
Estimation of Heterogeneous Panels with Structural
Breaks�

Badi H. Baltagiy Qu Fengz Chihwa Kaox

March 27, 2015

Abstract

This paper extends Pesaran�s (2006) work on common correlated e¤ects (CCE)

estimators for large heterogeneous panels with a general multifactor error structure

by allowing for unknown common structural breaks. Structural breaks due to new

policy implementation or major technological shocks, are more likely to occur over

a longer time span. Consequently, ignoring structural breaks may lead to inconsis-

tent estimation and invalid inference. We propose a general framework that includes

heterogeneous panel data models and structural break models as special cases. The

least squares method proposed by Bai (1997a, 2010) is applied to estimate the com-
mon change points, and the consistency of the estimated change points is established.

We �nd that the CCE estimator have the same asymptotic distribution as if the true

change points were known. Additionally, Monte Carlo simulations are used to verify

the main results of this paper.

Keywords: Heterogeneous Panels, Cross-sectional Dependence, Structural Breaks,
Common Correlated E¤ects.

JEL Classi�cation: C23, C33

�The authors would like to thank the editor Han Hong, the associate editor and three anonymous referees
for their constructive comments and suggestions. We are also grateful to helpful comments from Jushan Bai,
Jiti Gao, Kazuhiko Hayakawa, Dukpa Kim, Tatsushi Oka, Richard Smith, Liangjun Su, and participants of
a seminar at National University of Singapore and from 2013 Asian Meeting of Econometric Society, 2014
Tsinghua Econometrics Conference, 2014 China Meeting of Econometric Society, 2014 International Panel
Data Conference. Financial support from the MOE AcRF Tier 1 Grant M4011314 at Nanyang Technological
University is gratefully acknowledged.

yCorresponding author. Department of Economics and Center for Policy Research, 426 Eggers Hall,
Syracuse University, Syracuse, NY 13244-1020, USA, and Department of Economics, Leicester University,
University Road, Leicester LE17 6EE, UK. Email Address: bbaltagi@maxwell.syr.edu.

zDivision of Economics, School of Humanities and Social Sciences, Nanyang Technological University.
HSS-04-48, 14 Nanyang Drive, Singapore 637332. Email Address: qfeng@ntu.edu.sg.

xDepartment of Economics and Center for Policy Research, 426 Eggers Hall, Syracuse University, Syra-
cuse, NY 13244-1020, USA. Email Address: dkao@maxwell.syr.edu.



1 Introduction

For panel data models, the presence of cross-sectional dependence due to unobservable com-

mon factors or spatial spillover e¤ect is a major concern in estimation and inference. It could

lead to invalid inference and inconsistent estimators, see Lee (2002) and Andrews (2005).1

Several tests for cross-sectional dependence in panel data models have been proposed in the

literature. These include Pesaran (2004, 2012), Ng (2006), Pesaran, Ullah and Yamagata

(2008), Sara�dis, Yamagata and Robertson (2009), Chen, Gao and Li (2011), Hsiao, Pe-

saran and Pick (2012), Baltagi, Feng and Kao (2011, 2012), Halunga, Orme and Yamagata

(2011), Juhl (2011), and Su and Zhang (2011), to mention a few. To deal with cross-sectional

dependence in panels, two general estimation methods have been proposed including spa-

tial estimation methods (Anselin, 1988; Kelejian and Prucha, 1999; Kapoor, Kelejian and

Prucha, 2007; Lee, 2007 and Lee and Yu, 2010, to name a few), and factor models (see

Pesaran, 2006; and Bai, 2009, to name a few).

In particular, Pesaran (2006) develops common correlated e¤ects (CCE) estimators for

large heterogeneous panels with a general multifactor error structure by least squares using

augmented data. The common correlated e¤ects (factors) can be asymptotically partialled

out by means of the cross-sectional average of the dependent variable and the individual-

speci�c regressors when the cross-section dimension is large. Kapetanios, Pesaran and Ya-

magata (2011) show that the CCE estimator can be extended to the case of nonstationary

unobserved common factors. Additionally, the CCE approach is also shown to be applicable

to situations of spatial and other forms of weak cross-sectional dependent errors (Pesaran

and Tosetti, 2011; Chudik, Pesaran and Tosetti, 2011), and heterogenous dynamic panel

data models with weakly exogenous regressors (Chudik and Pesaran, 2013).2

However, this literature assumes that the slope coe¢ cients are constant over time. This

implicit assumption is common in the literature on panel data models with large time di-

mension, see for example, Kao (1999), Phillips and Moon (1999), Hahn and Kuersteiner

(2002), Alvarez and Arellano (2003), Phillips and Sul (2007), Pesaran and Yamagata (2008),

Hayakawa (2009), to name a few. Due to policy implementation or technological shocks,

1Baltagi and Pirotte (2010) show that tests of hypotheses based on standard panel data estimators that
ignore spatial dependence lead to misleading inference.

2In a panel with unobserved common factors, Banerjee and Carrion-i-Silvestre (2011) suggest a test for
panel cointegration based on a pooled CCE estimator of the coe¢ cients.
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structural breaks are possible especially for panels with a long time span. Consequently,

ignoring structural breaks may lead to inconsistent estimation and invalid inference.

This paper extends Pesaran�s (2006) heterogeneous panels by allowing for unknown com-

mon structural breaks in the slopes. This is useful for example when global technological or

�nancial shocks a¤ect all markets or �rms at the same time. Since the framework of hetero-

geneous panels is fairly general and includes popular panel data models as special cases, it

allows us to examine the issue of structural breaks in panel data models in a less restrictive

way.

By considering both cross-sectional dependence and structural breaks in a general panel

data model, this paper also contributes to the change point literature in several ways. First,

it extends Bai�s (1997a) time series regression model to heterogeneous panels, showing that

the consistency of estimated change points can be achieved with the information along the

cross-sectional dimension. This result con�rms the �ndings of Bai (2010) and Kim (2011).

Second, it also enriches the analysis of common breaks of Bai (2010) and Kim (2011) in a

panel mean-shift model and a panel deterministic time trend model by extending them to

a regression model using panel data. This makes it possible to allow for structural breaks

and cross-sectional dependence in empirical work using panel regressions. In particular,

our methods can be applied to regression models using large stationary panel data, such as

country-level panels and state/provincial-level panels.3

Regarding estimating common breaks in panels, Feng, Kao and Lazarova (2009) and

Baltagi, Kao and Liu (2012) also show the consistency of the estimated change point in a

simple panel regression model. Hsu and Lin (2012) examine the consistency properties of

the change point estimators for nonstationary panels. More recently, Qian and Su (2014)

and Li, Qian and Su (2014) study the estimation and inference of common breaks in panel

data models with and without interactive �xed e¤ects using Lasso-type methods. In terms of

detecting structural breaks in panels, some recent literature includes Horváth and Hu�ková

(2012) in a panel mean shift model with and without cross-sectional dependence, De Wachter

and Tzavalis (2012) in dynamic panels, and Pauwels, Chan and Mancini-Gri¤oli (2012) in

heterogeneous panels, to name a few.

