1, n > 0. As for the two-hop

count, (2.4) yields the joint Poisson moments formula

mSN (1, 7a) = Bloa(2r — 1) - 0a(2r — 7)] = D ] D [17, 61

=1 mu--um={1,...n} j=1

that follows from the expression A\; min(7y, ..., 7,) of the joint Poisson cumulants of (o5(2r—
T1),...,09(2r — 7,)). The direct application of Proposition 4.1 to the evaluation of higher
order joint moments of k-hop counts is not an easy task due to the complexity of the sum-
mations over partitions involved in (4.1). In Proposition 5.1 we propose to compute joint
moments by a recursion argument using the multiple Poisson stochastic integral representa-
tion (3.1) instead of the U-statistics expression (3.2). Particular cases are considered with

explicit computations for n = 1,2, 3 in Online Resource C.

17



Proposition 5.1 For k > 1, the joint moments

m,(;\%(ﬁ, ooy Tn) o= Ey[ok(kr — 1) - op(kr — 7)], 0<7,...,7

N
=3

satisfy the recursion

) =YY J J 1 s ) () - M),
0

I=1mu-um={1,...,

(5.2)
0<71,...,7Tn <1, where Uy, := (U, ..., u;) and Ty := mine, 7; for m < {1,...,n}.
—_———
|i| times

d

Proof. By Proposition 3.1, when 7 € [0,7] we have o™ (kr — 7) 7% in distribution,

where Zﬁk) satisfies Zﬁo) = 1 and the recursion

Z0+1) _ J ZWAN®  refo,r], k=1, (5.3)
0

and (Ni(tl))ue[o,r] is a family of independent Poisson processes with respective intensities
Ai(ds) := N(s)ds, | = 1,...,k. Hence, by Proposition B.1 in Online Resource B, for

Ty ..., Tn € [0,7] we have

A
m,(ﬁr)1 ST, m) = E [Zif“) e ngﬂ)]

_E UT Z““)dN(k)--an Z<k>dN<k>]
0 0

l

AL > Ll E HH Lo/ ))]Ak(dul)---Ak(dul)

miu-um={1,...,n}

Il
=

~
Il
—

I
1=
==

l
miu-um={1,...,n} Ry _]21

~
Il
—

I
1=
el
Il M
—
jm
%
;>
| —
S
5
;J
Q.
‘E
>/
=
£

~
Il
—

mu-um={1,...,n}

I
1=
e

~
Il
—

miu-um={1,...,n}
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Table 3 lists the first four joint moments mg‘z(ﬁ, ..., Tn) of the two-hop counts, computed
as an application of Proposition 5.1 from the command mk[{r,...,7,}, {\1}] in the Math-
ematica code 1 in Online Resource A for n = 1,2, 3,4, when \;(ds) = \jds = ds. The case

A1(ds) = Aids, A\ > 0, is obtained by replacing 7; with A;7;, i = 1,2, 3.

Joint moments of 2-hop counts

First (51
Second T + T1T2
Third T+ 7173 + 27T + T1T2T3
Fourth | 71 + 7174 + 27173 + 47179 + T T3T4 + 2T1ToTy + 3T1ToT3 + T1ToT3Ts

(N

Table 3: Joint moments my,, (71, ..., 7,) of 2-hop counts of orders n = 1,2,3,4.

Tables 4 and 5 list the first four moments of the three-hop and four-hop counts computed
from the commands mk[{7, ..., 7}, {\1, A2} and mk[{7, ..., 7.}, {\1, A2, A3}] in Mathemat-

ica for n = 1,2, 3,4, where for simplicity we take \{ = g =X s =1land r =7 =73 =17.

Moments of 3-hop counts
First %2
Second %2 + QT—S + %4
Third %2+2¢3+5%4+75+%6
Fourth %2 + 14%3 + 53%4L + 66%5 + 67%2 +77+ %

Table 4: Moments mg”\z(T, ..., T) of 3-hop counts of orders n = 1,2, 3, 4.

Moments of 4-hop counts
First ;—T
Second %?4—%4—1—2;—;4-%
Third ;+3%4+5%5+5266+1§g7+§+%

Table 5: Moments mgj‘i(T, ..., 7) of 4-hop counts of orders n = 1,2, 3.

Higher joint moment formulas up to the order six are plotted in Figures 5-6, together with

their confirmations by Monte Carlo simulations.
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(a) Third moments. (b) Fourth moments.
Figure 5: Third and fourth joint moments of 4-hop counts.
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(a) Fifth moments. (b) Sixth moments.

Figure 6: Fifth and sixth joint moments of 4-hop counts.

6 Joint cumulants recursion
In the sequel, given {m,...,m} a partition of {1,...,n} and 71,...,7 € [0,r] we denote by

N Ty o3 7m) 1= Fa (o (kr — r)™ L (op (ke — 7))

the joint cumulant of ((ox(kr — 7)™ ... (ox(kr — 7)™}, and we let cl(;\T)L(ﬁ; 3 Tn)

denote the joint cumulant k(o (kr —71),...,0r(kr —7,)). The following proposition is the
counterpart of the moment recursion of Proposition 5.1 obtained by the Mobius inversion
relation (1.3). Particular cases are considered with explicit computations for n = 2,3,4 in

Online Resource D.
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Proposition 6.1 Let 7 € [0,7] and k,n = 1. The cumulant of order n of o1 (kr — 7)

satisfies the recursion

c,(g’\jln (11557, Z Z f J sm,...;§m))\k(d31)-~~)\k(dsl),

I=1mu-um={1,..,
(6.1)

where we let T, := mine, 7; for m < {1,...,n}.

