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Abstract

We derive normal approximation bounds in the Wasserstein distance for sums of
generalized U -statistics, based on a general distance bound for functionals of inde-
pendent random variables of arbitrary distributions. Those bounds are applied to
normal approximation for the combined weights of subgraphs in the Erdős-Rényi ran-
dom graph, extending the graph counting results of [1] to the setting of weighted
graphs. Our approach relies on a general stochastic analytic framework for functionals
of independent random sequences.
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1 Introduction

The Malliavin calculus has been applied to the derivation of approximation bounds by the

Stein and Chen-Stein methods on the Wiener space [11], on the Poisson space [13], [14], as

well as in the case of discrete Bernoulli sequences [12], [18], [9], [10], [8]. Recently, a different

Malliavin framework for Stein approximation has been introduced in [16], with application

to normal approximation in the Wasserstein distance for weighted U -statistics of the form∑
k1,...,kn∈N0
ki 6=kj if i 6=j

bk1 · · · bknZk1 · · ·Zkn

where N0 = {0, 1, 2, . . .}, (Zk)k≥1 is an i.i.d. sequence of random variables, and (bk)k≥ is

a sequence of real coefficients, based on stochastic analysis for functionals of a countable
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number of uniformly distributed random variables, see [15]. This completes the bounds for

the Kolmogorov distance obtained in e.g. Theorem 3.1 of [2] for nonweighted U -statistics,

see also [6] in the quadratic case.

Our goal in the present paper is two-fold. First, we extend in Theorem 3.2 the Stein

approximation bounds of [16] from multiple stochastic integrals to finite sums of multiple

stochastic integrals, which can be viewed as polynomial functionals in independent random

variables with arbitrary distributions, or as generalized U -statistics, see Proposition 3.1. Fur-

thermore, in Proposition 2.4 we obtain a general Wasserstein distance bound for functionals

of independent random variables as a consequence of Proposition 3.3 in [16].

Second, we show that those results can be applied to the central limit theorem for the

convergence of renormalized weight counts in large random graphs. For this, we consider

the Erdős-Rényi random graph G(n, p), introduced by Gilbert [5] in 1959 and popularized in

[3], which is constructed by independently retaining any edge in the complete graph Kn on

n vertices with probability p ∈ (0, 1). Denote by NG
n the random variable counting number

of subgraphs (not necessarily induced ones) of G(n, pn) that are isomorphic to a fixed graph

G. Necessary and sufficient conditions for the asymptotic normality of the renormalization

ÑG
n :=

NG
n − E[NG

n ]√
Var[NG

n ]
.

of NG
n have been obtained in [21], where it is shown that

ÑG
n

D−→ N iff npβn →∞ and n2(1− pn)→∞, (1.1)

as n tends to infinity, where N ∼ N (0, 1) is a standard Gaussian random variable, β =

β(G) := max{eH/vH : H ⊂ G} and eH , vH respectively denote the numbers of edges and

vertices in the graph H. Such results have been improved via explicit convergence rates

obtained in [1] as

dW
(
ÑG
n ,N

)
≤ C

(
(1− pn) min

H⊂G
eH≥1

nvHpeHn

)−1/2

, (1.2)

where C > 0 is a constant depending on G, and dW is the Wasserstein distance

dW (X, Y ) := sup
h∈Lip(1)

|E[h(X)]− E[h(Y )]|,

between the laws of random variables X, Y , where Lip(1) denotes the class of real-valued

Lipschitz functions with Lipschitz constant less than or equal to 1. Kolmogorov distance
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bounds have also been obtained for triangle counting, see § 3.2.1 of [20], and [10], using

the Malliavin approach to the Stein method for discrete Bernoulli sequences. Those rates

have been improved in [19], and extensions to the counting of arbitrary subgraphs that yield

the bound (1.2) for the Kolmogorov distance have recently been obtained in [17], based on

distance bounds for sums of discrete multiple integrals and weighted U -statistics, as well as

in [4], [24].

Here, our stochastic analytic framework allows us to assign an independent sample of

a random nonnegative weight X to every edge in G(n, pn), and to consider the combined

weights of subgraphs instead of counting them. Precisely, we define a weight of a graph as

a sum of weights of its edges. Next, by WG
n we denote the combined weight of subgraphs in

G(n, pn) that are isomorphic to a fixed graph G and its renormalization

W̃G
n :=

WG
n − E[WG

n ]√
Var[WG

n ]
. (1.3)

In Theorem 4.3 we show, as an application of Corollary 3.2, that when G is a graph without

isolated vertices, we have

dW
(
W̃G
n ,N

)
≤ C

√
E[(X − E[X])4] + (1− pn)(E[X])2

Var[X] + (1− pn)(E[X])2

(
(1− pn) min

H⊂G
eH≥1

nvHpeHn

)−1/2

, (1.4)

where C > 0 is a constant depending only on eG, which recovers (1.2) in the case of a

deterministic weight given by X := 1/eG. When X is a fixed random variable this also

yields the sufficient condition(
npβn →∞ and n2(1− pn)→∞

)
=⇒ ÑG

n
D−→ N ,

for the convergence of W̃G
n to the standard normal distribution (cf. (1.1)), which follows

from the equivalence(
npβn →∞ and n2(1− pn)→∞

)
⇐⇒ (1− pn) min

H⊂G
eH≥1

nvHpeHn →∞.

To derive the bound (1.4) we apply Proposition 2.4 to combined subgraph weights WG
n

represented as finite sums of multiple stochastic integrals, see Lemma 4.2. Our results are

then specialized to a class of graphs satisfying a certain balance condition, which includes

triangles, complete graphs and trees as particular cases.
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We note that other types of random functionals on graphs, such as graph weights defined

as products of edge weights, or the number of vertices of a given degree, admit representations

as sums of multiple integrals or generalized U -statistics, and can be treated by this approach.

This paper is organized as follows. In Section 2 we recall the framework of [15] for the

construction of random functionals of uniform random variables, together with the construc-

tion of derivation operators. In Section 3 we derive normal Stein approximation bounds for

general functionals and for sums of multiple stochastic integrals. In Section 4 we show that

combined graph weights can be represented as sums of multiple stochastic integrals, and de-

rive distance bounds for the renormalized weights of graphs in G(n, pn) that are isomorphic

to a fixed graph G. The Appendix Section 5 contains some technical results exploited in the

paper.

2 Functionals of uniform random sequences

Stochastic integrals

Given (Uk)k∈N an i.i.d. sequence of [−1, 1]-valued uniform random variables on a probability

space (Ω,F , P ) = ([−1, 1]N,F , P ) let the jump process (Yt)t∈R+ be defined as

Yt :=
∞∑
k=0

1[2k+1+Uk,∞)(t), t ∈ R+.

Denoting by (F)t∈R+ the filtration generated by (Yt)t∈R+ , and letting

F̃t := F2k, 2k ≤ t < 2k + 2, k ∈ N,

the compensated stochastic integral ∫ ∞
0

utd(Yt − t/2)

with respect to the compensated point process (Yt − t/2)t∈R+ can be defined for square-

integrable
(
F̃t
)
t∈R+

-adapted processes (ut)t∈R+ by the isometry relation

E
[∫ ∞

0

utd(Yt − t/2)

∫ ∞
0

vtd(Yt − t/2)

]
(2.1)

= E

[∫ ∞
0

ut

(
vt −

1

2

∞∑
k=0

1(2k,2k+2](t)

∫ 2k+2

2k

vrdr

)
dt

2

]
,
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see [15], where (ut)t∈R+ and (vt)t∈R+ are square-integrable
(
F̃t
)
t∈R+

-adapted processes. This

also implies the bound

E

[(∫ ∞
0

utd(Yt − t/2)

)2
]
≤ 1

2
E
[∫ ∞

0

|ut|2dt
]
,

where (ut)t∈R+ is square-integrable and
(
F̃t
)
t∈R+

-adapted.