The paper is organized as follows. Section 2 introduces heterogeneous panels with a

3Some empirical examples include Fleisher, Li and Zhao (2010) using Chinese provincial-level panel data,
and Huang (2009) using country-level panels, to mention a few.
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common structural break. Section 3 starts with a simple heterogeneous panel model that

ignores the unobservable common correlated e¤ects. This model can be regarded as a direct

extension of Bai�s (1997a) time series regression model to a panel setup. The least squares

estimation proposed by Bai (1997a) is applied. With the main results established in Section

3, the discussion of the general model with common correlated e¤ects is presented in Section

4. Section 5 brie�y discusses the case of multiple common breaks. In Section 6, Monte Carlo

simulations are used to verify the consistency of the estimated common change point for

both models considered. Section 7 provides concluding remarks. The mathematical proofs

are relegated to the Appendix.

2 Heterogeneous Panels with a Common Structural
Break

In a heterogeneous panel data model:

yit = x0it�i + eit; i = 1; :::; N ; t = 1; :::; T; (1)

xit is a p� 1 vector of explanatory variables, and the errors are cross-sectionally correlated,
modelled by a multifactor structure

eit = 
0ift + "it; (2)

where ft is an m � 1 vector of unobserved factors and 
i is the corresponding loading

vector. "it is the idiosyncratic error independent of xit. However, xit could be a¤ected by

the unobservable common e¤ects ft. Projecting xit on ft, we obtain

xit = �
0
ift + vit; i = 1; :::; N ; t = 1; :::; T; (3)

where �i is an m � p factor loading matrix. vit is a p � 1 vector of disturbances. Due to
the correlation between xit and eit, OLS for each individual regression could be inconsistent.

Thus, Pesaran (2006) develops the CCE estimator of �i by least squares using augmented

data.4

4For simplicity, observed common e¤ects like seasonal dummies are not included in (1), but they can be
easily handled as in Pesaran (2006).
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In this paper, we allow for structural breaks to occur in some or all components of the

slopes �i.
5 Following Bai (2010) and Kim (2011), a structural break at a common unknown

date k0 is assumed. This could be due to a macro policy implementation or a technological

shock that a¤ects all markets or �rms at the same time. More formally,

yit = x0it�i(k0) + eit; i = 1; :::; N ; t = 1; :::; T; (4)

where some or all components of �i(k0) are di¤erent before and after the date k0.
6 Following

Bai (1997a), this structural break model can be written as

yit =

�
x0it�i + eit; t = 1; :::; k0;
x0it�i + z0it�i + eit; t = k0 + 1; :::; T;

(5)

i = 1; :::; N , where zit = R0xit denotes a q � 1 subvector of xit with R0 = (0q�(p�q); Iq). Iq is
the q � q identity matrix with q � p. The case where q < p denotes a partial change model,

while the case where q = p is for a pure change model. Pauwels, Chan and Mancini-Gri¤oli

(2012) propose a testing procedure for k0 in this setting.

Substituting zit = R0xit in (5), we obtain

�i(k0) = �i +R�i � 1ft > k0g =
�
�1i = �i; t = 1; :::; k0;
�2i = �i +R�i; t = k0 + 1; :::; T;

so that �2i � �1i = R�i, and �i denotes the slope jump for i. When �i = 0 there is no

structural break in the slope.

The case of multiple break points will be discussed in Section 5. In the next two sections,

we consider the simple case of one common break as in model (5). Compared with the

heterogeneous panel data model considered in Pesaran (2006), (5) has the extra component

R�i � 1ft > k0g in the slope, involving the unknown structural change point k0. Thus,

ignoring the structural break in the slopes may invalidate the CCE estimator proposed by

5Pesaran (2004) discusses testing for cross-sectional dependence in a heterogeneous panel model with
structural breaks. Kapetanios, Pesaran and Yamagata (2011) examine the performance of the CCE estimator
in case of a structural break in the mean of the unobserved factors using Monte Carlo experiments.

6As shown in Section 4, to apply the CCE approach, the common break assumption is required. In Kim
(2014), the common break assumption is generalized to handle heterogeneous responses to a common shock
that follow a common distribution. Liao and Wang (2012) also assume a common distribution, instead of a
common break date, and estimate individual-speci�c structural breaks and their cross-sectional distribution
using Bayesian methods. In addition, Li, Chen and Gao (2011) consider a time-varying coe¢ cient panel
data model where the slope coe¢ cient is allowed to be di¤erent for each time period, e.g., �(t), but common
for all individuals.
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Pesaran (2006).7 Compared with the simple mean shift panel data model in Bai (2010), our

model is enriched by adding a regression structure with xit 6= 1 in general, as well as cross-
sectional dependence characterized by a multifactor structure in the errors. When there are

no unobservable common factors ft, our model (4) can also be regarded as an extension of

Bai (1997a) to a panel data setting. In addition, the model (4) above is similar to Kim

(2011), who considered the case of a deterministic time trend with a common break.

Before proceeding to the general model (5), we start with a simple case of heterogeneous

panels in the absence of common correlated e¤ects ft in Section 3, and then extend the main

results to the general case in Section 4.

To estimate the common change point k0, we need the following additional assumptions:

Assumption 1 k0 = [� 0T ], where � 0 2 (0; 1) and [�] is the greatest integer function.

Note that unlike the time series model considered by Bai (1997a), the restriction of

� 0 2 (0; 1) is unnecessary in a panel mean shift setup considered by Bai (2010) as long

as T=N ! 0 . However, this assumption is required in our heterogeneous panels with

general regressors. Enough observations are needed to consistently estimate the slopes in

each regime.

De�ne �N =
PN

i=1 �
0
i�i. For series i, �

0
i�i measures the magnitude of the structural break,

thus �N is an indicator of the break magnitude for all N series sharing a common break.

Assumption 2 �N !1 and (i) �N
N
is bounded as N !1; (ii) �N T

N
!1 and �N

q
T
N
!

1 as (N; T )!1.

�i could be random with a �nite variance across i, with Assumption 2(i) describing this

case. When �i is considered as random, Assumption 2 means that
�N
N
is stochastically

bounded in part (i), and that N
�NT

and
p
N

�N
p
T
converge in probability to 0 in part (ii). Alter-

natively, �i could denote �xed parameters. Since Assumption 2(i) allows for the case where
�N
N
! 0 as N !1, Assumption 2(ii) implies that it cannot converge to 0 too fast. Conse-

quently, Assumption 2(i) imposes an upper bound on �N
N
, while Assumption 2(ii) imposes a

lower bound on �N
N
.