Proof. When k = 1 we have oy(7) = 1, 7 € [0, 7], hence c( )(7'1, ...3Tn) = L1y, and by
(2.4) the cumulants of the two-hop count o5(2r —7) = N, — N,_, ~ L NW , T € [0,r], are the

joint Poisson cumulants
N — > 1 6.9
Con (153 T) = min(7y, ..., 7)), n=>1, (6.2)

which is consistent with the joint Poisson moments formula (5.1), and shows that (6.1)
holds at the rank k = 1. Next, assuming that (6.1) holds at the rank k£ > 1, by the joint

cumulant-moment inversion relation (1.7) we have

C](fi_)lnTl,..., Zl—l —1)! Z Hmkﬂh‘rﬂq

I=1 mu-um={1,...,n} =1

(1= Di(-1)"

Z H Z J 1 .--J7]nq| mgl)nql(an%%--;ﬂnfnq\))\k(dul)"'Ak(dum"')’

mu-um={1,..,n} =1 ni<mq

M:

~
Il
—_

?nqnq A 3 B
J i (W Y Ae(dun) - A (),

l 7y Tl 41| \
Z _ H J L Inl 1__[ C](“gb(@ ) ot YNi(dur) - - N (dutja))
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7 q ¢
S0 [ [T T () i) M) Al

_ ZM(U’ /1\) Z Z Lﬂpl - .J:ww 1_[ Cg\z((ﬂAmB)Belp))‘k(dul) T Ak(duliﬂl)

1=1 n=<o=<1¥=n Aen
=Y ulo1) Y, Gln)

=1 nﬁasi
= G(1)

— o ) S Y (dug) - - A (d
. Ck;n(unu' "umm) k(dus) k( u|77\)’

where we applied Relation (1.4) with 7 := 1 and

Z J J i 1_[ Ckn uAmB Bew))\k(dul) )\k(dum)

P=n Aen
which shows (6.1) by induction on k > 1. 0
In order to use Proposition 6.1 as an induction relation, the higher order cumulants c,@i(@rl; i 8m)

appearing in (6.1) can be computed by recurrence using the following proposition.

Proposition 6.2 For any sequence (X1, ..., Xn41) of random variables we have the cumu-

lant relation

KX, X X)) = k(X1 X, X)) + > (X1 X )6 (X, Xni1)-

nung={1,..., n+1}
n13n, n2dn+1, nynng=g

Proof. This relation is a particular case of the cumulant-moment relationship

w(Z1y ... Zn i5—1 —1)-t > HIE[HZ]

=1 mu-um={1,...,n} j=1 i€m;
which yields, taking Z; := X1, 25 := X, ..., Z, = X, X511,
H(Xl,...7 n n+1 Zl_l 1)71 2 HE[HX HXan+1>]
=1 miu-um={1,...,n} j=1 1E€T; LYEL
n 1 |mi+1 p
IR C VD VR U D) PIRE | [(C oo
=1 mu--um={1,.,n} j=1 p=1 nu--unp=r;u{n,n+1} v=1
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= KXy, X Xn) + > K( X, Xn) B (X, Xnt1),

niung={1,...,n+1}
n13n, n2dn+1, nynng=g

O

As an application of Proposition 6.2, Tables 6 and 7 present the first five and first three
cumulants cgj\,)l(T; ...;7) of the three-hop count and cflj\%(T; ...;7) of the four-hop count
computed by the commands ck[{7y, ..., 7}, {1,..., 1}, {\1, A2, Ao}] and ck[{71,..., 7.},
{1,...,1},{\1, A2, A3}] in the Mathematica codes 2-3 in Online Resource A forn = 1,2, 3,4, 5,

where for simplicity we take \; =1,¢=1,2,3and 7; =7, j=1,...,5.

Cumulants of 3-hop counts
2
First %
Second ; + Lj
Third %2 + 273 + 7774
Fourth %2 + 14373 + 232T4 + 365T5
Fifth T; +107° + 24274 +867° + 417°
Table 6: Cumulants cgj\g(T; ...;7) of 3-hop counts of orders n = 1,2, 3.
Cumulants of 4-hop counts
First ;—T
Second ;—T + %4 + %
Third ;—T + 3411 + ? + % + 6298707
Table 7: Cumulants CZ(:;)L(T; ...;7) of 4-hop counts of orders n = 1,2, 3.

Figures 7-8 present third and fourth order cumulant plots for 4-hop counts, together with

their confirmations by Monte Carlo simulations.
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Figure 7: Third and fourth cumulants of the 4-hop count o4(4 — 7).
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Figure 8: Skewness and kurtosis of the 4-hop count o4(4 — 7).

7 Moment and cumulant bounds

In this section we take \/(ds) := Ads, [ = 1,...,k, A > 0, and we write f(A) = O(\") if
there exist C,, > 0 and \,, > 0 such that |f(\)| < C,, A" for any A > \,,. The moment bound

in Proposition 7.1 is obtained by induction from Proposition 5.1.

