
Software Quality Assessment Tool
Source code evaluation tool for undergraduate and postgraduate projects

Owen Noel Newton Fernando,
Vajisha U. Wanniarachchi,

Yohan Fernandopulle
School of Computer Science and

Engineering
Nanyang Technological University,

Singapore

Chaman Wijesiriwardana
Faculty of Information Technology

University of Moratuwa,
Sri Lanka

Prasad Wimalaratne
University of Colombo School of

Computing
University of Colombo

Sri Lanka

Abstract— Software engineering research is intended to help
improve the practice of software development and the quality of
the software product. Software quality is one of the critical
components in the entire software development process. It is even
crucial in assessing the quality of the undergraduate projects.
Available software metrics and the tools are mainly focusing on
the enterprise level software. Therefore, such tools do not provide
means to assess the undergraduate projects critically. This project
will concentrate on developing algorithms and introduce a set of
metrics that are accurate to evaluate the quality of undergraduate
projects. The algorithms and the applications are not only limited
to assess the projects. It is modifiable and expandable to evaluate
students' assignments submitted by using high-level programming
languages such as Java and C++.

Keywords-software engineering; software quality attributes;
software quality metrics

I. INTRODUCTION
Manual inspection and review of the source code of

undergraduate/postgraduate projects are experiencing several
critical problems such as:

• It requires a considerable investment in preparation for
the review and evaluation of the projects.

• It requires the contribution of the supervisor as well as
a programming language expert.

• Human code auditors must be initially aware of what
types of errors are supposed to find before they can
rigorously examine the code.

However, such a critical assessment of the software projects
is essential to prepare students to work on realistic large-scale
software projects in the industry. It is often difficult to ensure a
right balance between academic and software industrial
concerns and to create assessments that adequately address the
skills and knowledge requirements of both sectors.

Static analysis tools compare favorably to manual reviews
because they perform faster, and they encapsulate some of the
knowledge required to carry out this type of code analysis by a
human auditor. Static analysis can decrease the amount of
testing and debug necessary for the software to be deemed ready.
However, existing static code analysis tools focus on assessing
the quality of the source code of enterprise level software.

Therefore, such tools cannot be directly adopted to measure the
quality of the undergraduate/postgraduate projects due to several
reasons.

In the software industry, refactoring and code inspections are
necessary quality assurance activities for enhancing the quality
of code. In academia, such activities are rarely taught and
practiced at Undergraduate level due to various reasons. These
reasons may include time constraints, limited knowledge of the
available tools and flexibility with the course syllabus.

Software quality, as defined by IEEE [1], is the degree to
which a software possesses the desired combination of software
quality attributes. These quality attributes have been identified
in many standards and models, such as McCall's Quality Model,
Boehm's Quality Model, etc. [2]. Since the quality attributes are
qualitative, quality metrics are needed to quantify the quality
attributes [3]. Therefore, this paper proposes a Software Quality
Assessment Tool (SQAT) that automatically assesses the quality
of the source codes of undergraduate and postgraduate projects
with the use of structural metrics, i.e. object-oriented metrics and
coding standards. After evaluating the source codes, the
application will produce reports that consists of quality scores,
warning messages, locations of bad codes, and suggestions.

II. RELATED WORK

Human analysis of the source code is known as program

understanding, program comprehension, code reviews, software
inspections or software walkthroughs. However, the human-
based code analysis is an age-old concept from the time of
discovery of computers.

The term ‘Static code analysis' is usually applied to the
analyses performed by an automated tool. Software metrics and
reverse engineering can describe as forms of static analysis.
Deriving software metrics and static analysis are increasingly
deployed together, especially in the creation of embedded
systems, by defining software quality objectives [4].

Software quality metric measures some properties of a
software system [5]. By measuring software quality metrics, we
can evaluate software development process, receive earlier
feedback during the development, and assess the progress of
software development [6].

Many software quality metrics have defined in various
researches. Saraiva et al. [7] have classified 570 software quality
metrics related to maintainability. However, previous works
have shown that many software quality metrics are lacking a
theoretical basis [8] or being too labor-intensive to collect [9].
To avoid these problems Chidamber and Kemerer [10] has listed
six design metrics with a theoretical base, i.e. weighted methods
per class, depth of inheritance tree, the number of children,
coupling between object classes, the response for a class, and
lack of cohesion in methods. Harrison et al. [11] also listed six
valid Metrics for Object-Oriented Design (MOOD), i.e. method
hiding factor, attribute hiding factor, method inheritance factor,
attribute inheritance fact, coupling fact, and polymorphism
factor.