7As documented in the time series literature, e.g., Pesaran and Timmermann (2002), structural breaks
could lead to forecast failure. Stock and Watson (2002, 2009) show that forecasts constructed using dynamic
factor models are robust to small structural breaks of factor loadings. However, when the size of the break
is big, ignoring structural breaks may yield biased and inconsistent forecasts, as illustrated by Banerjee,
Marcellino and Masten (2008), Breitung and Eickmeier (2011), and Chen, Dolado and Gonzalo (2014).
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In case T grows at a comparable rate or faster than N , i.e., T = O(N ) with  � 1,

Assumption 2(ii) implies that �N can diverge at any rate. When �N increases at a rate less

than N , Assumption 2(ii) allows for the possibility of no structural break in some series.8

3 Model 1: No Common Correlated E¤ects

In this section, we assume that there are no unobserved common e¤ects ft in the errors and

regressors. Or the loading vectors 
i and �i are equal to zero. For i = 1; :::; N;

yit =

�
x0it�i + "it; t = 1; :::; k0;
x0it�i + z0it�i + "it; t = k0 + 1; :::; T:

(6)

This is the special case of cross-sectionally independent errors, where a common break k0

occurs in the heterogeneous slopes. This model generalizes Bai (1997a), Bai (2010) and

Pesaran and Smith (1995). When N = 1, (6) is the time series model considered in Bai

(1997a). When xit = 1, this model reduces to the one in Bai (2010). In case the lagged

dependent variable is included in xit and �i = 0, (6) turns out to be the setup in Pesaran

and Smith (1995).9

Assumption 3 (i) The disturbances "it; i = 1; :::; N; are cross-sectionally independent; (ii)

For each series i ; "it is independent of xit for all i and t; (iii) "it is a stationary process with

absolute summable autocovariances,

"it =
P1

l=0 ail� i;t�l

where f� it; t = 1; :::; Tg are independent and identically distributed (IID) random variables

with �nite fourth-order cumulants. Assume 0 < V ar("it) =
P1

l=0 a
2
il = �2i < 1. Also, for

the T � 1 vector "i = ("i1; "i2; � � � ; "iT )0, V ar("i) = �";i:

When "it is serially uncorrelated, lagged dependent variables are predetermined and can

be included as regressors in (6).

Assumption 4 For i = 1; :::; N , the matrices (1=j)
Pj

t=1 xitx
0
it, (1=j)

PT
t=T�j+1 xitx

0
it,

(1=j)
Pk0

t=k0�j+1 xitx
0
it and (1=j)

Pk0+j
t=k0+1

xitx
0
it are stochastically bounded and have minimum

8Assumption �N !1 rules out the case where there is no structural break in the slopes in all series.
9Heterogeneous dynamic panel data models with weakly exogenous regressors and unobserved common

factors are studied by Chudik and Pesaran (2013).
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eigenvalues bounded away from zero in probability for all large j. In addition, for each i,

(1=T )
PT

t=1 xitx
0
it converges in probability to a nonrandom and positive de�nite matrix as

T !1.

This assumption is borrowed from Assumptions A3 and A4 in Bai (1997a).10 Its coun-

terpart across the cross-sectional dimension is also needed.

Assumption 5 For any positive �nite integer s, the matrices 1
N

PN
i=1

Pk0
t=k0�s+1 xitx

0
it and

1
N

PN
i=1

Pk0+s
t=k0+1

xitx
0
it, i = 1; :::; N , are stochastically bounded, with minimum eigenvalues

bounded away from zero in probability for large N . In addition, for each t, (1=N)
PN

i=1 xitx
0
it

is stochastically bounded as N !1.

Assumption 6 f�i; i = 1; :::; Ng are drawn independently of fxit; i = 1; :::; Ng.

Let bi = (�0i; �
0
i)
0; i = 1; :::; N; denote the slope parameters. In the random coe¢ cient

model considered by Pesaran and Smith (1995) and Pesaran (2006), we assume:

Assumption 7 For i = 1; :::; N ,

bi = b+ vb;i; vb;i � IID(0;�b); (7)

where b = (�0; �0)0, vb;i =
�
v�;i
v�;i

�
and �b =

�
�� 0
0 ��

�
for i = 1; 2; :::; N , where kbk <1,

k�bk <1, and the random deviations vb;i are independent of xit and "jt for all i; j and t.

For any matrix or vector A, the norm of A is de�ned as kAk =
p
tr(AA0). This as-

sumption is a simpli�ed version of Assumption 4 of Pesaran (2006). Under Assumption

6, f�i; i = 1; :::; Ng are not necessarily random. When f�i; i = 1; :::; Ng are considered as
random, as part of Assumption 7, Assumption 6 becomes redundant. Under Assumption 7,

�� 6= 0 implies a structural break in the slope.
By (4),

yit = x0it�i + x0itR�i1ft > k0g+ "it;

if the structural break is ignored, the term x0itR�i1ft > k0g is absorbed in the error term
"̂it = x0itR�i1ft > k0g + "it. This leads to inconsistency of OLS for each series due to

endogeneity. Thus, estimating k0 �rst is essential.
10As pointed out by Bai (1997a), Bai and Perron (1998, 2003) trending regressors are allowed in the form

of (t=T )l, for (l > 0), or any function of the time trend: g(t=T ).
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Let Yi = (yi1; � � � ; yiT )0, Xi = (xi1; � � � ; xiT )0 and "i = ("i1; "i2; � � � ; "iT )0 denote the
stacked data and errors for individual i = 1; :::; N over the time periods observed. Similarly,

de�ne Z0i = (0; � � � ; 0; zi;k0+1; � � � ; ziT )
0. (6) can be written in matrix form as

Yi = Xi�i + Z0i�i + "i; i = 1; :::; N: (8)

The parameters of interest are �i; �i and the change point k0. We �rst estimate k0 using least

squares as proposed by Bai (1997a, 2010). For any possible change point k = 1; :::; T �1, de-
�ne the matricesX2i(k) = (0; � � � ; 0; xi;k+1; � � � ; xiT )0, and Z2i(k) = (0; � � � ; 0; zi;k+1; � � � ; ziT )0.
When k happens to be the true change point k0, Z2i(k0) = Z0i. De�ne X0i = X2i(k0);

thus Z0i = X0iR. To make the notation more compact, we let Xi(k) = (Xi; Z2i(k)) and

X0i = (Xi; Z0i). Thus, (8) becomes

Yi = Xi�i + Z0i�i + "i = X0ibi + "i; i = 1; :::; N: (9)

Given any k = 1; :::; T � 1, one can estimate bi by least squares,

b̂i(k) =

�
�̂i(k)

�̂i(k)

�
= [Xi(k)0Xi(k)]�1Xi(k)0Yi, i = 1; :::; N: (10)

The corresponding sum of squared residuals is given by

SSRi (k) = [Yi � Xi(k)b̂i(k)]0[Yi � Xi(k)b̂i(k)]

= [Yi �Xi�̂i(k)� Z2i(k)�̂i(k)]
0[Yi �Xi�̂i(k)� Z2i(k)�̂i(k)],

i = 1; :::; N: Note that both b̂i(k) and SSRi (k) depend on k. For each series i, k0 can be

estimated by argmin1�k�T�1 SSRi(k) as in Bai (1997a). Given that the structural break

occurs at a common date for all cross-sectional units in the panel setup, the least squares

estimator of k0 is de�ned as

k̂ = arg min
1�k�T�1

NX
i=1

�iSSRi(k): (11)

Weights f�i 2 (0; 1); i = 1; :::; N;
PN

i=1 �i = 1g allow for the possibility of di¤erent magni-
tudes, e.g., di¤erent variances, across series.