Proposition 7.1 Moment bound. For any n > 0, we have
Ex[(o(kr —7))"] < (B[(N\)"]) " = O((Ar) D)
as A tends to infinity, for k =2 and T € [0,r].
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Proof. We show by induction on k£ > 1 that
min (. m) < (B[N DL 0<m ST

where, denoting by S(n,[) the Stirling number of the second kind,

n

E[(Nx-)"] = > S(n, 1) (A1) = O(A").

=1

The case k = 1 is covered by the fact that o1(r —7) = 1 and mf) (1) =1, n > 0. Next, by

n

the recurrence relation (5.2) we have

n
A A
oo < Y00 ¥ s mem)
0< <
=1 7T1U"'U7Tl:{1 77777 TL} STLy o TIST
n
= sup m,(;\z(ﬁ,...,TZ)ZS(TLJ)(/\T)!
0<7—17"'7Tl<7— -1

= E[(N)"Jm{)(r,....7), k=1

O

The bound on joint cumulants in Proposition 7.2 is obtained by induction from Proposi-

tion 6.2. Here, B,, denotes the Bell number of order n = 1, see (1.8).

Proposition 7.2 For any 7 € [0,7], k = 2 and l;,...,l, = 0, p = 1, we have the joint

cumulant bound
K,\((ak(k‘r — N (on(kr — T))lp) <2\ + 1)7‘)(k_l)(ll+"'+ZP)+1_p(Bn)k_2. (7.1)

In particular, we have

A (T 7)< (20 + D)) HENB R e [0,7] (7.2)
Proof. ~ We note that from (6.2) we have cgj\;(Tl; ...;Tp) = min(m,...,7,), hence by
induction on [y,...,l, > 1, Proposition 6.2 yields

aa((02(2r = 7)) (02(2r = 7)) < (2 + D)t
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0<m,...,7 <7, which is (7.1) for k¥ = 2. Next, using Proposition 6.1, using induction

n (7.1) for k > 2, we have

[Fa (ks (b + 1) = 7). o (b + 1r —17)))|

ZAI Z f ’Ckl Tﬂ1>'-';7_—7rz)|d7-1"'d7'l (73)
=1

mu-um={1,..,

= (B0 D) @O+ ki

=1 mu--um={1,...,n}

N

< (B)FP2(A+ D7)t N S, 1)
= (Bn)" 2\ + 17t
for A > 1, which yields

fa((Orea (b + Dy — 1)) (o (B + Dr = 7,))7) < (B)™H(2(A + 1)r)Hbtsb) i,

0<m7,...,7, <7, by induction from Proposition 6.2. 0

8 Berry-Esseen bounds

In this section we will use the Wasserstein and Kolmogorov distances dy (X, Y') and dg (X, Y)

between the distributions of random variables X, Y, defined as

dw(X,Y):= sup [E[p(X)] - E[n(Y)]],

heLip(1)

where Lip(1) denotes the class of real-valued Lipschitz functions with Lipschitz constant

less than or equal to 1, and

dg(X,Y) :=sup |P(X < z) —P(Y < x)|.

xeR
For A > 0 and t € R, we let
N At At
oM (t) = J | fu(si/A L s /AN, - - dN,, (8.1)
0 0

1 k—1 Lot
= 1) zZ_;) )\kll( ; )Il (L L Jo—1 (%, 8141, -+, Sp—1)dsi4r - "d5k1>
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according to (2.1) and (2.6), so that the distribution of al({/\)(t) under P is the distribution of
oy (t) under the distribution Py of the 1D unit disk model with constant Poisson intensity

A > 0.

In addition, given k > 2 and ¢ € [(k—1)r, kr), we consider the renormalized k-hop count

50 (g . 96 (1)~ Ealon()]
Vary [0y ()]

From Proposition 7.2, for any ¢ € [(k — 1)r, kr), the skewness of o(t) satisfies

Ex[(0x(t) — E[ow(£)])?] ) Nkr —tkr —tikr—t) 1

N —

A 0 A e (PP oY Ry

More generally, by (4.4) and (7.2) we have

cg‘,{(kr—t;...;kr—t)

Fanfoc@DE— — B O < )P0, mz2, (82)

hence by Theorem 1 in [Jan88], 5,(;\) (t) converges in distribution to the standard normal

distribution N (0,1) as A tends to infinity, as illustrated in Figures 9-10 using empirical
probability density plots.

0.5 0.5

0.4 - 0.4

0.3 | 0.3 4

0.2 0.2

0.1 o1 4

oo —2 o 2 a 0 2 o 2 a
(a) A =5. (b) A = 400.

Figure 9: Convergence of 3-hop counts using probability density functions.
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Figure 10: Convergence of 4-hop counts using probability density functions.

In addition, (8.2) shows that the Statulevicius condition, see § 1.3 of [DJS22], is satisfied
with v := k — 3 and A := v/A. By [RSS78], Corollary 2.1 in § 1.3 in [SS91], see also
Theorem 2.4 in [DJS22], this yields the Kolmogorov distance bound

~(N) O(I{J,T)
dK("k (t),/\/) S /(2 +4(k—3))

(8.3)
for t € [(k — 1)r,kr), as A tends to infinity. Moreover, (8.3) can be improved as as Berry-

Esseen bound in the following proposition.