Multiple stochastic integrals

Let L̂p(Rn
+) denote the space of symmetric functions that are p-integrable on Rn

+, p ≥ 1, and

vanish outside of

∆n :=
⋃

0≤ki 6=kj
1≤i6=j≤n

[2k1, 2k1 + 2]× · · · × [2kn, 2kn + 2],

equipped with the norm

‖fn‖L̂p(Rn
+) := ‖fn‖Lp(Rn

+,(dx/2)⊗n) =
1

2n/p
‖fn‖Lp(Rn

+,(dx)⊗n), fn ∈ L̂p(Rn
+).

Given fn ∈ L̂1(Rn
+) ∩ L̂2(Rn

+), n ≥ 1, we define the multiple stochastic integral In(fn) as

In(fn) :=
n∑
r=0

(−1)n−r

2n−r

(
n

r

)
(2.2)

∑
k1,...,kr∈N0
ki 6=kj if i 6=j

∫ ∞
0

· · ·
∫ ∞

0

fn(2k1 + 1 + Uk1 , . . . , 2kr + 1 + Ukr , y1, . . . , yn−r)dy1 · · · dyn−r

= n!

∫ ∞
0

∫ tn

0

· · ·
∫ t2

0

fn(t1, . . . , tn)d(Yt1 − t1/2) · · · d(Ytn − tn/2),

where N0 = {0, 1, 2, . . .}. The multiple stochastic integrals (In(fn))n≥1 form a family of

mutually orthogonal centred random variables with the bound

E
[
(In(fn))2

]
≤ n! ‖fn‖2

L̂2(Rn
+,dx/2) , n ≥ 1, (2.3)

cf. (2.1) above and Propositions 4 and 6 of [15], which allows one to extend the definition

of In(fn) to all fn ∈ L̂2(Rn
+). If in addition we have∫ 2k+2

2k

fn(t, ·)dt = 0, k ∈ N, (2.4)

then In(fn) satisfies the isometry and orthogonality relation

E [In(fn)Im(fm)] = 1{n=m}n!〈fn, fm〉L̂2(Rn
+,dx/2), fn ∈ L̂2(Rn

+), fm ∈ L̂2(Rm
+ ), (2.5)
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see [15], page 589, in other words the function fn is canonical [23]. Moreover, every F ∈ L2(Ω)

admits the chaos decomposition

F = E[F ] +
∞∑
n=1

In(fn), (2.6)

for some sequence (fn)n≥1 of functions in L̂2(Rn
+), n ≥ 1, see Proposition 7 of [15]. Note

that under the condition (2.4) the sequence (fn)n≥1 is unique in L̂2(Rn
+) due to the isometry

relation (2.5).

In the sequel, sequences (X1, . . . , Xn) of independent random variables with distribution

functions (FX1 , . . . , FXn) will be frequently represented as(
F−1
X1

(
U1 + 1

2

)
, . . . , F−1

Xn

(
Un + 1

2

))
,

where
(
F−1
X1
, . . . , F−1

Xn

)
are the generalized inverses of (FX1 , . . . , FXn). As a consequence

we have the following remarks, that can be analogously applied to higher order integrals,

particularly under the additional assumption (2.4).

Remark 2.1 For f1 ∈ L2([0, 2n]), the stochastic integral

I1(f1) :=
n−1∑
k=0

(
f1(2k + 1 + Uk)−

1

2

∫ 2k+2

2k

f1(t)dt

)
represents a sum of independent centred random variables

I1(f1)
d
=

n∑
k=1

(Xk − E[Xk])

by taking f1(x) = F−1
Xk

(x/2− k), x ∈ [2k − 2, 2k), 1 ≤ k ≤ n.

Remark 2.2 In terms of U-statistics, (2.4) says that In(fn) is degenerate, and in that sense

the expansion (2.6) might be identified as a Hoeffding decomposition. To see this, assuming

that X1, . . . , Xn are independent identically distributed with common distribution function

FX , we extend the construction of Remark 2.1 to n = 2 by letting

f2(x, y) :=
1

n(n− 1)
h

(
F−1
X

(
x− 2i

2

)
, F−1

X

(
x− 2j

2

))
, (x, y) ∈ [2i−2, 2i)× [2j−2, 2j),

1 ≤ i, j ≤ n, for a given function h : R2 → R. Under Condition (2.4) we have

E [h(X1, x)] = E [h(x,X1)] = 0 a.s., (2.7)
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and therefore I2(f2) can be written as the classical U-statistic

I2(f2)
d
=

1

n(n− 1)

∑
1≤i,j≤n
i 6=j

h(Xi, Xj),

which is degenerate by (2.7). Note that if h may depend on i, j ∈ {1, . . . , n}, then I2(f2) is

called a degenerate generalized U-statistic.

Finite difference operator

Consider the finite difference operator ∇ defined on multiple stochastic integrals F = In(fn)

as

∇tF := F ◦ Φt −
1

2

∫ 2bt/2c+2

2bt/2c
F ◦ Φsds, t ∈ R+,

where Φt : Ω −→ Ω is defined by

Φt(ω) :=
(
U1(ω), . . . , Ubt/2c−1(ω), t− 2bt/2c − 1, Ubt/2c+1(ω), . . .

)
, ω ∈ Ω, t ∈ R+.

Example 2.3 Let n ≥ 1, and consider

F := I2(f2) =
∑

1≤i,j≤n
i 6=j

UiUj,

where

f2(x, y) := (x− 1− 2i)(y − 1− 2j), (x, y) ∈ [2i− 2, 2i)× [2j − 2, 2j), 1 ≤ i, j ≤ n.

Then we have

∇tF =
∑

1≤i,j≤n, i 6=j
i,j 6=bt/2c+1

UiUj + 2(t− 2bt/2c − 1)
∑

1≤i≤n
i 6=bt/2c+1

Ui

− 1

2

∫ 2bt/2c+2

2bt/2c

 ∑
1≤i,j≤n, i 6=j
i,j 6=bs/2c+1

UiUj + 2(s− 2bs/2c − 1)
∑

1≤i≤n
i 6=bs/2c+1

Ui

 ds

=
∑

1≤i,j≤n, i 6=j
i,j 6=bt/2c+1

UiUj + 2(t− 2bt/2c − 1)
∑

1≤i≤n
i 6=bt/2c+1

Ui

−

 ∑
1≤i,j≤n, i 6=j
i,j 6=bt/2c+1

UiUj +

∫ 1

−1

udu
∑

1≤i≤n
i 6=bt/2c+1

Ui
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= 2(t− 2bt/2c − 1)
∑

1≤i≤n
i 6=bt/2c+1

Ui, t ∈ R+,

where we used the relation bs/2c = bt/2c for s ∈ [2bt/2c, bt/2c+ 2).

The operator ∇ admits an adjoint operator ∇∗ given by

∇∗ (In(gn+1)) := In+1(1∆n+1 g̃n+1),

where g̃n+1 is the symmetrization of gn+1 ∈ L̂2(Rn
+)⊗L2(R+) in n+1 variables. The operator

∇ is closable with domain

Dom(∇) =
{
F ∈ L2(Ω) : E[‖∇F‖2

L2(R+)] <∞
}
,

and we have the duality relation (integration by parts)

E[〈∇F, u〉L̂2(R+)] = E[F∇∗(u)], F ∈ Dom(∇), (2.8)

for u in the domain Dom(∇∗) of ∇∗, see Proposition 8 of [15]. Although the operator ∇
does not satisfy the chain rule of derivation, it can be easily applied to multiple stochastic

integrals, as for any fn ∈ L̂2(Rn
+) we have

∇tIn(fn) = nIn−1(fn(t, ·))− n
∫ 2bt/2c+2

2bt/2c
In−1(fn(s, ·))ds, t ∈ R+, (2.9)

see Proposition 2.1 in [16]. In particular, under the condition (2.4) we have the equality

∇tIn(fn) = nIn−1 (fn(t, ·)) , t ∈ R+,

see Proposition 10 of [15]. The Ornstein-Uhlenbeck operator L := −∇∗∇ satisfies

LIn(fn) = −∇∗∇In(fn) = −nIn(fn), fn ∈ L̂2(Rn
+),

where fn satisfies (2.4). By (2.6) the operator L is well defined, invertible on centred random

variables F ∈ L2(Ω), and its inverse operator L−1 is given by

L−1In(fn) = − 1

n
In(fn), n ≥ 1,

where, due to Proposition 5.3 below, fn does not have to satisfy (2.4). Note that (−L) is a

positive operator and its square root (−L)−1/2 takes the form

(−L)1/2In(fn) =
√
nIn(fn), n ≥ 1.
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Stein approximation bound

The next result is a consequence of Proposition 3.3 in [16]. As above, N ∼ N (0, 1) denotes

a standard Gaussian random variable.