A software quality metric can relate with multiple software
quality attributes, for example, "number of attributes" can be
related to reliability, extensibility, reusability, readability,
flexibility, traceability, and scalability [7]. The difficulty in
measurement of software quality is the relationship between
software quality metric and software quality attributes cannot be
defined and must be partially imperfect [12]. Also, different
types software has different quality requirements, for example,
reliability is important for a mission-critical project, but is not
essential for consumer-based mobile application. As a result,
various software projects must define different quality
objectives.

A systematic way to relate software quality metrics with
software quality attributes is necessary to measure software
quality. Basili and Weiss [13] has developed a goal oriented data
collection for collecting valid software engineering data. His
work was later used by YI [6] to describe Goal Question Metric
(GQM) Paradigm, a mechanism for defining and interpreting
operational and measurable software. Previous works by
Cavano and McCall [12] and Baggen et al. [14] developed ideas
that are similar to GQM to relate software quality metrics with
software quality attributes, but these ideas are not well known
and defined by the authors. Therefore, this research uses GQM
to link software quality metrics with software quality attributes.

This project considered framework and structures introduced
by Cavano and McCall [12], Baggen et al. [14], Tjoa et al. [15]
and Washizaki et al. [5] to choose the most suitable framework
for SQAT. Among the considered frameworks, Cavano and
McCall presented a framework for large-scale and critical
systems. While Baggen et al. considered only the maintainability
quality attribute, the Tjoa et al. considered only security quality
attribute. Washizaki et al. have proposed a framework that
achieves effective measurement and evaluation of source code
quality. The framework consists of a comprehensive quality
metrics suite, a technique for normalization of measured values,
an aggregation tool, a visualization tool for the evaluation of
results, a tool for deriving rating levels and a set of derived
standard rating levels.

The project further analyzed the performance of two main
Software Quality Measurement Tools namely SonarQube [16]
and SciTool [17]. SonarQube is an open source continuous code
inspection tool. It possesses functionalities such as code
checking, code duplication detection, code complexity
measurements and some simple metrics which are also related
to the objectives of SQAT. But, this tool does not provide
automation which is a necessity to achieve the identified
objectives of SQAT. It also does not quantify the source code
using comprehensive software quality metrics suite. SciTool is
an integrated development environment (IDE) with many static
code analysis tools. The IDE do have a comprehensive coverage
of different programming languages, such as ADA, C/C++, C#,
FORTRAN, Java, and VHDL. But, This IDE is an expensive
commercial product and mostly used for commercial purposes.
Therefore, building a software quality measurement tool can fill
these gaps specially to facilitate educational institutes.

III. DESIGN AND IMPLEMENTATION
The proposed application expects to handle a large number

of requests per day and therefore need a scalable solution to
handle the requests. As a solution, this project used
Microservices architecture to scale the proposed application
horizontally to handle more requests at a time. The proposed

Figure 1. Microservices Architecture for SQAT

application has developed as four services namely; code
checking service, submit assignment service, submit code
service and quality measurement service (see Figure 1), to cater
the objectives of this project. Since the Remote Procedure Call
(RPC) library developed by Google (GRPC) used Protocol
Buffer to serialize structure data in a language agnostic way,
SQAT uses GPRC to connect the defined services. While the
code checking, submit assignment and submit code services
handled the assignment and code submission process, quality
measurement service act as the core component of the SQAT.

A. Architecture of Quality Measurement Service
As the core component of the SQAT, this service measures

software quality attribute quantitatively using Goal Question
Metric (GQM) paradigm. The framework proposed by
Washizaki et al. [5] is used to implement this service (see Figure
2).

1) Code Style Configuration
Consistent code styles are important for maintainability of

software projects. The software measurement component
enforces a small subset of code styles. For example, the
indentation levels, import statement styles, and method name
format must be consistent with a piece of codes. However, not
all projects have the same set of code style requirements; some
projects might want to use two space characters for indentation,
and some projects ought to use four space characters. As a
result, code style for each project must be configurable.

The software measurement component does accept code style
configuration as an argument in its API. Currently, the
component only allows configuration written in Javascript
Object Notation (JSON) format.

2) ANTLR
After the user submits the source code of their

software/project, it inputs to the ANTLR JavaListener. The
ANTLR is a powerful parser generator for reading, processing,
executing, or translating structured text or binary files (Parr,
2013). The SQAT uses ANTLR to collect metrics from Java
codes in software measurement service. Since a Java language
structure should define in a grammar file which will be accepted
by ANTLR, an open source Java language definition Grammar-

TABLE I. USING GQM TO BUILD QUALITY METRIC SUITE

Goal Question Metrics

Analysability

Is the size of the code not
too large? Line of codes

Are the conditional
statements not deep?

Depth of
conditional nesting

Are the naming of
variables good?

Average length of
identifier

Are classes too
complicated?

Number of
Attributes

Are classes too
complicated?