Proposition 8.1 Let k = 2 and t € [(k — 1)r,kr). The renormalized k-hop count 5,5;’\)(t)
satisfies the Wasserstein and Kolmogorov bounds
C(k,r)

diepw (5 (1), N) < 7

(8.4)

for some constant C(k,r) > 0, as X\ tends to infinity.
Proof. The kurtosis of al(;\) (t) satisfies

Ex[(o(t) — Ex[ow(t)])*]
(Vary[ow(t)])?

-3 = E GV 1)"] -3

c,@i(kzr —tikr —t;kr —t;kr —t)
(Vary[ox(t)])?
= (B)"PO(\h),

as A tends to infinity. The Kolmogorov distance bound in (8.4) then follows from the fourth
moment theorem for U-statistics and sums of multiple stochastic integrals Corollary 4.10

in [ET14] applied to (8.1), see also Theorem 3 in [LRR16].
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Regarding the Wasserstein distance bound, according to (3.2) we can the represent

Ul(;\) (t) as the U-statistics

o) () = 3y Prtr—o (@ /A s a1/ L)

(21,11)- (B _1 b —1))Ewk—1
(@4:q) F(2j,05),1<i+j<d

of order k — 1, where f; : ([0,7] x {1,...,k —1})*' — {0,1}, given by
. =

ft(xla Ly Tp—n; lkfl) = m 1_! 1{(li+1—li)$i<(li+1—li)évi+1}’
(z1, 1), .-, (wp_1,lk—1)) € ([0,7] x {1, ..., k—1})¥1 is the symmetrization in k—1 variables
in [0,r] x {1,...,k — 1} of f;. Theorem 4.7 in [RS13] yields the bound

IR .

1<Z<j<k VarA O'k

where M, ; is defined in (14) therein satisfies
My < (k=1 )i =078 g5 =1,
and

k—1\"(k—1\? o
Mm-<< , ) ( 4 ) (Ar)ik-D==i 9 <i<j <k
i J

Hence by (4.4) and (4.3) we have

dw (3", N)

2<i<j<k

C(h)
< ——=+C(k,r) (Ar)L=i/2-9/2,
AT 2ng<k

The above conclusions can also be reached by noting that & O’k ) admits a Hoeffding decompo-
sition and by applying Theorem 1.3 in [DP17] for the Wasserstein distance, or Theorem 6.3
in [PS22] for the Kolmogorov distance, which refine the central limit theorem of [dJ90].

O
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Figure 11 presents numerical estimates that are consistent with the rate in (8.4), by plot-
ting log dK(ﬁl(cA)(t),/\/') against log A and their comparison with the line of slope —1/2.

Kolmogorov distances dx have been estimated in R using the distrEx package.

-2.6 2.4
—2.8 2.6 4
—3.0 4 —2.8 H
-3.2 _3.0 4
—3.4 _3.2
-3.6 -3.4

2‘.5 310 3‘.5 410 4.‘5 215 3‘.0 315 4.‘0 415

log A logA
(a) Three-hop counts. (b) Four-hop counts.

Figure 11: Log-log plots of Kolmogorov distances.

A Computer codes
Computation of joint moments

Explicit moment expressions are obtained using the following Mathematica code which
implements the recursion (5.2) of Proposition 5.1 in two steps. The computation of the
multiple integral with respect to A\x(duy) - - - Ag(du;) and the summation over m U -+ U =

{1,...,n} and [ = 1,...,n are implemented in the following code.
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1 | Needs["Combinatorica™ "]
fseqln_] := fseq[n] = (Module[{k, tmp}, tmp = {};
3 If[n == 1, Return[{{1}}], For[k = 1, k <= n, k++, Do[tmp = Prepend[tmp, Sort[Append[a, k]]], {a,
fseqln - 11}11; tmpll)
r2[x__, t1__, t2__, t3__, p_, 9__, f_1 := r2[x, t1, t2, t3, p, q, f] = (Module[{s}, If [p == 1,
Integrate[f[Join @@ MapThread[Table, {Prepend[x, s], q}]], {s, O,

5 t1[[2]11}],
If[t2[[pl] === t2[[p + 111,
7 Integrate[r2[Prepend[x, s], ReplacePart[tl, p -> s], t2, t3, p - 1, q, f1, {s, t3[[pll, tillp +
11131,

Integrate[r2[Prepend[x, s], t2, t2, t3, p - 1, q, f1, {s, t3[[pll, t1llp + 11131111
9 |mk[t__, lambda__] := mk([t, lambda] = (Module[{b, zl1, q, n, m, z, zz, tmp},
If[lambda == {}, Return[1]]; m = Length[t];
11 If [Length[lambda] == 1, b[1__] =1, b[1__] := (cld__] := mk[d, Drop[lambda, -111;
With[{e = c[Array[s, Length[t]]]},
13 h[z_] := Block[{s}, s[i_] := z[[il]l; el; Return[h[1]111)];
tmp = 0; Dol[n = Length[pp]l; q = Map[Length, ppl; z = t[[Map[Min, ppll];
15 zz = Prepend[Drop[z, -1], 0];
Do[Do[If[r == r[[Ordering@p0]], z1 = Prepend[z[[r]], 0];
17 tmp += Last[lambdal "n*r2[{}, z1, z1, zz[[r]], n, q[[Ordering@p0]l], bl]l, {r, fseq[nl}], {poO,
Permutations[Range[n]]}], {pp, SetPartitions[m]}]; Return[Expand[Flatten[{tmp}][[1]1111]1)
mk[{t1, t2}, {11, 12}]

Mathematica Code 1.
The joint moment E[oy(kr — 1) - - op(kr — 7,,)] of order n > 1 is then computed from the
command mk[{7y, ..., 7} {\,.. ., ], with 0< 7y < --- <7, < 7.
Computation of joint cumulants

Explicing cumulant expressions are obtained using the following Mathematica code which
implements the recursion (6.1) of Proposition 6.1 in two steps. First, the computation of

the multiple integral with respect to A\x(duy) - - - Ag(du;) in the following code.