Proposition 2.4 Let X ∈ Dom(∇) be such that E[X] = 0. We have

dW (X,N ) ≤
∣∣1− E[X2]

∣∣+

√
Var

[
〈∇X,−∇L−1X〉L̂2(R+)

]
(2.10)

+ 2

√
E [|(−L)−1/2X|2]

∫ ∞
0

E [|∇tX|4]
dt

2

≤ |1− E[X2]|+
√

Var
[
〈∇X,−∇L−1X〉L2(R+)

]
(2.11)

+ 2

√
E[X2]

∫ ∞
0

E [|∇tX|4]
dt

2
.

Proof. The inequality (2.11) follows from (2.10) by Proposition 5.2 with F = L−1X, so it

is enough to prove (2.10). Proposition 3.3 in [16] states that

dW (X,N ) ≤E
[∣∣∣∣1− 1

2
〈∇X,−∇L−1X〉

∣∣∣∣]
+

1

2
E
[∫ ∞

0

|∇tL
−1X||∇tX|2dt

]
+

1

4
E

[∫ ∞
0

|∇tL
−1X|

∫ 2bt/2c+2

2bt/2c
|∇sX|2dsdt

]
.

We will estimate each of the three terms on the left-hand side. First, taking F = X and

u = ∇L−1X in (2.8), we get

E
[∣∣∣∣1− 1

2
〈∇X,−∇L−1X〉

∣∣∣∣]
≤ E

[∣∣∣∣1− 1

2
E
[
〈∇X,−∇L−1X〉

]∣∣∣∣]+ E
[∣∣∣∣12〈∇X,−∇L−1X〉 − 1

2
E
[
〈∇X,−∇L−1X〉

]∣∣∣∣]
≤
∣∣1− E[X2]

∣∣+

√
Var

[
〈∇X,−∇L−1X〉L̂2(R+)

]
.

Next, for F = L−1X in (5.4), we obtain

E
[∫ ∞

0

|∇tL
−1X|2dt

]
= 2E

[
|(−L)−1/2X|2

]
.

Consequently, the Cauchy-Schwarz inequality gives us

E
[∫ ∞

0

|∇tL
−1X||∇tX|2dt

]
≤

√
E
[∫ ∞

0

|∇tL−1X|2dt
]
E
[∫ ∞

0

|∇tX|4dt
]
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≤ 2
√

E [|(−L)−1/2X|2]

√
E
[∫ ∞

0

|∇tX|4
dt

2

]
,

and

E

[∫ ∞
0

|∇tL
−1X|

∫ 2bt/2c+2

2bt/2c
|∇sX|2dsdt

]
=
∞∑
k=0

E
[∫ 2k+2

2k

|∇tL
−1X|dt

∫ 2k+2

2k

|∇sX|2ds
]

=

√√√√E

[
∞∑
k=0

(∫ 2k+2

2k

|∇tL−1X|dt
)2
]
E

[
∞∑
k=0

(∫ 2k+2

2k

|∇sX|2
)2

ds

]

≤ 2

√√√√E
[∫ ∞

0

|∇tL−1X|2dt
]
E

[
∞∑
k=0

∫ 2k+2

2k

|∇sX|4ds

]

≤ 4
√

E [|(−L)−1/2X|2]

√
E
[∫ ∞

0

|∇sX|4
dt

2

]
,

and we conclude (2.10). �

Example 2.5 Let us apply Proposition 2.4 to (Var[I1(f1)])−1I1(f1) for f1 as in Remark 2.1.

Since L−1I1(f1) = I1(f1) for any f1 ∈ L̂1(R+) ∩ L̂2(R+) and

∇tI1(f1) = F−1
Xbt/2c+1

(
t− 2bt/2c

2

)
− E

[
Xbt/2c+1

]
, t ∈ R+,

we observe that ∇tI1(f1) is not random, and hence

Var
[
〈∇X,−∇L−1X〉L2(R+)

]
= 0

as well as∫ ∞
0

E
[
|∇tX|4

] dt
2

=
n∑
k=1

∫ 2k

2k−2

(
F−1
Xk

(
t− 2k + 2

2

)
− E [Xk]

)4
dt

2

=
n∑
k=1

∫ 1

0

(
F−1
Xk

(u)− E [Xk]
)4
du =

n∑
k=1

E
[
(Xk − E[Xk])

4] .
Thus, we get

dW

(∑n
k=1Xk − E[Xk]√∑n

k=1 Var[Xk]
,N

)
≤ 2

√∑n
k=1 E

[
(Xk − E[Xk])

4]∑n
k=1 Var[Xk]

,

which provides a quantitative bound with explicit constant in the Wasserstein distance for

the L4 Lyapunov Central Limit Theorem.
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3 Normal approximation for generalized U-statistics

In this section we consider generalized U -statistics of order n ≥ 1 of the form∑
k1,...,kn∈N0
ki 6=kj if i 6=j

fn(2k1 + 1 + Uk1 , . . . , 2kn + 1 + Ukn),

where N0 = {0, 1, 2, . . .}. The next proposition gives the multiple stochastic integral expan-

sion of such extended generalized U -statistics.

Proposition 3.1 Given fn ∈ L̂2(Rn
+) we have∑

k1,...,kn∈N0
ki 6=kj if i 6=j

fn(2k1 + 1 + Uk1 , . . . , 2kn + 1 + Ukn) =
n∑
r=0

Ir
(
f (r)
n

)
,

where

f (r)
n = (x1, . . . , xk) =

1

2n−r

(
n

r

)∫
Rn−r
+

fn(x1, . . . , xr, y1, . . . , yn−r)dy1 · · · dyn−r,

r = 0, 1, . . . , n.

Proof. Formula (2.2) gives us for 1 ≤ m ≤ n

am : = (−2)mIm

(∫
Rn−m

fn (·, y1, . . . , yn−m) dy1 · · · dyn−m
)

=
m∑
r=0

(−1)r
(
m

r

)
br,

where

br = 2r
∑

k1,...,kr∈N0
ki 6=kj if i 6=j

∫ ∞
0

· · ·
∫ ∞

0

fn(2k1 + 1 + Uk1 , . . . , 2kr + 1 + Ukr , y1, . . . , yn−r)dy1 · · · dyn−r.

Hence, by binomial inversion, we have bm =
∑m

r=1(−1)r
(
m
r

)
ar, 1 ≤ m ≤ n. In particular,∑

k1,...,kn∈N0
ki 6=kj if i 6=j

fn(2k1 + 1 + Uk1 , . . . , 2kn + 1 + Ukn)

= 2−nbn = 2−n
n∑
r=1

(−1)r
(
n

r

)
ar

=
n∑
r=0

(
n

r

)
1

2n−r
Ir

(∫
Rn−r

fn (·, y1, . . . , yn−r) dy1 · · · dyn−r
)

=
n∑
r=0

Ir
(
f (r)
n

)
,

as required. �
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In particular, under the condition (2.4) the multiple stochastic integral In(fn) coincides with

the generalized degenerate U -statistic of order n, and we have

In(fn) =
∑

k1,...,kn∈N0
ki 6=kj if i 6=j

fn(2k1 + 1 + U1, . . . , 2kn + 1 + Un). (3.1)

In the next corollary we obtain a Wasserstein distance bound for sums of multiple stochastic

integrals by combining Propositions 5.1 and 2.4 with the multiplication formula (5.1). First,

let us introduce the following ?-notation: for 0 ≤ l ≤ k ≤ n ∧m we define the contraction

fn ?
l
k gm of fn ∈ L̂2(Rn

+) and gm ∈ L̂2(Rm
+ ) as

fn ?
l
k gm(x1, . . . , xk−l, y1, . . . , yn−k, z1, . . . , zm−k) (3.2)

:=
1

2l

∫
Rl
+

fn(w1, . . . , wl, x1, . . . , xk−l, y1, . . . , yn−k)

× gm(w1, . . . , wl, x1, . . . , xk−l, z1, . . . , zm−k)dw1 · · · dwl,

and we let fn ?̃
l
kgm denote the symmetrization

fn ?̃
l
k gm(x1, . . . , xn+m−k−l)

:=
1∆m+n−k−l

(x1, . . . , xn+m−k−l)

(m+ n− k − l)!
∑

σ∈Sm+n−k−l

fn ?
l
k gm(xσ(1), . . . , xσ(m+n−k−l)),

where Sn, n ≥ 1, denotes the set of all permutations of the set {1, . . . , n}.