WhenN = 1, k̂ de�ned in (11) boils down to the change-point estimator considered by Bai

(1997a) in a time series setting, with k̂�k0 = Op(1) for large T . In time series models, only the
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break fraction � 0 = k0=T , instead of k0 itself, can be consistently estimated. In a multivariate

time series set up, Bai, Lumsdaine and Stock (1998) show that the width of the con�dence

interval of the estimated change point decreases with the number of time series.11 This result

implies that cross-sectional observations with common breaks improve the accuracy of the

estimated change point. In fact, Bai (2010) shows that the least squares estimator of the

change point is consistent in a panel mean-shift model, i.e., k̂�k0 = op(1). A similar result is

also obtained by Kim (2011) in a panel deterministic time trend model. In our heterogeneous

panel regression model, (11) combines the information from each series by summing up

SSRi(k). With a large N , k̂ uses more information provided by the multiple time series

sharing a common break. Consequently, the panel data estimator k̂ is more accurate than

the time-series estimator and achieves consistency, i.e., k̂ � k0
p! 0 as (N; T )!1.

Theorem 1 Under Assumptions 1-6 (or 7), lim(N;T )!1 P (k̂ = k0) = 1.

The proof of Theorem 1 can be found in the Appendix.

Given the estimated change point k̂, the corresponding estimator of the slopes is b̂i =

b̂i(k̂); i = 1; :::; N . When bi, i = 1; :::; N , are considered as random variables under Assump-

tion 7, the cross-sectional mean b can be consistently estimated by the mean group estimator

proposed by Pesaran and Smith (1995) and Pesaran (2006):12

b̂MG =
1

N

NX
i=1

b̂i =
1

N

NX
i=1

[Xi(k̂)0iXi(k̂)]�1i Xi(k̂)
0Yi: (12)

4 Model 2: Common Correlated E¤ects

In this section, we extend Model 1 to the general model with common correlated e¤ects (5):

for i = 1; :::; N ,

yit = x0it�i(k0) + eit =

�
x0it�i + eit; t = 1; :::; k0;
x0it�i + z0it�i + eit; t = k0 + 1; :::; T:

where eit = 
0ift + "it. The regressors xit, i = 1; :::; N , are allowed to be correlated with the

unobservable factors ft modelled in (3), xit = �0ift + vit: When �i = 0, the model reduces to

11Change-point estimators in the multivariate time series literature are discussed in Bai (2000) and Qu
and Perron (2006).
12Note that the pooled estimator of b considered by Pesaran (2006) can be studied similarly. Since the

asymptotic distributions of b̂i and b̂MG are similar to those derived in Bai (1997a) and Pesaran (2006), they
are summarized in the Supplementary Appendix.
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the one considered by Pesaran (2006). Kim (2011) considers the special case of xit = (1; t)0.13

In this heterogeneous panel data model with a common break k0, the parameters of interest

are bi = (�0i; �
0
i)
0, i = 1; :::; N , and the change point k0. The following assumptions are

needed.

Assumption 8 Common factors ft; t = 1; :::; T; are covariance sationary with absolute

summable autocovariances, independent of errors "is and vis for all i; s; t:

Assumption 9 Errors "is and vjt are independent for all i; j; s; t: vit, i = 1; :::; N; are lin-

ear stationary processes with absolute summable autocovariances, vit =
P1

l=0 Sil�i;t�l; where

(� it; �
0
it )

0 are (p + 1) � 1 vectors of IID random variables with variance-covariance matrix

Ip+1 and �nite fourth-order cumulants, and

V ar(vit) =
P1

l=0 SilS
0
il = �i;v, and 0 < k�i;vk <1:

Assumption 10 Factor loadings 
i and �i are IID across i, and independent of "jt; vjt and

ft for all i; j; t. Assume 
i = 
 + �i; �i � IID(0;
�) and �i = � + �i; �i � IID(0;
�),

i = 1; :::N; where the means 
, � are non-zero and �xed and the variances 
�; 
� are �nite.

Together with Assumptions 3 and 7, Assumptions 8, 9 and 10 given above are the same

as Assumptions 1-3 of Pesaran (2006), with the additional restrictions 
 6= 0 and � 6= 0.
The correlation between xit and eit due to unobserved common factors ft renders OLS

inconsistent. If ft were observable, it could be treated as a regressor, and this correlation can

be removed using a partitioned regression. Let F = (f1; f2; � � � ; fT )0; then the corresponding
orthogonal projection matrix is given by Mf = IT � F (F 0F )�1F 0: In this case, (5) can be

written in matrix form as

Yi = Xi�i + Z0i�i + F
i + "i; i = 1; :::; N (13)

Premultiplying (13) by Mf , we get

�Yi = �Xi�i + �Z0i�i + �"i; i = 1; :::; N; (14)

which is of the same form as equation (8) considered in Section 3, with transformed data
�Yi = MfYi, �Xi = MfXi = MfVi, �Z0i(k0) = MfZ0i and �"i = Mf"i. For each i = 1; :::; N , the

13In a similar panel set up without exogenous regressors, Bai and Carrion-i-Silvestre (2009) develop unit
root tests applicable to situations of multiple structural breaks and unobserved common dynamic factors.
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T � p vector Vi denotes (vi1; :::; viT )0. Conditional on F , ( �Xi; �Z0i) and �"i are uncorrelated

under Assumption 9.

However, ft; t = 1; :::; T; are unobservable. To proceed, we follow Pesaran�s (2006) idea

of using the cross-sectional averages of yit and xit as proxies for ft. Combining (5) and (3)

yields

wit
(p+1)�1

=

�
yit
xit

�
= Ci(k0)

0

(p+1)�m
ft
m�1

+ uit(k0)
(p+1)�1

; (15)

where

Ci(k0)
m�(p+1)

= (
i;�i)

�
1 0

�i(k0) Ip

�
and uit(k0) =

�
"it + v0it�i(k0)

vit

�
:

Note that like �i(k0), the slope Ci(k0) in (15) also shifts at k0.

Ci(k0) =

�
C1i = (
i + �i�1i; �i); t = 1; :::; k0;
C2i = (
i + �i�2i; �i); t = k0 + 1; :::; T:

(16)

Common break k0 splits the data generating process for all individuals into two regimes,

and each regime has the same structure as that considered in Pesaran (2006). Consequently,

unobserved common factors ft can be partialled out by using cross-sectional averages in the

same spirit.