Needs["Combinatorica™"]
fseq2[n_] := fseq2[n] = (Module[{k, tmp, tmp2}, tmp = {};
If[n == 1, Return[{{1}}],
For[k = 1, k <= n, k++, Do[tmp2 = Join[{k}, al; tmp = Append[tmp, ReverseSort[tmp2]], {a, fseq2[n -
113115 tmpll)

N

riclx__, t__, t2__, t3__, p_, £_] := (Module[{s},
6 If [p == 1, Integratel[f[Prepend[x, s]], {s, 0, t[[2]1]1}],
If[t2[[p]] === t2[[p + 111, Integratel[ric[Prepend[x, s], ReplacePart[t, p -> s], t2, t3, p - 1, f],
{s, t3[[pl]l, tllp + 111}], Integratel[ric[Prepend[x, s], t2, t2, t3, p - 1, f1, {s, t3[[pl]l,
t[lp + 1113111D)
Mathematica Code 2.
.. . . A)— — . . .
This is followed by the recursive computation of céﬁl)(sm; ...} 8g) by the induction relation
of Proposition 6.2, and the summation (6.1) over myu---um ={1,...,n}andl=1,...,n

in the following code
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| |cklt__, 13__, lambda__] := ck[t, 13, lambda] = (Catch[
Module[{b, 14, k, n, 15, 16, t5, tmp3, tmp4, oo, z, zz, zl, z2, u, q}, oo = 0; n = Length[t];
3 Dol[oo += 1; If[10 > 1, 14 = 13; 14[[oo]] += -1;

15 = Join[Range[oo], {oo}, Range[oo + 1, n + 1]1];
5 16 = Join[14[[Range[oo]]l], {1}, 14[[Rangel[oo + 1, n]lll];
t5 = Join[t[[Rangeloo]]], {t[[oo]]l}, t[[Rangeloo + 1, nlll];

7 tmp4 = 0; Do[If [MemberQ[15[[pil[111]], ool && MemberQ[15[[pil[[2]111], ool,

tmp4 += ck[t5[[pil[1111]1, 16[[pil[[1]11]1], lambdal*ck[t5[[pil[[2]11]1]1, 16[[pil[[2]11]1], lambdall,
{pi, KSetPartitions[Range[n + 1], 2]1}]; tmp4 += ck[t5, 16, lambdal; Throw[tmp4]l]l, {10,
13}]; k = Length[lambdal; If[k == 1, Throw[lambda[[1]]1*t[[1]]1]1];

9 If [Length[lambda] == 1, b[1__]1 =1, b[1__] := (c[d__] := ckl[d, 90, Drop[lambda, -1]1];

With[{e = c[Arrayl[s4s, Length[1]]1]}, £f1[z7_] := Block[{s4s}, s4sl[i_] := z7[[i]l]; el;

11 Return[f1[1]111)]; m = Length[t]; qO0 = {m};

tmp3 = lambdal[[1]]*ric[{}, {0, t[[1]11}, {0, t[[111}, {0}, 1, bl;

13 For[n = 2, n <= m, n++, Do[zz = {0}; q = Map[Length, ppl;

z = t[[Map[Min, ppll]l; zz = Prepend[Drop[z, -11, 0];

15 Do[q0 = q[[Ordering@p0]]; Do[If[bb == bb[[0Ordering@p0]], z1 = Prepend[z[[Reverse[bb]l]l]l, 0];
tmp3 += lambda[[1]] n*ric[{}, z1, z1, zz[[Reverse[bbll]l, n, bll, {bb,
fseq2[n]}], {p0, Permutations[Range[n]]}], {pp, KSetPartitions[m, nl}]];

Return [Expand [Flatten[{tmp3}] [[1]111111)

19 |ck[{t, t, t}, {1, 1, 1}, {1, 1, 1}]

Mathematica Code 3.

The joint cumulant cl(;’\zj(?m; i Tm) = fa((ok(kr — 7)™ (o (kr — 7)) is com-
puted from the command ck[{7,..., 7}, {|m|, -, |m|}, { 1, .., Me_1}], and the joint cu-
mulant C](C):T)Z(Tl; C 3 Th) = R (ok(kr —71),...,05(kr — Tn)) is computed from the command

ckl{m, ..., L 1 { A, e}, wWith O <y <+ - <1, <7

B Moments of Poisson stochastic integrals

In this section we review the background results on the moments of Poisson stochastic
integrals that are used in this paper. Let w(dz) denote a Poisson point process with
intensity measure p(dx) on a measure space X. The next proposition, see Proposition 3.1
in [Pri12] or Theorem 1 and Proposition 7 in [Pri16], provides a moment identity for Poisson

stochastic integrals with random integrands using sums over partitions.