Theorem 3.2 For any X ∈ L2(Ω) written as a sum X =
∑n

k=1 Ik(fk) of multiple stochastic

integrals where fk ∈ L̂2(Rk
+) satisfies (2.4), k = 1, . . . , n, we have

dW (X,N ) ≤
∣∣1− E[X2]

∣∣
+Cn

√ ∑
0≤l<i≤n

∥∥fi ?li fi∥∥2

L2(Ri−l
+ )

+
∑

1≤l<i≤n

(∥∥fi ?ll fi∥∥2

L2(R2(i−l)
+ )

+
∥∥fl ?ll fi∥∥2

L2(Ri−l
+ )

)
,

for some Cn > 0.

Proof. Given that

∇tX =
n−1∑
k=0

(k + 1)Ik (fk+1(t, ·)) , and ∇tL
−1X =

n−1∑
k=0

Ik (fk+1(t, ·)) ,

the multiplication formula (5.1) shows that

(∇tX)2 =
∑

0≤i≤j<n

i∑
k=0

k∑
l=0

ci,j,k,lIi+j−k−l
(
fi+1(t, ·) ?̃lkfj+1(t, ·)

)
(3.3)

12



and

∇tX∇tL
−1X =

∑
0≤i≤j<n

i∑
k=0

k∑
l=0

di,j,k,lIi+j−k−l
(
fi+1(t, ·) ?̃lkfj+1(t, ·)

)
, (3.4)

for some ci,j,k,l, di,j,k,l ≥ 0. Next, by (2.3) and (3.3) we get∫ ∞
0

E
[
|∇tX|4

] dt
2
≤ C

∑
0≤i≤j<n

i∑
k=0

k∑
l=0

∫ ∞
0

∥∥fi+1(t, ·)?̃lkfj+1(t, ·)
∥∥2

L̂2(Ri+j−k−l
+ )

dt

≤ C
∑

0≤i≤j<n

i∑
k=0

k∑
l=0

∥∥fi+1 ?
l
k+1fj+1

∥∥2

L2(Ri+j−k−l+1
+ )

≤ C
∑

1≤i≤j≤n

i∑
k=1

k−1∑
l=0

∥∥fi ?lk fj∥∥2

L2(Ri+j−k−l
+ )

, (3.5)

where C > 0 is a constant depending on n. Furthermore, from (3.4) it follows that

〈∇X,−∇L−1X〉 − E
[
〈∇X,−∇L−1X〉

]
=

1

2

∫ ∞
0

∑
0≤i≤j<n

i∑
k=0

k∑
l=0

di,j,l,k1{i=j=k=l}cIi+j−k−l
(
fi+1(t, ·)?̃lkfj+1(t, ·)

)
dt,

thus we get

Var
[
〈∇X,−∇L−1X〉

]
≤ C ′

∑
0≤i≤j<n

i∑
k=0

k∑
l=0

1{i=j=k=l}c

∥∥∥∥∫ ∞
0

fi+1(t, ·) ?lk fj+1(t, ·)dt
∥∥∥∥2

L2(R(i+j−k−l)
+ )

= C ′′
∑

0≤i≤j<n

i∑
k=0

k∑
l=0

1{i=j=k=l}c
∥∥fi+1 ?

l+1
k+1 fj+1

∥∥2

L2(Ri+j−k−l
+ )

= C ′′
∑

1≤i≤j≤n

i∑
k=1

k∑
l=1

1{i=j=k=l}c
∥∥fi ?lk fj∥∥2

L2(Ri+j−k−l
+ )

, (3.6)

for some constants C ′, C ′′ > 0 depending only n. Applying (3.5) and (3.6) to (2.11), we get

dW (X,N ) ≤
∣∣1− E[X2]

∣∣+ C ′′′

√√√√ ∑
1≤i≤j≤n

i∑
k=1

k∑
l=0

1{i=j=k=l}c
∥∥fi ?lk fj∥∥2

L2(Ri+j−k−l
+ )

,

for some C ′′′ > 0 depending on n. Next, by the inequality (5.2), all the components where

0 ≤ l < k ≤ i, j, are dominated by those where 0 ≤ l < k = i = j, and also, by the inequality

(5.3), the ones where 1 ≤ k = l < min{i, j − 1}, are dominated by the components where

1 ≤ l = k < i = j. Finally, the components for 1 ≤ k = l = i < j remain unchanged.

�
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4 Application to weighted random graphs

In this section we present an application of results from the previous section to the Erdős-

Rényi random graph G(n, p) and to the renormalization W̃G
n of the combined weight WG

n of

subgraphs of the random graph that are isomorphic to a fixed graph G, see (1.3).

In order to simplify the notation we write an . bn for two sequences an and bn whenever

there exist a constant C depending only on G such that an < Cbn for all n ∈ N. Furthermore,

if an . bn and bn . an then we write an ≈ bn. Finally, by writing H ∼ K we mean that

the two graphs H and K are isomorphic. In Proposition 4.1 we provide estimates of the

variance of WG
n , which is crucial when dealing with the renormalization.

Proposition 4.1 The variance of WG
n admits the asymptotic form

Var
[
WG
n

]
≈
(
Var[X] + (1− pn)(E[X])2

)
max
H⊂G
eH≥1

n2vG−vHp2eG−eH
n . (4.1)

Proof. We follow the lines of the proof of Lemma 3.5 in [7] by extending the argument to

nonnegative random weights distributed as X. We note that

WG
n =

∑
G′∼G

SG′ ,

where the sum is over all graphs G′ ⊂ Kn which are isomorphic to G, and SG′ is the sum

of the weights of edges in G′ if G′ belongs to G(n, pn), and zero otherwise, i.e. denoting by

X1, . . . , XeG the random weights of edges of G′, we have

SG′ := 1{G′∈G(n,pn)}

eG∑
i=1

Xi.

Then, we get

Var
[
WG
n

]
=

∑
G′,G′′∼G

Cov(SG′ , SG′′)

=
∑

G′,G′′∼G
with a common edge

(
E[SG′SG′′ ]− E[SG′ ]E[SG′′ ]

)
≈
∑
H⊂G
eH≥1

∑
G′∩G′′∼H
G′,G′′∼G

(
E[SG′SG′′ ]− E[SG′ ]E[SG′′ ]

)
.

For a fixed G′ ∼ G we clearly have

E[SG′ ] = P(G′ ∈ G(n, pn))

eG∑
i=1

E[Xi] = eGp
eGE[X].
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In order to calculate E[SG′SG′′ ] for G′, G′′ ∼ G and G′∩G′′ ∼ H, let us denote by X1, . . . , XeH

the weights of edges of G′ ∩G′′ and by X ′1, . . . , X
′
eG−eH and X ′′1 , . . . , X

′′
eG−eH weights of edges

of G′\G′′ and G′′\G′, respectively. Then, we have

E[SG′SG′′ ] = P (G′, G′′ ∈ G(n, pn))E

[(
eH∑
i=1

Xi +

eG−eH∑
i=1

X ′i

)(
eH∑
i=1

Xi +

eG−eH∑
i=1

X ′′i

)]

= P (G′ ∩G′′ ∈ G(n, pn))

E

( eH∑
i=1

Xi

)2
+

(
2eH(eG − eH) + (eG − eH)2

)
(E[X])2


= p2eG−eH

n

(
eHE

[
X2
]

+
(
e2
G − eH

)
E[X])2

)
= p2eG−eH

n (eHVar[X] + e2
G(E[X])2).