Let �wt =
PN

i=1 �iwit be the cross-sectional averages of wit using weights �i, i = 1; :::; N .

In particular,

�wt = �C(k0)
0ft + �ut(k0) (17)

where �C(k0) =
PN

i=1 �iCi(k0) =

�
�C1 =

PN
i=1 �iC1i; t = 1; :::; k0;

�C2 =
PN

i=1 �iC2i; t = k0 + 1; :::; T:

The common break assumption is needed, otherwise �C(k0) is not well de�ned. �ut(k0) is

de�ned as

�ut(k0) =
NP
i=1

�iuit(k0) =

8>><>>:
�
�"t +

PN
i=1 �iv

0
it�1i

�vt

�
; t = 1; :::; k0;�

�"t +
PN

i=1 �iv
0
it�2i

�vt

�
; t = k0 + 1; :::; T:

(18)

As in Pesaran (2006), the weights �i, i = 1; :::; N , satisfy conditions: �i = O( 1
N
),
PN

i=1 �i = 1

and
PN

i=1 j�ij <1.

Assumption 11 Rank( �C1) = Rank( �C2) = m � p+ 1:

11



We assume that rank condition is satis�ed. Pesaran (2006) shows that in the case of

de�cient rank, it is impossible to obtain consistent estimators of the individual slope coe¢ -

cients, but their cross-sectional mean can be consistently estimated. When �C(k0) is of full

rank, ft can be written as

ft =
�
�C(k0) �C(k0)

0��1 �C(k0)( �wt � �ut(k0)):
From (16), the matrix �C(k0) �C(k0)0 has two regimes, shifting at k0,

�C(k0) �C(k0)
0 =

�
�C 01
�C1; t = 1; :::; k0;

�C 02
�C2; t = k0 + 1; :::; T:

Assumption 11 implies that �C(k0) �C(k0)0 is invertible. As shown in Lemma 1 of Pesaran

(2006), the cross-sectional average of the errors vanish in both regimes as N ! 1, where
�"t =

PN
i=1 �i"it, �vt =

PN
i=1 �ivit, yielding

ft �
�
�C(k0) �C(k0)

0��1 �C(k0) �wt p! 0: (19)

This suggests that it is asymptotically valid to use �wt as observable proxies for ft. Let
�W = ( �w1; �w2; � � � ; �wT )0 denote the T � (p+1) matrix of cross-sectional averages. Denote the
T � T matrix Mw by Mw = IT � �W ( �W 0 �W )�1 �W 0: Thus, similar to the result MfF = 0, by

(19) it is expected that the terms involving MwF are ignorable asymptotically as N !1.
Premultiplying (13) by Mw instead of Mf , we obtain

MwYi =MwXi�i +MwZ0i�i +MwF
i +Mw"i; i = 1; :::; N . (20)

Let the T � p matrix ~Xi = MwXi = (~xi1; � � � ; ~xiT )0 denote the transformed regressors.
Similarly, de�ne ~Yi =MwYi; ~Z0i =MwZ0i and ~"i =Mw"i. Thus, (20) becomes

~Yi = ~Xi�i + ~Z0i�i +MwF
i + ~"i = ~Xi�i + ~Z0i�i + ~"
0
i ; i = 1; :::; N; (21)

where ~"0i =MwF
i + ~"i.

Lemma 6 in the Appendix shows that each element of MwF
i is of order Op(
1p
N
) and

vanishes as (N; T )!1, implying that ~"0i can be treated as ~"i asymptotically. Based on this
intuition, we can follow the procedure proposed in Section 3 to estimate k0 and bi = (�

0
i; �

0
i)
0,

using transformed data f ~Yi; ~Xi; i = 1; :::; Ng.

12



For any possible change point k = 1; :::; T � 1, de�ne matrices ~Z2i(k) = MwZ2i(k),
~Xi(k) = ( ~Xi; ~Z2i(k)) and ~X0i = ( ~Xi; ~Z0i). With new notation, (21) becomes

~Yi = ~X0ibi + ~"0i ; i = 1; :::; N: (22)

Given k, slope bi can be estimated by least squares,

~bi(k) =

�~�i(k)
~�i(k)

�
= [~Xi(k)0 ~Xi(k)]�1 ~Xi(k)0 ~Yi; i = 1; :::; N: (23)

The resulting sum of squared residuals is

]SSRi(k) = [ ~Yi � ~Xi(k)~bi(k)]0[ ~Yi � ~Xi(k)~bi(k)]

= [ ~Yi � ~Xi
~�i(k)� ~Z2i(k)~�i(k)]

0[ ~Yi � ~Xi
~�i(k)� ~Z2i(k)~�i(k)]; i = 1; :::; N;

and the estimator of k0 is de�ned similarly as

~k = arg min
1�k�T�1

P
i �i
]SSRi(k); (24)

where �i are weights, as in (11).

Assumption 12 For i = 1; :::; N , the matrices 1
T
X 0
iMwXi and 1

T
X 0
iMfXi are nonsingular,

and their inverses have �nite second-order moments.

This assumption of identifying bi and b is adopted from Pesaran (2006).

Let ~x0it be the t
th element of matrix ~Xi, i = 1; :::; N . To identify k0, we need a modi�ed

version of Assumptions 4, 5, 6:

Assumption 13 For i = 1; :::; N , the matrices (1=j)
Pj

t=1 ~xit~x
0
it, (1=j)

PT
t=T�j+1 ~xit~x

0
it,

(1=j)
Pk0

t=k0�j+1 ~xit~x
0
it and (1=j)

Pk0+j
t=k0+1

~xit~x
0
it are stochastically bounded and have minimum

eigenvalues bounded away from zero in probability for all large j. In addition, for each i,

(1=T )
PT

t=1 ~xit~x
0
it converges in probability to a nonrandom and positive de�nite matrix as

T !1.

Assumption 14 For any positive �nite integer s, the matrices 1
N

PN
i=1

Pk0
t=k0�s+1 ~xit~x

0
it and

1
N

PN
i=1

Pk0+s
t=k0+1

~xit~x
0
it, i = 1; :::; N , are stochastically bounded, with minimum eigenvalues

bounded away from zero in probability for large N . In addition, for each t, (1=N)
PN

i=1 ~xit~x
0
it

is stochastically bounded as N !1.

13



Assumption 15 f�i; i = 1; :::; Ng are drawn independently of the process of f~xit; i = 1; :::; Ng.

Alternatively, under a random coe¢ cient model, we have a slightly di¤erent version of

Assumption 7.

Assumption 16 For i = 1; :::; N ,

bi = b+ vb;i; vb;i � IID(0;�b);

where b = (�0; �0)0, vb;i =
�
v�;i
v�;i

�
and �b =

�
�� 0
0 ��

�
for i = 1; 2; :::; N , where kbk <1,

k�bk <1, and the random deviations vb;i are independent of 
j; �j; "jt; and vjt for all i; j

and t.