Proposition B.1 Let fi,..., f, : X — R be deterministic functions, n = 1. We have

B| [ Attt [ fwia)]
Z{ ...n}Ll ﬁnfz‘(l"j) p(dey) - plday),

n
=1 mu-um={1 j=1iem;

where the sum runs over all partitions m,...,m of {1,...,n} of sizes and |m| denotes the

cardinality of each block m;, | =1,...,n.
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Proposition B.1 extends in Proposition B.2 as a moment identity for the stochastic integral
of functions f(z1,...%,) of p variables 21, ...z, € X?, see in Theorem 3.1 of [BRSW17|. For
this, let I1[n x p| denote the set of partitions of the set

[nxpl:={1,....n} x{1,....p} ={(i,5) : i=1,....n, j=1,...,p},

identified to {1,...,np}, and let p := (p1,...,pn) € H[n x p| denote the partition made of
the n blocks p; := {(7,1),...,(i,p)} of size p, fori =1,... n.

Proposition B.2 For f : X? — R a sufficiently integrable function of p variables, we

B|([ ] flonmioatiny - wlas) |

— - f(xZ’ﬂ"'?mfp)“(dxl)"‘ﬁb(dxﬂ)’
Z ]JX fl_[ “ g :

well[nxr X =1

have

where (7 is the index of the block of m that contains (i, j).

Proposition B.2 can also be extended as a joint moment identity for multiparameter pro-

cesses in the next proposition.

Proposition B.3 Let f; : XP — R, i = 1,...,n be sufficiently integrable functions of p

variables. We have

E Llj L e JX filzy, ... xp)w(dry) - - w(dxy)
||

— Z f f nnfz(l’gfl,,ICEP)M(d{L‘l)M(dZL‘M‘),
] X X

mell[nxr j=1lien;

where (7 is the index of the block of m that contains (i, j).

2,

In case the function f(x1,...,x,;w) vanishes on the diagonals in X7, the integral of f

rewrites as the U-statistics

Xr'f(m,...,xp;w)w(dxl)~-w(d:vp) = Z flxy, ..., xpw), (B.1)

(G zp‘)ELpr
z;Fz;,1<i$j<p
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we have the following corollary of Proposition B.3. For this, we let p := (p1,..., p,) be the

T

partition w of [n x p| is non-flat, i.e. ™ A p = 0, if every block of 7 contains at most one

element of p;, i = 1,...,n, where 0:= {{1},...,{n}} is the n-block partition of {1,...,n}.

Corollary B.4 Let f; : XP — R, i = 1,...,n be sufficiently integrable functions of
p variables such that the function fi(x1,...,xy;w) vanishes on the diagonals in XP, i =

1,...,n. Then, the joint moments of the U-statistics (B.1) can be computed as
B [HJ J F@n. . oy)w(dey) - w(dz,)
i=1vX X

||
= Z JVXJXHH]CZ(.’L'C:N,ZL’C:p)lu(dg;l)lu(dxﬂ')

7reH[n><Ap] j=1iep;
TAp=0

C Explicit moment recursions

In this section we confirm the joint moment induction of Proposition 5.1 via explicit calcu-

lations for n = 1,2, 3.
First moment recursion
By (5.3) we have

mM (1) = Exlopa((k+ 1)r —1)]
- E, [Z(k+1)]

T

0
- f m®) () (ds),
0

which recovers (4.2) as

my(r) = JT FH s JSQ Ai(ds1) - Ap—1(dsg-1).-

0 Jo
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Second joint moment recursion

For n = 2, by (5.3) the induction relation (5.4) reads

MYy o(r1, 1) = Ba[og((k+ r —m)og((k + 1)r — )]

= E,\[250Z5]
_ E, Uﬁ ZHaN® F Z(’“)dN(’“)]
0
_ f By [(Z89)? | Ae(dsy) + f f 219 20\ (ds) w(ds»)
0

= f mA(ul,ul Ak (duy) + J f m)‘ (ur, ug) Mg (dug ) A\g(dus).
0

)

Third joint moment recursion

For 71,79, 73 € [0, 7] the recursion (5.4) reads

ml(f/:-)l,3<7-17 T2, 73) = Ex[op1((k + 1)r —m)op((k + 1)r — m2)o((k + 1)r — 73)]

_ ]E)\ [Z7(_k+1)Z(k+1)Z(k+1)]

T2 T3

=E, UT ZW AN F ZW AN k) J "’ AR dNﬁ]
0 0 0
TINANT2AT3
—f E[(2)*|\(ds1)
Tl/\TQ T2NT3
J J 51 ) 53 ])\k(dsl /\k d53 J J ])\k(dsl)/\k(dSQ)
TONTS
f J Ey [Z0(Z8) ] M\e(dsy) A (dsy) + J f f [Z20Z8) ZO T\ (ds1) M (ds2) M (dss)
J mk3(u1,u1,u1))\k(du1 f J mkn(ul,ul,u3))\k(du1))\k(du3)
T1INT3 T2NT3
f J ul,ul,ug))\k(dul))\k (dug) + J J mkn (w1, ug, ug) A (duy ) (dusg)
+ J J f mkn(ul, Uz, Uz) A (dug )\g (dug) A\, (dug)
=J mk3(u1,u1,u1))\k(du1 f J mkn(ul,ul,u3))\k(du1))\k(du3)
T1INT3 T2 NT3
J J ul,ug,ul))\k(dul))\k (dug) + J J mkn (w1, ug, ug) A (duy ) (dusg)
+ J J f mlm(ul, Usg, U3) A (dug )\ (dug) A\ (dus).
o Jo Jo
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D Explicit cumulant recursions

In this section we confirm the joint moment induction of Proposition 6.1 via explicit calcu-

lations for n = 2, 3, 4.