Hence we get

E[SG′SG′′ ]− E[SG′ ]E[SG′′ ] = p2eG−eH
n (eHVar[X] + e2

G(E[X])2)− p2eG
n e2

G(E[X])2

= p2eG−eH
n (eHVar[X] + e2

G(1− peHn )(E[X])2)

≈ p2eG−eH
n (Var[X] + (1− pn)(E[X])2),

and consequently

Var
[
WG
n

]
≈
∑
H⊂G
eH≥1

∑
G′∩G′′∼H
G′,G′′∼G

p2eG−eH
n (Var[X] + (1− pn)(E[X])2)

≈ (Var[X] + (1− pn)(E[X])2)
∑
H⊂G
eH≥1

n2vG−vHp2eG−eH
n

≈
(
Var[X] + (1− pn)(E[X])2

)
max
H⊂G
eH≥1

n2vG−vHp2eG−eH
n ,

as required. �

Next, we show in Lemma 4.2 that the combined weights WG
n of subgraphs can be written as a

sum of multiple stochastic integrals using Proposition 3.1. This allows us to apply Theorem

3.2 to obtain normal approximation in Wasserstein distance for W̃G
n , which is presented in

Theorem 4.3. In the sequel we number, in a fixed but arbitrary way, all possible edges of the

complete graph Kn from 1 to n(n− 1)/2, and we denote by EG ⊂ NeG the set of sequences

of edges that create a graph isomorphic to G, i.e. a sequence (ek1 , . . . , ekeG ) belongs to EG

if and only if the graph created by edges ek1 , . . . , ekeG is isomorphic to G. Before stating the

lemma, let us define the operator Ψti

Ψtif(t1, . . . , tn) := f(t1, . . . , tn)− 1

2

∫ 2bti/2c+2

2bti/2c
f(t1, . . . , ti−1, s, ti+1, . . . , tn)ds, (4.2)
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which arises naturally when representing any multiple stochastic integral In(fn) as In(f̄n)

with f̄n satisfying (2.4), see Proposition 5.3.

Lemma 4.2 We have the identity in distribution

WG
n

d
=

eG∑
r=0

Ik
(
h̄k
)
, (4.3)

where

h̄k(t1, . . . , tk) (4.4)

:= Ψt1 · · ·Ψtkgk (t1 − 2bt1/2c, . . . , tk − 2btk/2c)
∑

a∈NeG−k

1EG
(a, bt1/2c, . . . , btk/2c) ,

and the function gk : (0, 2)k → R is given by

gk(t1, . . . , tk) =
(pn/2)eG−k

(eG − k)!k!
1(0,2pn)k (t1, . . . , tk)

(
(eG − k)E[X] +

k∑
i=1

F−1
X

(
ti

2pn

))
, (4.5)

where F−1
X is the generalized inverse of the distribution function FX of X.

Proof. First, we note that

WG
n

d
=

1

eG!

∑
k1 6=···6=keG≥0

1EG
(k1, . . . , keG)1(0,2pn)eG

(
Uk1 + 1, . . . , UkeG + 1

)
×
(
F−1

(
Uk1 + 1

2pn

)
+ · · ·+ F−1

(
UkeG + 1

2pn

))
=

1

eG!

∑
k1 6=···6=keG≥0

heG(2k1 + 1 + Uk1 , . . . , 2keG + 1 + UkeG ),

where

heG(t1, . . . , teG) = 1EG
(bt1/2c, . . . , bteG/2c) 1(0,2pn)eG (t1 − 2bt1/2c, . . . , teG − 2bteG/2c)

×
(
F−1
X

(
t1 − 2bt1/2c

2pn

)
+ · · ·+ F−1

X

(
teG − 2bteG/2c

2pn

))
,

and by Proposition 3.1, the relation (4.3) holds with

hk(t1, . . . , tk) := gk (t1 − 2bt1/2c, . . . , tk − 2btk/2c)
∑

a∈NeG−k

1EG
(a, bt1/2c, . . . , btk/2c) ,

where gk : (0, 2)k → R is given by (4.5). Finally, in case the functions hk may not satisfy

the condition (2.4), we can use Proposition 5.3 to obtain (4.3) with

h̄k(t1, . . . , tk)
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= Ψt1 · · ·Ψtk

gk (t1 − 2bt1/2c, . . . , tk − 2btk/2c)
∑

a∈NeG−k

1EG
(a, bt1/2c, . . . , btk/2c)


= Ψt1 · · ·Ψtkgk (t1 − 2bt1/2c, . . . , tk − 2btk/2c)

∑
a∈NeG−k

1EG
(a, bt1/2c, . . . , btk/2c) ,

where the last equality follows from the fact that the sum appearing above is constant for

(t1, . . . , tk) ∈ (2m1, 2m1 +2)× . . .× (2mk, 2mk+2), m1, . . . ,mk ∈ N. The proof is complete.

�

We can now pass to the main result in this section.

Theorem 4.3 Let G be a graph without isolated vertices. The renormalized weight W̃G
n of

graphs in G(n, pn) that are isomorphic to G satisfies

dW
(
W̃G
n ,N

)
.

√
E[(X − E[X])4] + (1− pn)(E[X])2

Var[X] + (1− pn)(E[X])2

(
(1− pn) min

H⊂G
eH≥1

nvHpeHn

)−1/2

. (4.6)

Proof. Without loss of generality we take pn = p in the proof. By Corollary 3.2 we have

dW
(
W̃G
n ,N

)
.

1

Var [WG
n ]

( ∑
0≤l<k≤eG

∥∥h̄k ?lk h̄k∥∥2

L2(Rk−l
+ )

+
∑

1≤l<k≤eG

∥∥h̄l ?ll h̄k∥∥2

L2(Rk−l
+ )

+
∑

1≤l<k≤eG

∥∥h̄k ?ll h̄k∥∥2

L2(R2(k−l)
+ )

)1/2

=:

√
S1 + S2 + S3

Var [WG
n ]

, (4.7)

where h̄k has been defined in (4.4). We note that by the equivalence (4.1) of Proposition 4.1

it suffices to show that

S1 + S2 + S3 .
E
[
(X − E [X])4]+ (1− p)2(E [X])4

1− p
max
H⊂G
eH≥1

n4vG−3vHp4eG−3eH , (4.8)

which follows from (4.9), (4.10) and (4.11) below. Indeed, applying (4.1) and (4.8) to (4.7)

shows that

dW
(
W̃G
n ,N

)
.

√
E
[
(X2 − E [X])4]+ (1− p)2(E [X])4 maxH⊂G

eH≥1
n4vG−3vHp4eG−3eH

√
1− p

(
E[X2]− p(E[X])2

)
maxH⊂G

eH≥1
n2vG−vHp2eG−eH

,

and after factoring out n4vGp4eG in front of the maxima, we conclude that

dW
(
W̃G
n ,N

)
.

(√
E
[
(X2 − E [X])4]+ (1− p)(E [X])2

)(
maxH⊂G

eH≥1
n−vHp−eH

)3/2

√
1− p

(
E[X2]− p(E[X])2

)
maxH⊂G

eH≥1
n−vHp−eH
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=

√
E[(X − E[X])4] + (1− p)(E[X])2

E[X2]− p(E[X])2

(
(1− p) min

H⊂G
eH≥1

nvHpeH

)−1/2

.

i) Estimation of S1. For 0 ≤ l < k ≤ n we have∥∥h̄k ?lk h̄k∥∥2

L2(Rk−l
+ )

=
1

22l

∫
Rk−l
+

(∫
Rl
+

(
h̄k(x1, . . . , xk)

)2
dx1 · · · dxl

)2

dxl+1 · · · dxk

=
1

22l

∫
Rk−l
+

∑
b∈Nl

 ∑
a∈NeG−k

1EG
(a, b, bxl+1/2c, . . . , bxk/2c)

2

∫
(0,2)l

(
Ψx1 · · ·Ψxkgk (x1, . . . , xl, xl+1 − 2bxl+1/2c, . . . , xk − 2bxk/2c)

)2

dx1 · · · dxl
)2

dxl+1 · · · dxk

=
1

22l

∑
c∈Nk−l

∑
b∈Nl

 ∑
a∈NeG−k

1EG
(a, b, c)

22

×
∫

(0,2)k−l

(∫
(0,2)l

(
Ψx1 · · ·Ψxkgk (x1, . . . , xk)

)2

dx1 · · · dxl
)2

dxl+1 · · · dxk.