Under Assumption 16, bi is independent of �j, implying that asN !1, �C1 =
PN

i=1 �iC1i
p!

E(C1i) = (
 + ��; �) and �C2
p! E(C2i) = (
 + �(� + R�); �). In this case, rank condition

Assumption 11 requires non-zero means for 
 and � in Assumption 10 when N is large. Sim-

ilarly in Model 1, When f�i; i = 1; :::; Ng are considered as random, as part of Assumption
16, Assumption 15 becomes redundant.

After the transformation (20), it can be shown that the change point estimator ~k is still

consistent in a linear model with a multifactor error structure (5), i.e., ~k � k0 = op(1).

Theorem 2 Under Assumptions 1-3, 8-15 (or 16), lim(N;T )!1 P (~k = k0) = 1.

Theorem 2 can be proved similarly to Theorem 1, see the Appendix.

Given the change point estimator ~k, the CCE estimator of the slope coe¢ cients can be

written as
~bi = ~bi(~k) = [~Xi(~k)0 ~Xi(~k)]�1 ~Xi(~k)0 ~Yi; i = 1; :::; N:

With the consistency of ~k, the asymptotics of ~bi can be established.

Proposition 1 Under Assumptions 1-3, 8-15, and
p
T=N ! 0 as (N; T )!1; for each i,

p
T (~bi � bi)

d! N
�
0;��1~X;i�~X~";i�

�1
~X;i

�
where

�~X;i = plimT!1
1

T
~X00i ~X0i and �~X~";i = plimT!1

1

T
~X00i�";i ~X0i, i = 1; :::; N:
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An additional condition
p
T=N ! 0 as (N; T ) ! 1 is required here, due to the fact

that MwF
i is included in ~"
0
i = MwF
i + ~"i, the error term of transformed model (21)

using cross-sectional averages. This yields an extra term in
p
T (~bi � bi) whose order is

Op(
p
T=N)+Op(1=

p
N) which is asymptotically ignorable when

p
T=N ! 0 as (N; T )!1.

See the Supplementary Appendix.

As discussed above, Assumption 2 allows that T can grow faster than N , i.e., T = O(N )

with  � 1. Here, the relative speed of N and T ,
p
T=N ! 0 as (N; T ) ! 1 imposes an

upper bound on  , i.e.,  < 2. Therefore, in the case of T = O(N ) with 1 �  < 2, both

Assumption 2 and
p
T=N ! 0 as (N; T )!1 required by Proposition 1 are satis�ed.

As discussed by Pesaran (2006), a consistent Newey-West type estimator of �~X~";i can be

obtained using the transformed data,

~�~X~";i =
~�i0 +

!P
j=1

(1� j

! + 1
)(~�ij + ~�

0
ij);

~�ij =
1

T

!P
t=j+1

~eit~ei;t�jXit(k̂)Xit(k̂)0;

where ! is the window size. ~eit is the tth element of ~ei = ~Yi � ~Xi(~k)~bi and ~Xit(~k) is the tth

row of ~Xi(~k). Since �~X;i can be consistently estimated by
1
T
~Xi(~k)0 ~Xi(~k). Thus, a consistent

estimator of ��1~X;i�~X~";i�
�1
~X;i is given by�
1

T
~Xi(~k)0 ~Xi(~k)

��1
~�~X~";i

�
1

T
~Xi(~k)0 ~Xi(~k)

��1
: (25)

Since ~bi(~k) has the same limiting distribution as ~bi(k0), parameters bi, i = 1; :::; N , in model

(5) can be inferred as if k0 were known.

The mean group estimator with a common break can be de�ned similarly:

~bMG =
1

N

NX
i=1

~bi =
1

N

NX
i=1

[ ~Xi(~k)0 ~Xi(~k)]�1 ~Xi(~k)0 ~Yi: (26)

Proposition 2 Under the assumptions 1-3, 8-14, 16,

p
N(~bMG � b)

d! N (0;�b) :

As in Pesaran (2006), �b can be consistently estimated by

1

N � 1

NX
i=1

(~bi � ~bMG)(~bi � ~bMG)
0:
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For detailed proofs of Propositions 1 and 2, see the Supplementary Appendix. Unlike

Pesaran (2006), an additional step is needed, that of estimating k0. As shown in the proposi-

tions above, with the consistency of ~k, the convergence rate of ~k is not required for deriving

the asymptotic distributions of ~bi, for i = 1; :::; N; and ~bMG.

5 Multiple Common Break Points

When multiple common break points, k(1)0 ; :::; k
(Bk)
0 , occur in the slopes, there are Bk + 1

regimes for each individual:

yit =

8>>><>>>:
x0it�i + eit; t = 1; :::; k

(1)
0 ;

x0it�i + z0it�1i + eit; t = k
(1)
0 + 1; :::; k

(2)
0 ;

...
...

x0it�i + z0it�Bk;i + eit; t = k
(Bk)
0 + 1; :::; T;

(27)

for i = 1; :::; N .

Estimation of multiple break points has been discussed by Bai (1997b) and Chong (1995)

in a mean-shift model, Bai and Perron (1998) in linear regression models and Bai (2010) in a

panel mean-shift model. To deal with this issue in model (27), we can follow the sequential

or one at-a-time approach discussed by Bai (1997b, 2010). The number of common breaks,

Bk, is assumed known.14 The idea of the sequential approach is to estimate break points one

by one. For example, if Bk = 3, the estimation of k
(1)
0 ; k

(2)
0 and k(3)0 can be completed in 3

steps. In the �rst step, one break point is assumed as in Model 1 (or Model 2) above, and can

be estimated by (11) (or (24)), denoted by k̂(1) (or ~k(1)). In the second step, in each of the

two sub-panels split by k̂(1) (or ~k(1)), the same procedure (11) (or (24)) is applied. Thus, two

single break estimators are obtained in these two sub-panels. k̂(2) (or ~k(2)) is de�ned as the

one associated with a larger reduction in the sum of squared residuals. Similarly, k̂(1) and k̂(2)

(or ~k(1) and ~k(2)) yield 3 sub-panels. In the third step, in each of these 3 sub-panels, one break

point can be estimated as in Section 3 (or 4). Among these 3 break estimators, we choose

the one associated with the largest reduction of sum of squared residuals, denoted as k̂(3) (or
~k(3)). As suggested by Bai (2010), it can be shown that after rearranging (k̂(1); k̂(2); k̂(3)) (or

14In a time series regression model, a supFT (l+1jl) test is proposed by Bai and Perron (1998) to determine
the number of structure breaks. Bai and Perron (2003) report the simulation results of this test and compare
it with other tests based on information criteria. A panel version of the supFT (l + 1jl) test can be applied
to determine the number of common breaks in our setup.
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(~k(1); ~k(2); ~k(3))) in temporal order, (k̂(1); k̂(2); k̂(3)) (or (~k(1); ~k(2); ~k(3)) in Model 2) is consistent

for (k(1)0 ; k
(2)
0 ; k

(3)
0 ) as long as the assumptions listed in Section 3 (or 4) hold in each of the

sub-panels.