Second cumulant recursion

By Proposition 5.1 and the joint cumulant inversion relation, we have the second cumulant

recursion

A A A
C§<+)1 o(T1572) = mifl o(71, 7o) mgch)l 1(7'1)m1(¢+)1 1(72)

J mk,2 uy, up )\ (duy) + J f m’\ (u, ug) Mg (duq ) A (dusg)

7

_J mk+1,1(51>d51f mily 1 (s2)dss
0 0
T1 T1 T2
= | i) + [ [ . un)  mf i ) ) )

:J ci\ (ur, up) A (duy) + f J c? (u; u2) A\ (dug ) A\g(dus).
0

Third cumulant recursion

At the third order, we have the next cumulant expression.

Proposition D.1 For k > 1 we have the third cumulant recursion

T1 T1 T3
02?1,3(71;72;7'3) = Jo C;(;\g(ul,ulau1))\k(du1) +f0 L C;(;\g)(ubul;U3))\k(dul))\k(du3)

T1 T2 T1 T2
+J J C](:,\?z(U1,u1;UQ))\k;<du1)Ak(du2)+J f cg‘;(ul;u2,u2))\k(du1)(du2)
o Jo o Jo
T1 T2 T3
+ f J f e (s g ug) A (dun ) Ao (duz) Ny (dug)
o Jo Jo

Proof. By the joint cumulant-moment relationship

n l
A _ A _
c,(c+)13 (71; T9; T3) Z (I — D=1 Z Hméjlv‘m(rﬁj) (D.1)
=1

mu-um={1,...,n} j=1

A A A A A
= ml(gJZl,:s(Tl’ T2, T3) — Z m/(ng)l |m(7m)m,(€£1 |7T2|(T7rz) + 2m§€+)1 1(7-1)ml(€+)1 1(72)m§g+)1 1(73)

miume={1,2,3}
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and Proposition 5.1, we have

02/1)1,3(715 T2} T3)
TINANT2AT3 ()\) T1NAT2
= J my. 5 (ur, ur, ug) A (duy) + J f mkg (w1, uy, uz) Mg (dug) A (duy)
[TLATS )\ TQATS o)
+ f m ul,ul,u2)/\k(du2))\k duy) + f J mk3(u1,u2,u2))\k(du2)/\k(du1)

r‘Ts
+ JJm (w1, ug, ug) Ak (duy) A (dug) Ak (dus)

r‘Tl T2NT3 T3 T2
_ ml(j‘ ’LLl )\k dul (J m )\ UQ,UQ))\k(dUQ) J m )\ Ug,Ug )\k: dU2 )\k dU3 >
JO 0 0o Jo
(T2 N T1ATS /\ T3 [T1 )\
— m,(gf (u2) A (dusz) (J m ul,ul))\k(dul) J m 5 (U1, ug) Ak (dug ) A (dus) >
JO 0 0 Jo
T3 N T1AT2 )\ T2 [T1 )\
— m,(c (ug) A (dus) (J m ul,ul))\k(dul) J m 5 (U1, ug) Ak (dug ) Ak (duz) >
JO 0 0 Jo
+ 2[ mk1 u) A (duy) J u2 YAk (dusz) f mk1 (ug) Ak (dus). (D.2)
0
Applying (D.1) to k-hops, i.e.
C](jg (ur;ug;uz) = mﬁfﬁ (w1, ug; u3)
—miy (un)mid (s ug) — i) (un)mig) (s uz) — mig (u Jmids (s us)
A A A
+2m,(€f(u1)m,(€f(u2)m,(ﬂ)( 3),
allows us to simplify (D.2) to
012/1)1,3 (715 72; 73)
TINANT2AT3 (A) T1NAT2 ()\)
= my s (u, ug, un) A (dug ) + f J my. g (ur, ur, uz) A (dug) A (duy )
0 0 0

TLNAT3 2 T T2NT3
| m s ) s M) + [ ) ) )
0 0 0

T2 T3
J f C;(f% (13 ug; ug) A (dug ) Mg (dug) Mg (dus)

0

J(\n/\’rgg N

ug ) Ak (dug) m“(ul,ul))\k(dul)

Jr?n/\ﬂ-g N

u3 ) Ak (dug) my. o (ur, ur) A (duy)
JO

)
'L
J u1 YAk (duy) [~ 3m,(€2)(u2,u2))\k(du2)
-
-
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= f my s (u, uy, un) A (du) + f f cp 3 (ur, urs uz) g (dug) A (duy)
0 0 0

T1INT3 2 T T2 NT3
+ J J c,(;\g(ul, wy; ug) A (dug) Mg (duy) + J f c,(;\g(ul; Usg, Ug) Ag (dug) Mg (duy )
0 0 o Jo