Combining the equivalence

∑
c∈Nk−l

∑
b∈Nl

 ∑
a∈NeG−k

1EG
(a, b, c)

22

≈ max
K⊂H⊂G

eK=k−l, eH=k

n4vG−2vH−vK ,

see the proof of Theorem 4.2 in [17], with (5.7) in Lemma 5.4, we get∥∥h̄k ?lk h̄k∥∥2

L2(Rk−l
+ )
.
(
E
[
(X − E [X])4]+ (1− p)2(E [X])4

)
× max

K⊂H⊂G
eK=k−l, eH=k

n4vG−2vH−vKp4eG−2eH−eK (1− p)2eH−eK−2,

and consequently

S1 =
∑

0≤l<k≤n

∥∥h̄k ?lk h̄k∥∥2

L2(Rk−l
+ )

.
(
E
[
(X − E [X])4]+ (1− p)2(E [X])4

)
max

K⊂H⊂G
eK≥1

n4vG−2vH−vKp4eG−2eH−eK (1− p)2eH−eK−2

.
E
[
(X − E [X])4]+ (1− p)2(E [X])4

1− p
max
H⊂G
eH≥1

n4vG−3vHp4eG−3eH , (4.9)

as in the proof of Theorem 4.2 in [17].

ii) Estimation of S2. Similarly, for 1 ≤ l < k ≤ n we have∥∥h̄l ?ll h̄k∥∥2

L2(Rk−l
+ )

=
1

22l

∫
Rk−l
+

(∫
Rl
+

h̄l(x1, . . . , xl)h̄k(x1, . . . , xk)dx1 · · · dxl

)2

dxl+1 · · · dxk
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=
1

22l

∫
Rk−l
+

(∑
b∈Nl

 ∑
a∈NeG−l

1EG
(a, b)

∑
a′∈NeG−k

1EG
(a′, b, bxl+1/2c, . . . , bxk/2c)


×
∫

(0,2)l
Ψx1 · · ·Ψxlgl(x1, . . . , xl)Ψx1 · · ·Ψxk

× gk (x, xl+1 − 2bxl+1/2c, . . . , xk − 2bxk/2c) dx1 · · · dxl

)2

dxl+1 · · · dxk

=
1

22l

∑
c∈Nk−l

(∑
b′∈Nl

 ∑
a∈NeG−l

1EG
(a, b)

∑
a′∈NeG−k

1EG
(a′, b, c)

)2

×
∫

(0,2)k−l

(∫
(0,2)l

Ψx1 · · ·Ψxlgl(x1, . . . , xl)Ψx1 · · ·Ψxkgk(x1, . . . , xk)dx1 · · · dxl

)2

dxl+1 · · · dxk.

By the Cauchy-Schwarz inequality and the formula (5.6) in Lemma 5.4, we get∫
(0,2)k−l

(∫
(0,2)l

Ψx1 · · ·Ψxlgl(x1, . . . , xl)Ψx1 · · ·Ψxkgk (x1, . . . , xk) dx1 · · · dxl

)2

dxl+1 · · · dxk

≤
∫

(0,2)l
Ψx1 · · ·Ψxlg

2
l (x1 · · ·xl)dx1 · · · dxl

∫
(0,2)k

Ψx1 · · ·Ψxkg
2
k (xl+1 · · ·xk) dxl+1 · · · dxk

. p4eG−k−l(1− p)k+l−2
(
E
[
(X2 − E [X])2

]
+ (1− p)(E [X])2

)2

.
p4eG−k−l

1− p
(
E
[
(X − E [X])4

]
+ (1− p)2(E [X])4

)
.

Furthermore, we have

∑
c∈Nk−l

( ∑
a′∈Nl

 ∑
a′∈NeG−l

1EG
(a, b)

∑
a′∈NeG−k

1EG
(a′, b, c)

)2

. max
K⊂H′⊂G

eK=k−l, eH′=l

n4vG−2vH′−vK ,

see the proof of Theorem 4.2 in [17], thus∥∥h̄l ?ll h̄k∥∥2

L2(Rk−l
+ )
. (1− p)−1

(
E
[
(X − E [X])4

]
+ (1− p)2(E [X])4

)
× max

K⊂H′⊂G
eK=k−l, eH′=k

n4vG−2vH′−vKp4eG−2eH′−eK ,

from which it follows by that

S2 =
∑

1≤l<k≤n

∥∥h̄l ?ll h̄k∥∥2

L2(Rk−l
+ )
.
E
[
(X − E [X])4

]
+ (1− p)2(E [X])4

1− p
max
H⊂G
eH≥1

n4vG−3vHp4eG−3eH ,

(4.10)
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as in the proof of Theorem 4.2 in [17].

iii) Estimation of S3. For 1 ≤ l < k ≤ n we have∥∥h̄k ?ll h̄k∥∥2

L2(R2(k−l)
+ )

=
1

22l

∫
Rk−l
+

∫
Rk−l
+

(∫
Rl
+

h̄k(x1, . . . , xk)h̄k(x1, . . . , xl, z1, . . . , zk−l)dx1 · · · dxl

)2

dxl+1 · · · dxkdz1 · · · dzk−l

=
1

22l

∫
Rk−l
+

∫
Rk−l
+

(∑
b∈Nl

∑
a,a′∈NeG−k

1EG

(
a, b, bxl+1

2
c, . . . , bxk

2
c
)
1EG

(
a′, b, b z1

2
c, . . . , b zk−l

2
c
)

∫
(0,2)l

Ψx1 · · ·Ψxkgk
(
x, xl+1 − 2bxl+1

2
c, . . . , xk − 2bxk

2
c
)

Ψx1 · · ·ΨxlΨz1 · · ·Ψzk−l
gk
(
x, xl+1 − 2bxl+1

2
c, . . . , zk−l − 2b zk−l

2
c
)
dx

)2

dxl+1 · · · dxkdz1 · · · dzk−l.

Then, applying the Cauchy-Schwarz inequality to the inner integral, we get∥∥h̄k ?ll h̄k∥∥2

L2(R2(k−l)
+ )

=
1

22l

∑
c,c′∈Nk−l

(∑
b∈Nl

 ∑
a∈NeG−k

1EG
(a, b, c)

 ∑
a′∈NeG−k

1EG
(a′, b, c′)

)2

×
(∫

(0,2)k

(
Ψx1 · · ·Ψxkgk (x1, . . . , xk)

)2

dx1 · · · dxk
)2

.

Since k ≥ 1, the formula (5.6) in Lemma 5.4 gives us(∫
(0,2)k

(
Ψx1 · · ·Ψxkgk (x1, . . . , xk)

)2

dx1 · · · dxk
)2

. p4eG−2k(1− p)2k−2
(
E
[ (
X2 − E [X]

)2 ]
+ (1− p)(E [X])2

)2

.
p4eG−2k

1− p
(
E
[

(X − E [X])4 ]+ (1− p)2(E [X])4
)
.

Furthermore, we have

∑
c,c′∈Nk−l

∑
b∈Nl

 ∑
a∈NeG−k

1EG
(a, b, c)

 ∑
a′∈NeG−k

1EG
(a′, b, c′)

2

. max
K,H,L⊂G

eK=k−l, eH=l, eL=k

n4vG−vK−vH−vL ,
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see the proof of Theorem 4.2 in [17], from which it follows

S3 =
∑

1≤l<k≤eG

∥∥h̄k ?ll h̄k∥∥2

L2(R2(k−l)
+ )

.
E
[
(X − E [X])4

]
+ (1− p)2(E [X])4

1− p
max
H⊂G
eH≥1

n4vG−3vHp4eG−3eH , (4.11)

as in the proof of Theorem 4.2 in [17], which concludes the proof by (4.1) and (4.7). �

We note that the bound (4.6) implies

dW
(
W̃G
n ,N

)
.