Number of
Methods

Testability

Is the size of the code not
too large? Line of codes

Are the conditional
statements not deep?

Depth of
conditional nesting

V4 project [18] is used. Gradle [19] and ANTLR plugin for
Gradle are used to generate JavaLexer, JavaParser, and
JavaListener. To analyze and collect metrics from a Java code
chunk, JavaLexer is used to produce a stream of tokens and
JavaParser is used to generate a parse tree. The ParseTreeWalker
is used to traverse the generated parse tree and while traversing
the Walker will inform JavaListener which has defined by the
authors of this paper. The output of the ANTLR will feed to
generate the MetricReport.

3) The Score Calculator
The Score calculator normalizes measured values to

calculate the score. This project uses the rating level deriving
tools to derive benchmark values, to compare the measured
values with some benchmarks values. The benchmark values
and the measured values fed into score calculator, which gives
the final score of the source code from the component level up
to the whole system. However, it only allows evaluation of score
at the component level, which is different from the aggregation
tool defined by Washizaki et al. [5] that allows evaluation from
the component level up to the whole system.

The GQM paradigm is used to build the quality metric suite.
In the initial version of SQAT, two goals and 5 number of
question and metric pairs have defined. The quality metric suite
is shown in Table I. This quality metric suite will be used by
score calculator to calculate the score for a given source codes.

Let say the benchmark value for depth of conditional nesting
is equal to one. If we found out that the depth of conditional
nesting of a piece of code is equal to two, what score should we
give to this software metric?

Washizaki et al. [5] solve this problem using linear piecewise
functions. Specifically, if the collected value is less than or equal
to benchmark value, the score for the software metric is 100%.
Else if the collected value is more than benchmark value and less
than three times of benchmark + upper hinge, the score will
decrease according to the following equation 1:

			𝑠𝑐𝑜𝑟𝑒 = −)
*×,-./01234	

×𝑣𝑎𝑙𝑢𝑒 + :
*
×100% (1)

Figure 2. Structure of the SQAT quality measurement service

Figure 3. Example of score calculation graph for a software metric with

benchmark value equal to one

Different metrics have different severity level depending on
their impact to application reliability, thus the score need to be
penalised accordingly. The equation 2 is used in this project.

𝑠𝑐𝑜𝑟𝑒 = −)
>-?-3@AB∗,-./01234

∗ 𝑣𝑎𝑙𝑢𝑒 + >-?-3@ABD)
>-?-3@AB

∗ 100% (2)

Any value that is greater than three times of benchmark +
upper hinge will give a score of zero. The upper hinge is equal
to benchmark in our case. The linear piecewise function has
plotted in Figure 3. To answer the question which we present at
the beginning of this section, we just need to substitute
benchmark = 1 and value = 2, and we should get the score =
66.67%. The linear piecewise function to calculate scores for a
software metrics can implement easily.

After calculating the score for each metric, the calculation of
scores for software quality attributes become trivial. We just
need to take the average of software metrics that are related to a
software quality attribute, as defined in the software quality
metric suite in Table I. We show an example in Table II. In this
example, the analyzability score would be (80 + 90 + 70)/3 =
80% and the testability score would be (80 + 90)/2 = 85%.

Finally, the visualization tool has mapped to a web
component in SQAT, which will show the result in a single page
application. The component is developed using Flux
Architecture. The React.js which promotes the compostable and
reusable user interface components is used to develop the

TABLE II. CALCULATED SCORED OF SOFTWARE QUALITY ATTRIBUTES
USING GQM

Goal Question Metrics Score

Analysability

Is the size of the
code not too large? Line of codes 80%

Are the conditional
statements not
deep?

Depth of conditional
nesting 90%

Are the naming of
variables good?

Average length of
identifier 70%

Testability

Is the size of the
code not too large? Line of codes 80%

Are the conditional
statements not
deep?

Depth of conditional
nesting 90%

user interface. The Alt.js library is used to manage of the web
component.

IV. DISCUSSION AND FUTURE WORK
This project can be further improved in five different ways,

i.e. conducting acceptance testing, implementing a rating level
deriving tool, developing a better software quality metric
calculator, developing a better score calculator, and supporting
more configuration file format.

Although we only have an initial prototype of the tool,
conducting an acceptance testing earlier would allow us to detect
flaws in our requirements and functionality earlier. By doing so,
we can eliminate bugs and set the development road map of
SQAT in the right direction. The rating level deriving tool was
initially mentioned in Washizaki et al. [5].

It should be a tool to extract software quality metrics from a
given software project in a particular programming language. By
having this tool, we can collect software quality metrics data in
scale, and hence, able to develop benchmark values for software
quality metrics.