)

T1 T2 T3
+ J f J c,(;\:,)) (ur; ug; ug) A (dug) A (dug) A (dus).
o Jo Jo

)

Fourth cumulant recursion

Taking 7 = 7 = 73 = 74 = 7 for simplicity, we have

n l
(N (A ~
Cri1a(T3 75T T) Z [—1)! -1 Z Hkarl"ﬂj'(sﬁj)
=1

mu-um={1,...,n} j=1

A A A A A
= m§c+)1,4 (T7 T, T, T) - 4ml(c—31 1(T)ml(c-21,3<7-7 T, T) - 3m§c—21,2(7-7 T)mgc-glz(ﬂ T)

A A A A A A A
+ 6ml(c+)1 (7 )m1(~c+)11( )ml(q—zl o(T,7) — ml(c—gl,l(T)ml(c-gl,l(T>ml(c-21,1(7-)m§c-21,1(7—)

f mk4 ul,ul,ul,ul))\k(dul)—i—élf J m,@i(ul,ug,ug,m)duldug
0 Jo

+3f f mk4 (w1, uy, ug, ug)duidusg

+ 6f J J mk4 Uy, Us, Uz, ug)duydusdus +J f f J m,€4 (w1, ug, ug, ug)duydusdusduy

4mk+1 (7 )mk+)1 (7,7, 7) — 3ml(g-21 2 (T, T)mk+1 o(7,7)

A A A
+ 6mpY,  (mY (T, (1) = m) L ()mEY  (nmY  (mY, (1)

=J m,(;\i(ul,ul,ul,ul))\k(dul)+4J f mk’4(u1,u2,u2,u2)du1du2
0 0 Jo

r‘T T
A
+3 J mé’i(ul,ul,ug,m)duldm
0

JO

r‘T T T T T T T
+6 J J ml(:\i(ul,UQ,U,3,U3)dU1dU,QdU3+J J f J m,(cﬁ(ul,ug,ug,,u4)du1du2du3du4
o Jo 0 o Jo

r‘T T T T T
—4 m,(g’\l)(u)duj m,(ﬁg(ul,ul,ul)dul - 12J m,(fl)(u)duf J m,(g (w1, ug, us)duy dus

JO

T 2
—4 mAl) duj J f mg‘?)) (u1, ug, uz)duydusdus — 3 (J m,€2 ul,ul)dul)

Jo

) /\ 2
-6 mm(ul,ul)dulf J mm(ul,qu Yduydug — (J J my (w1, ug duldu2>

Jo
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+6(J m du> (j m ul,ul du1+J f mm(ul,uQ)dulduz)

mk+1 (7 )ml(c-H (7 )mk+1 (7 )mk+)1 (1)

f mk4 ul,ul,ul,ul))\k(dul)—i—élf J m,(ﬁ(ul,ug,ug,m)duldug
0 Jo

J mki(ubuhw,w)dmduQ

+6 J J mkA(’LLl,UQ,Ug,Ug)dUldUszg+J f f J C](:\Z(Ul;UQ;Ug;U4)dU,1dU2dU3dU4

r‘T
—4 m( duf mk3 ul,ul,ul)dul—mf m )duf J mkS(U1,u2,u2)du1du2

2 T
f ul,ul dul) —6J m,(C/\Q)(ul,ul)dulj J m](:’\Q)(Ul,UQ)dU1dU/2
0 o Jo

(&
o

)

Jm)‘f du> Jm“ (uy, uy)duy
m

+6
f U1,U1,U1>U1))\k(dul +4f J Ck4 (w15 ug, Uz, ug)duy dus

-
J m’\ ul,u2,u3,u3)du1du2du3—|—J J f J ck4 (u1; ug; ug; ug)duydusdugduy

/\
J e ul,ul,u2,u2)du1du2

7

T 2 1
J mff‘%(u)du) J m,(sz)(ul,ul)dul

0

7

c,(;\i(ul,ul,ul,ul))\k(dul +4J f ’\ ul,u2,u2,u2)du1du2
0

SJ f ck4(u1,u1;u2,u2)du1du2

+6f J J (U u; us, us duldugdug—i—f J J J )‘ ul,ug,ug,u4)du1du2du3du4

In order to reach we above conclusion we used the relations

4f J cfcj\i(ul;ug,ug,ug)duldug
o Jo

= 4f f m,(;,\i(ul,u%uQ,uQ)duldm f f mk1 uy) mk:.z(u%uQ,uQ)dulduQ,
0 Jo

_J’_
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3J J c,ﬂ(ul,ul;ug,ug)duldug
0 Jo

= 3] J mé’,\i(ul,ul,u;z,,ug)dulduQ3] J m,(;\Q)(ul,uz)mg;(u?,,u;),)duldu?,,
0 Jo 0 Jo

GJ J f c,i:\i(ul;u2;u3,u3)du1du2du3
0o Jo Jo

6f J J m](:\i(ul,UQ,U3,U3)dU1dU2dU3— 12f m,g:\f(ul)dulf J m,(;\g(ug,ug,ug)dugdug
0 Jo

J ka Us, U3 du;;f f mkz (w1, ug)duydusg
0

+6J J J mk1 uy) mg‘)( )mg(ug,ug)duldugdug.

)
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