(
(E[X])2

Var[X]
+
√
κX

)(
(1− pn) min

H⊂G
eH≥1

nvHpeHn

)−1/2

,

where E[X]/
√

Var[X] is the standardized first moment of X and

κX :=
E[(X − E[X])4]

(Var[X])2

is the kurtosis of X.

In the next corollary we note that Theorem 4.3 simplifies if we narrow our attention to

pn depending of the complete graph size n and close to 0 or to 1.

Corollary 4.4 Let G be a graph without separated vertices. For pn < c < 1, n ≥ 1, we have

dW
(
W̃G
n ,N

)
.

√
E[X4]

E[X2]

(
(1− pn) min

H⊂G
eH≥1

nvHpeHn

)−1/2

.

On the other hand, for pn > c > 0, n ≥ 1, it holds

dW
(
W̃G
n ,N

)
.

√
E[X4]

n
√

1− pnVar[X]
.

Furthermore, it turns out that the minimum appearing in Theorem 4.3 and above for a wide

class of graphs satisfying a certain balance condition. Precisely, let us consider the class B
of all graphs with at least three vertices, and such that

max
H⊂G
vH≥3

eH − 1

vH − 2
=
eG − 1

vG − 2
,

as introduced in [17]. It has been shown there that a graph with at least three vertices and

at least one edge belongs to B if and only if for any p ∈ (0, 1) and n ≥ vG we have

min
H⊂G
eH≥1

nvHpeH = min{n2p, nvGpeG}.

An application of this fact to Corollary 4.4 yields the following result.
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Proposition 4.5 For G ∈ B without isolated vertices and c ∈ (0, 1) we have

dW
(
W̃G
n ,N

)
.



√
E[X4]

n
√

1− pnVar[X]
if 0 < c < pn,

√
E[X4]

n
√
pnE[X2]

if n−(vg−2)/(eG−1) < pn ≤ c,

√
E[X4]

nvG/2p
eG/2
n E[X2]

if 0 < pn ≤ n−(vG−2)/(eG−1).

The following Corollaries 4.6-4.8 of Proposition 4.5 can be proved similarly to their coun-

terparts Corollaries 4.8-4.10 in [17]. The next Corollary 4.6 deals with cycle graphs with r

vertices, r ≥ 3, and in particular with triangles when r = 3.

Corollary 4.6 Let G be a cycle graph with r vertices, r ≥ 3, and c ∈ (0, 1). We have

dW
(
W̃G
n ,N

)
.



√
E[X4]

n
√

1− pnVar[X]
if 0 < c < pn,

√
E[X4]

n
√
pnE[X2]

if n−(r−2)/(r−1) < pn ≤ c,

√
E[X4]

(npn)r/2E[X2]
if 0 < pn ≤ n−(r−2)/(r−1).

The next corollary deals with complete graphs, which also covers the case of triangles.

Corollary 4.7 Let G be a complete graph with r vertices, r ≥ 3, and c ∈ (0, 1). We have

dW
(
W̃G
n ,N

)
.



√
E[X4]

n
√

1− pnVar[X]
if c < pn < 1,

√
E[X4]

n
√
pnE[X2]

if n−2/(r+1) < pn ≤ c,

√
E[X4]

nr/2p
r(r−1)/4
n E[X2]

if 0 < pn ≤ n−2/(r+1).

Finally, the last corollary deals with the important class of graphs which have a tree structure.
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Corollary 4.8 Let G be any tree (a connected graph without cycles) with r edges, and c ∈
(0, 1). We have

dW
(
W̃G
n ,N

)
.



√
E[X4]

n
√

1− pnVar[X]
if c < pn < 1,

√
E[X4]

n
√
pnE[X2]

if
1

n
< pn ≤ c,

√
E[X4]

n(r+1)/2p
r/2
n E[X2]

if 0 < pn ≤
1

n
.

5 Appendix

In this section we gather a number of technical results, starting with the following multi-

plication formula for multiple stochastic integrals, which involves the ?-notation introduced

in (3.2). For fn ∈ L̂2(Rn
+) and gm ∈ L̂2(Rm

+ ) satisfying (2.4) the following multiplication

formula holds:

In(fn)Im(gm) =
m∧n∑
k=0

k!

(
m

k

)(
n

k

) k∑
i=0

(
k

i

)
Im+n−k−i

(
fn ?̃

i
kgm
)
, (5.1)

whenever fn ?
i
k gm ∈ L2(Rm+n−k−i

+ ) for every 0 ≤ i ≤ k ≤ m ∧ n, see Proposition 5.1 of [16].

The next proposition allows us to bound the L2 norm of fn ?gm by some simpler expressions,

which is used in the proof of Theorem 3.2.

Proposition 5.1 Let fn ∈ L2(Rn
+) and gm ∈ L2(Rm

+ ) be symmetric functions. For 0 ≤ l <

k ≤ n ∧m we have∥∥fn ?lk gm∥∥2

L2(Rm+n−k−l
+ )

22n−2k−1 ≤
∥∥fn ?l+n−kn fn

∥∥2

L2(Rk−l
+ )

+ 22m−2k−1
∥∥gm ?l+m−km gm

∥∥2

L2(Rk−l
+ )

,

(5.2)

and for 0 ≤ k ≤ n ∧m we have∥∥fn ?kk gm∥∥2

L2(Rm+n−2k
+ )

≤ 22n−4k−1
∥∥fn ?n−kn−k fn

∥∥2

L2(R2k
+ )

+ 22m−4k−1
∥∥gm ?m−km−k gm

∥∥2

L2(R2k
+ )
. (5.3)

Proof. Let x ∈ Rl
+, y ∈ Rk−l

+ , u ∈ Rn−k
+ and z ∈ Rm−k

+ . Hölder’s inequality applied twice

gives us∥∥fn ?lk gm∥∥2

L2(Rm+n−k−l
+ )
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=
1

22l

∫
Rm−k
+

∫
Rn−k
+

∫
Rk−l
+

(∫
Rl
+

fn(x, y, u)gm(x, y, z)dx

)2

dydudz

≤ 1

22l

∫
Rk−l
+

∫
Rm−k
+

∫
Rn−k
+

∫
Rl
+

f 2
n(x, y, u)dx

∫
Rl
+

g2
m(x, y, z)dxdudzdy

≤ 1

22l

√√√√∫
Rk−l
+

(∫
Rn−k
+

∫
Rl
+

f 2
n(x, y, u)dxdu

)2

dy

∫
Rk−l
+

(∫
Rm−k
+

∫
Rl
+

g2
m(x, y, z)dxdz

)2

dy

≤ 1

22l+1

∫
Rk−l
+

(∫
Rn−k
+

∫
Rl
+

f 2
n(x, y, u)dxdu

)2

dy +

∫
Rk−l
+

(∫
Rm−k
+

∫
Rl
+

g2
m(x, y, z)dxdz

)2

dy


= 22n−2k−1

∥∥fn ?l+n−kn fn
∥∥2

L2(Rk−l
+ )

+ 22m−2k−1
∥∥gm ?l+m−km gm

∥∥2

L2(Rk−l
+ )

,

where we used the inequality
√
ab ≤ (a + b)/2, a, b ≥ 0, which proves the first assertion.

Furthermore, for x, u ∈ Rk
+, y ∈ Rn−k

+ and z ∈ Rm−k
+ we get∥∥fn ?kk gm∥∥2

L2(Rm+n−2k
+ )

=
1

22k

∫
Rn−k
+

∫
Rm−k
+

∫
Rk
+

fn(u, y)gm(u, z)du

∫
Rk
+

fn(x, y)gm(x, z)dxdydz

≤ 1

22k

∫
Rk
+

∫
Rk
+

(∫
Rn−k
+

fn(u, y)fn(x, y)dy

)(∫
Rm−k
+

gm(u, z)gm(x, z)dz

)
dudx

≤ 1

22k+1

[∫
Rk
+

∫
Rk
+

(∫
Rn−k
+

fn(u, y)fn(x, y)dy

)2

dudx

+

∫
Rk
+

∫
Rk
+

(∫
Rm−k
+

gm(u, z)gm(x, z)dz

)2

dudx

]
≤ 22n−4k−1

∥∥fn ?n−kn−k fn
∥∥2

L2(R2k
+ )

+ 22m−4k−1
∥∥gm ?m−km−k gm

∥∥2

L2(R2k
+ )
.