Once the consistent estimators of (k(1)0 ; :::; k
(Bk)
0 ) are obtained, the parameters �i; �1i; :::; �Bk;i,

i = 1; :::; N , can be estimated by least squares as in (10) (or (23)). Thus, their mean-group

estimators can be obtained similarly.

6 Monte Carlo Simulations

This section employs Monte Carlo simulations to examine the consistency of the estimated

break points k̂ and ~k summarized in Theorems 1 and 2. Since the CCE estimators in Model

2 have the same asymptotic distributions as if the true common breaks were known, their

asymptotic properties are not examined here. Two di¤erent designs are used for Models 1

and 2, respectively. In Model 1, there are no common correlated e¤ects in the errors and

regressors, so least squares can be run for each individual series. While in Model 2, the

regressors and errors are correlated due to common correlated e¤ects ft. A transformation,

using cross-sectional averages of the dependent variable and regressors proposed by Pesaran

(2006), is needed to remove such e¤ects asymptotically.

In the following experiments, the focus is on the histograms of k̂ and ~k in setups with

di¤erent combinations of (N; T ).

6.1 Model 1: No common correlated e¤ects

The data generating process of Model 1 is modi�ed from that in Pesaran (2004, p.24):

yit = �i + �i(k0)yi;t�1 + eit; i = 1; :::; N ; t = 1; :::; T ;

eit = 
ift + "it:

Here we set 
i = 0, so there is no cross-sectional dependence in the errors. Instead, in this

dynamic heterogeneous panel model, there is a common break k0 = 0:5T in the slopes �i,

for i = 1; :::; N , i.e.,

�i(k0) =

�
�1i; t = 1; :::; k0;
�2i = �1i + �i; t = k0 + 1; :::; T;
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where �i is the jump in the slope for each series. We assume �1i � iidU(0; 0:8) and �i �
iidU(0; 0:2). We set �i = �i(1��1i); �i = "0i+�i where "0i � iidN(0; 1) and �i � iidN(1; 2).

In addition, we assume yi;0 � iidN(0; 1) and "it � iidN(0; �2i ); with �
2
i � �22=2.

In (11), for any possible change point k = 1; :::; T � 1, the estimated change point k̂ is
the one that minimizes the sum of N individual sum of squared residuals. 1000 replications

are performed to obtain the histogram of k̂ for each setup.

Figure 1 reports the histograms of k̂ for T = 20 and N = 1; 10; 50; 200. It shows that the

distribution of k̂ shrinks with N . The frequency of choosing the true value k0 increases from

8% to 58% when N increases from 1 to 200. In case T = 50, as Figure 2 shows, the frequency

of choosing the true value k0 improves to almost 90% for N = 200. This �nding supports

Theorem 1, con�rming that multiple individual series provide additional information on k0,

and that k̂ converges to k0 as the number of series goes to in�nity.

To consider the case where there is no structural break in slopes in some series, we set

�i = 0 in [N=4] series, implying that �N increases with N at a rate of O(N3=4). Figure 3

reports the histograms of k̂ for this case with T = 50. Similar to Figure 2, the pattern that

k̂ converges to k0 as N increases remains. However, the frequency of choosing the true value

k0 is signi�cantly smaller than that in Figure 2. For example, for N = 50, the frequency of

choosing the true value k0 drops from 44% in Figure 2 to 34% in Figure 3. This suggests

that for the accuracy of the estimated change point, allowing for no break in some series is

equivalent to reducing the number of series or the magnitude of break �N .

6.2 Model 2: Common correlated e¤ects

The data generating process for Model 2 is as follows:

yit = �i + �i(k0)xi;t + eit; i = 1; :::; N ; t = 1; :::; T

eit = 
1ift + "it;

where �i � iidN(1; 1) and 
1i � iidN(1; 0:2). The idiosyncratic errors are generated as

"it � iidN(0; �2i ) and �
2
i � iidU(0:5; 1:5). There is a common break in the individual slopes:

�i(k0) =

�
�1i; t = 1; :::; k0;
�2i = �1i + �i; t = k0 + 1; :::; T;

k0 = 0:5T;

where �1i = 1 + �i; �i � iidN(0; 0:04) and �i � iidN(0; 0:04).
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Unlike Model 1, the error eit and the regressor xit contain the common correlated e¤ect

ft:

xit = ai + 
2ift + vit;

where ai � iidN(0:5; 0:5), 
2i � iidN(0:5; 0:5) and vit � iidN(0; 1 � �2vi); with �vi = 0:5.

The factor ft is generated by the stationary process:

ft = �fft�1 + vft; t = �49; :::; 0; 1; :::; T ;

�f = 0:5; vft � iidN(0; 1� �2f ); f�50 = 0:

The correlation between xit and eit renders OLS inconsistent in the individual regressions.

Thus, transformation (20) using cross-sectional averages of yit and xit is needed to remove

ft before conducting least squares estimation of k0.

The setup above is a simpli�ed version of the design in Pesaran (2006). First, as in model

(4), the observed factors are omitted for simplicity. Second, the number of regressors and

unobservable factors are reduced to 1, respectively. Third, the correlation structures in vit

and "it are removed. The only new feature of this model is that there is a common break at

k0, speci�ed as 0:5T .

The �rst row of Figure 4 presents the histograms of the estimated change point ~k for

T = 20. It replicates the pattern in Figure 1, showing that after the transformation, the

frequency of choosing the true value k0 increases signi�cantly with N . Figure 4 also reports,

in the second row, the histograms of the estimated change point k̂ without conducting

transformation (20). It indicates that in the presence of common correlated e¤ects, cross-

sectional information using multiple series fails to improve the accuracy of the estimated

change point.

Figures 5 and 6 report the histograms of ~k and k̂ for T = 50 and 200, respectively.

The same pattern emerges, suggesting that the distribution of ~k shrinks to k0 as N ! 1.
Di¤erent from Figure 4, the frequency of k̂, the estimator without conducting transformation

(20), choosing the true break date increases with N in Figure 6 when T is large, although

not at a rate as high as that of ~k using the transformed data. Whether jk̂ � k0j shrinks to
0 or not as (N; T ) ! 1 depends upon the correlation between xit and eit. In Figure 7, we

increase this correlation by changing the distribution of 
1i from N(1; 0:2) to N(2; 0:2). In

this case, the cross-sectional information using multiple series fails to improve the accuracy
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 Figure 1: Histograms of 𝑘� in Model 1: T =20 
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Note: The DGP is similar to Pesaran (2004, p.24):  

𝑦𝑖𝑖 = 𝛼𝑖 + 𝛽𝑖(𝑘0)𝑦𝑖,𝑡−1 + 𝑒𝑖𝑖 , 𝑖 = 1, … ,𝑁; 𝑡 = 1, … ,𝑇,  

where 𝛽𝑖(𝑘0) = � 𝛽1𝑖 ,              𝑡 = 1, … , 𝑘0,
𝛽2𝑖 = 𝛽1𝑖 + 𝛿𝑖 , 𝑡 = 𝑘0 + 1, … ,𝑇. 