The aggregation tool is described in Washizaki et al. [5]
paper as a tool that allows evaluation of software quality from
the component level up to the whole system. However, the score
calculator in SQAT only allows evaluation of software quality
at the component level only. By improving this tool, we can
zoom in to evaluate at the component level and zoom out to
evaluate at packages and whole system level.

The Goal Question Metric (GQM) approach is essential for
SQAT. The GQM in SQAT should be improved to cover more
software quality attributes and more metrics that related to these
attributes. By doing so, we can get better analysis reports.

V. CONCLUSION
The project has developed the foundation of software quality

measurement tool named as SQAT. The main goal of this project
is to build an automatic code assessment tool. The tool will be
used to analyze codes for projects and assignments of
undergraduate students. Since the defined software quality
attributes are qualitative, there is a necessity to discover a
method to qualify the qualitative attributes. Therefore, this
project used GQM approach to calculating the scores for a
software quality attributes. The quality measurement component
is implemented based on the framework proposed by Washizaki
et al. [5]. A scalable architecture named Microservices is used to
develop the proposed application. ANTLR is used as the core
tool to analyze the submitted codes and collect software metrics.
The website which is implemented as the front-end for project
submission is developed using Flux Architecture.

REFERENCES

[1] "IEEE Standard for a Software Quality Metrics Methodology", 1998.
[2] P. Berander, L. Damm, J. Eriksson, T. Gorschek, K. Henningsson, P.

Jönsson, S. Kågström, D. Milicic, F. Mårtensson, K. Rönkkö and P.
Tomaszewski, Software quality attributes and trade-offs, 1st ed. Blekinge
Institute of Technology, 2005.

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

Sc
or
e

Value

[3] E. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, M. Galster and P.
Avgeriou, "A mapping study on design-time quality attributes and
metrics", Journal of Systems and Software, vol. 127, pp. 52-77, 2017.

[4] T. Cambois and P. Munier, "Software Quality Objectives for Source
Code", MathWorks Automotive Conference, 2010.	 

[5] H. Washizaki, R. Namiki, T. Fukuoka, Y. Harada and H. Watanabe, "A
framework for measuring and evaluating program source code quality",
in International Conference on Product Focused Software Process
Improvement, 2007, pp. 284-299.

[6] V. Caldiera and H. Rombach, "Goal question metric
paradigm", Encyclopedia of Software Engineering. pp. 528-532, 1994.

[7] J. Saraiva, M. de França, S. Soares, F. Filho and R. de Souza, "Classifying
metrics for assessing Object-Oriented Software Maintainability: A family
of metrics’ catalogs", Journal of Systems and Software, vol. 103, pp. 85-
101, 2015.

[8] I. Vessey and R. Weber, "Research on Structured Programming: An
Empiricist's Evaluation", IEEE Transactions on Software Engineering,
vol. -10, no. 4, pp. 397-407, 1984.

[9] C. Kemerer, "Reliability of function points measurement: a field
experiment", Communications of the ACM, vol. 36, no. 2, pp. 85-97,
1993.

[10] S. Chidamber and C. Kemerer, "A metrics suite for object oriented
design", IEEE Transactions on Software Engineering, vol. 20, no. 6, pp.
476-493, 1994.

[11] R. Harrison, S. Counsell and R. Nithi, "An evaluation of the MOOD set
of object-oriented software metrics", IEEE Transactions on Software
Engineering, vol. 24, no. 6, pp. 491-496, 1998.

[12] J. Cavano and J. McCall, "A framework for the measurement of software
quality", ACM SIGSOFT Software Engineering Notes, vol. 3, no. 5, pp.
133-139, 1978.

[13] V. Basili and D. Weiss, "A Methodology for Collecting Valid Software
Engineering Data", IEEE Transactions on Software Engineering, vol. -
10, no. 6, pp. 728-738, 1984.

[14] R. Baggen, J. Correia, K. Schill and J. Visser, "Standardized code quality
benchmarking for improving software maintainability", Software Quality
Journal, vol. 20, no. 2, pp. 287-307, 2011.

[15] S. Tjoa, P. Kochberger, C. Malin and A. Schmoll, "An Open Source Code
Analyzer and Reviewer (OSCAR) Framework", in Availability,
Reliability and Security (ARES), 2015 10th International Conference on,
2015, pp. 511-515.

[16] "Continuous Code Quality | SonarQube", Sonarqube.org. [Online].
Available: https://www.sonarqube.org.

[17] "SciTools.com", Scitools.com. [Online]. Available: https://scitools.com.
[18] "antlr/grammars-v4", GitHub. [Online]. Available:

https://github.com/antlr/grammars-v4/blob/master/clojure/Clojure.g4.
[19] "Gradle Build Tool", Gradle.org. [Online]. Available: https://gradle.org.