�

The next proposition presents some relationships between second norms involving operators

∇, L and (−L)1/2.

Proposition 5.2 For F such that LF ∈ L2(Ω) we have

E
[∫ ∞

0

(∇tF )2 dt

2

]
= E

[(
(−L)1/2F

)2
]
≤ E

[
(LF )2

]
. (5.4)

Proof. Using the chaos decomposition (2.6), where the sequence of functions fn in L̂2(Rn
+),

n ≥ 1, satisfies the Condition (2.4), and by the isometry relation (2.5) we have

E
[∫ ∞

0

|∇tF |2
dt

2

]
=
∞∑
n=1

E
[∫ ∞

0

|∇tIn(fn)|2dt
2

]
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=
∞∑
n=1

E
[∫ ∞

0

|∇tIn(fn)|2dt
2

]
=
∞∑
n=1

n2E
[∫ ∞

0

|In−1(fn(t, ·))|2dt
2

]
=
∞∑
n=1

n2(n− 1)!

∫ ∞
0

‖fn(t, ·)‖2
L̂2(Rn−1

+ ,dx/2)

dt

2

=
∞∑
n=1

nE
[
|In(fn)|2

]
=
∞∑
n=1

E
[
|(−L)1/2In(fn)|2

]
= E

[(
(−L)−1/2F

)2]
,

which is the first part of the assertion. This also implies

E
[ (

(−L)−1/2F
)2 ]

=
∞∑
n=1

nE
[
|In(fn)|2

]
≤

∞∑
n=1

n2E
[
|In(fn)|2

]
≤ E[(LF )2],

which ends the proof. �

Next, let us recall the definition (4.2) of the operator Ψti

Ψtif(t1, . . . , tn) := f(t1, . . . , tn)− 1

2

∫ 2bti/2c+2

2bti/2c
f(t1, . . . , ti−1, s, ti+1, . . . , tn)ds,

i = 1, . . . , n, t1, . . . , tn ∈ R+. The following result is the analog of the Stroock formula [22]

in our framework. It shows that any multiple integral can be expressed as a degenerate

generalized U -statistic, see Remark 2.2.

Proposition 5.3 For every fn ∈ L̂2(Rn
+) there exists a unique f̄n ∈ L̂2(Rn

+) satisfying (2.4)

such that In(fn) = In(f̄n), and it is given by

f̄n(t1, . . . , tn) = Ψt1 · · ·Ψtnfn(t1, . . . , tn) =
1

n!
∇t1 · · · ∇tnIn(fn). (5.5)

Proof. Uniqueness of f̄n follows from the isometry relation (2.5). We can also check that

the condition (2.4) is satisfied by integrating (4.2) with respect to ti ∈ R+. Furthermore,

the equality (5.5) is clear for n = 1. Assuming that it holds for some n− 1 ≥ 1, we get

In(fn) =

∫ ∞
0

In−1 (fn(t1, ·)) d(Yt1 − t1/2)

=

∫ ∞
0

In−1 (Ψt2 · · ·Ψtnfn(t1, ·)) d(Yt1 − t1/2)
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=

∫ ∞
0

Ψt1In−1 (Ψt2 · · ·Ψtnfn(t1, ·)) dYt1

=

∫ ∞
0

In−1 (Ψt1 · · ·Ψtnfn(t1, ·)) dYt1

=

∫ ∞
0

In−1 (Ψt1 · · ·Ψtnfn(t1, ·)) d(Yt1 − t1/2)

= In (Ψt1 · · ·Ψtnfn) .

Eventually, the latter equality in (5.5) follows from (2.9). �

The following Lemma 5.4 is used to bound the kernel functions h̄k appearing in Lemma 4.2.

Lemma 5.4 The functions gk defined in (4.5) satisfy the inequalities∫
(0,2)k

(Ψx1 · · ·Ψxkgk (x1, . . . , xk))
2 dx1 · · · dxk

. p2eG−k(1− p)k−1
(
E
[ (
X2 − E [X]

)2 ]
+ (1− p)(E [X])2

)
(5.6)

and ∫
(0,2)k−l

(∫
(0,2)l

(
Ψx1 · · ·Ψxkgk (x1, . . . , xk)

)2
dx1 · · · dxl

)2

dxl+1 · · · dxk

. p4eG−3k+l(1− p)k+l−2
(
E
[
(X − E [X])4]+ (1− p)2(E [X])4

)
, (5.7)

0 ≤ l ≤ k ≤ n, where the operator Ψx is defined in (4.2).

Proof. We decompose gk(x1, . . . , xk) as

gk(x1, . . . , xk) =
k∑
i=0

g
(i)
k (x1, . . . , xk)

where

g
(0)
k (x1, . . . , xk) :=

(p/2)eG−k

(eG − k)!k!
(eG − k)E[X]1(0,2p)k (x1, . . . , xk) ,

and

g
(i)
k (x1, . . . , xk) :=

(p/2)eG−k

(eG − k)!k!
1(0,2p)k (x1, . . . , xk)F

−1
X

(
xi
2p

)
, 1 ≤ i ≤ k.

Next, for 1 ≤ i ≤ k we have

Ψx1 · · ·Ψxkg
(i)
k (x1, . . . , xk)

=
(p/2)eG−k

(eG − k)!k!

(
1(0,2p) (xi)F

−1
X

(
xi
2p

)
− pE [X]

) ∏
1≤j≤k
j 6=i

(
1(0,2p) (xj)− p

)
.
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Thus we have∫
(0,2)k

(
Ψx1 · · ·Ψxkg

(i)
k (x1, . . . , xk)

)2
dx1 · · · dxk

=
2kp2eG−k−1(1− p)k−1

((eG − k)!k!)222eG−2k

(
pE
[
(X − pE [X])2

]
+ (1− p)(pE [X])2

)
. p2eG−k(1− p)k−1

(
E[X2]− p(E [X])2

)
, 1 ≤ i ≤ k,

and similarly for g
(0)
k (x1, . . . , xk), which gives∫

(0,2)k
(Ψx1 · · ·Ψxkgk (x1, . . . , xk))

2 dx1 · · · dxk

.
k∑
i=0

∫
(0,2)k

(
Ψx1 · · ·Ψxkg

(i)
k (x1, . . . , xk)

)2
dx1 · · · dxk

. p2eG−k(1− p)k−1
(
E[X2]− p(E [X])2

)
,

as required. In order to prove (5.7), we proceed similarly and get∫
(0,2)k−l

(∫
(0,2)l

(
Ψx1 · · ·Ψxkg

(i)
k (x1, . . . , xk)

)2

dx1 · · · dxl
)2

dxl+1 · · · dxk

. p4eG−3k+l(1− p)k+l−2
(
E[X2]− p(E [X])2

)2

for 1 ≤ i ≤ l, and∫
(0,2)k−l

(∫
(0,2)l

(
Ψx1 · · ·Ψxkg

(i)
k (x1, . . . , xk)

)2

dx1 · · · dxl
)2

dxl+1 · · · dxk

. p4eG−3k+l(1− p)k+l−1
(
E
[
(X − E [X])4]+ (1− p)(E [X])4

)
for l < i ≤ k. Hence, by the Cauchy-Schwarz inequality we get∫

(0,2)k−l

(∫
(0,2)l

(
Ψx1 · · ·Ψxkgk(x1, . . . , xk)

)2
dx1 · · · dxl

)2

dxl+1 · · · dxk

.
k∑
i=0

∫
(0,2)k−l

(∫
(0,2)l

(
Ψx1 · · ·Ψxkg

(i)
k (x1, . . . , xk)

)2
dx1 · · · dxl

)2

dxl+1 · · · dxk

. p4eG−3k+l(1− p)k+l−2
(
E
[
(X − E [X])4]+ (1− p)2(E [X])4

)
,

which ends the proof. �
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[24] Z.S. Zhang. Cramér-type moderate deviation of normal approximation for exchangeable pairs. Preprint
arXiv:1901.09526, 2019.

29


	Introduction
	Functionals of uniform random sequences
	Normal approximation for generalized U-statistics
	Application to weighted random graphs
	Appendix