𝑘0 = 0.5𝑇 = 10, 𝑒𝑖𝑖 = 𝛾𝑖𝑓𝑡 + 𝜀𝑖𝑖, 𝛾𝑖 = 0 and 𝛼𝑖 = 𝜇𝑖(1 − 𝛽1𝑖), 𝜇𝑖 = 𝜀0𝑖 + 𝜂𝑖. 

Values used: 𝛽1𝑖~𝑖𝑖𝑖𝑖(0, 0.8), 𝛿𝑖~𝑖𝑖𝑖𝑖(0, 0.2), 𝜀𝑖𝑖~𝑖𝑖𝑖𝑖(0,𝜎𝑖2), 𝜎𝑖2~𝜒22/2,  

𝜀0𝑖~𝑖𝑖𝑖𝑖(0, 1) and 𝜂𝑖~𝑖𝑖𝑖𝑖(1, 2), 𝑦𝑖,0~𝑖𝑖𝑖𝑖(0, 1), 𝑓𝑡~𝑖𝑖𝑖𝑖(0, 1).  

These variables are mutually independent.  

The replication number is 1000.  
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Figure 2: Histograms of 𝑘� in Model 1: T =50 
 

  

N =1 N =10 

  

N =50 N =200 

 

Note: The DGP is the same as in Figure 1. 𝑘0 = 0.5𝑇 = 25. 
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Figure 3: Histograms of 𝑘� in Model 1 with No Break in Some Series: T =50 
 

  

N =1 N =10 

  

N =50 N =200 

 

Note: The DGP is the same as in Figure 1 except that there is no break in [N/4] series. 𝑘0 = 0.5𝑇 = 25.  
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Figure 4: Histograms of 𝑘�  and 𝑘� in Model 2: T =20 
 N =10 N =50 N =200 
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Note: The DGP is constructed by simplifying the design of Pesaran (2006):  

𝑦𝑖𝑖 = 𝛼𝑖 + 𝛽𝑖(𝑘0)𝑥𝑖,𝑡 + 𝑒𝑖𝑖 , 𝑖 = 1, … ,𝑁; 𝑡 = 1, … ,𝑇. 𝛼𝑖~𝑖𝑖𝑖𝑖(1, 1), 𝛽𝑖(𝑘0) = � 𝛽1𝑖 ,              𝑡 = 1, … , 𝑘0,
𝛽2𝑖 = 𝛽1𝑖 + 𝛿𝑖, 𝑡 = 𝑘0 + 1, … ,𝑇.   𝑘0 = 0.5𝑇 = 10, 𝛽1𝑖~𝑖𝑖𝑖𝑖(1, 0.04), 𝛿𝑖~𝑖𝑖𝑖𝑖(0, 0.04). 

𝑒𝑖𝑖 = 𝛾𝑖1𝑓𝑡 + 𝜀𝑖𝑖 , 𝑥𝑖,𝑡 = 𝑎𝑖 + 𝛾𝑖2𝑓𝑡 + 𝑣𝑖𝑖; 𝑓𝑡 = 𝜌𝑓𝑓𝑡−1 + 𝑣𝑓𝑓 , 𝑡 = −49, … ,0,1, …𝑇, 𝑣𝑓𝑓~𝑖𝑖𝑖𝑖(0, 1 − 𝜌𝑓2), 𝜌𝑓 = 0.5, 𝑓−50 = 0. 𝜀𝑖𝑖~𝑖𝑖𝑖𝑖(0,𝜎𝑖2), 𝜎𝑖2~𝑖𝑖𝑖𝑖(0.5, 1.5),  

𝛾𝑖1~𝑖𝑖𝑖𝑖(1, 0.2), 𝛾𝑖2~𝑖𝑖𝑖𝑖(0.5, 0.5), 𝑎𝑖~𝑖𝑖𝑖𝑖(0.5, 0.5), 𝑣𝑖𝑖~𝑖𝑖𝑖𝑖(0, 1 − 𝜌𝑣𝑣2 ), 𝜌𝑣𝑣 = 0.5. These variables are mutually independent. The replication number is 1000.  
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Figure 5: Histograms of 𝑘�  and 𝑘� in Model 2: T =50 
 N =10 N =50 N =200 
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Note: The DGP is the same as in Figure 4. 𝑘0 = 0.5𝑇 = 25. 
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Figure 6: Histograms of 𝑘�  and 𝑘� in Model 2: T =200 
 N =10 N =50 N =200 
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Note: The DGP is the same as in Figure 4. 𝑘0 = 0.5𝑇 = 100. 
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Figure 7: Histograms of 𝑘�  and 𝑘� in Model 2 (with increased the correlation between 𝑥𝑖𝑖 and 𝑒𝑖𝑖): T =200  
 N =10 N =50 N =200 
 
 
 
 
 
𝑘�  

   

 
 
 
 
 
 
𝑘�  

   

Note: The DGP is the same as in Figure 4, except that the correlation between 𝑥𝑖𝑖  and 𝑒𝑖𝑖 increases by changing the distribution of 𝛾𝑖1 from 𝑖𝑖𝑖𝑖(1, 0.2) to 𝑖𝑖𝑖𝑖(2, 0.2). 

     𝑘0 = 0.5𝑇 = 100. 
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of the estimated change point k̂. This is consistent with the �ndings of Kim (2011).15

7 Conclusion

The recent literature on panel data models with large time dimension assumes that the

slopes are constant over time. However, due to global policy or technological shocks, slope

parameters are likely to fall into di¤erent regimes over a longer time span. This paper

tackles both structural breaks and cross-sectional dependence by extending Pesaran�s (2006)

framework of heterogeneous panels to the situation of unknown common breaks in the slopes.

The least squares method proposed by Bai (1997a, 2010) is applied to estimate the common

change points. This method is married to the CCE estimators proposed by Pesaran (2006)

in this setup. Di¤erent from the time series change point models, in which the estimated

change point is inconsistent, our paper establishes its consistency in a general panel data

setup. The properties of the CCE estimators of the slopes at estimated points are also

examined. We �nd that the CCE estimators have the same asymptotic distributions as if

the true change points were known.16

In this paper, we assume that the rank condition is satis�ed. In case of de�cient rank,

Westerlund and Urbain (2013) show that the CCE estimators could be inconsistent when

factor loadings in the error term and in the explanatory variables are correlated. In this case,

the iterative principal component approach, proposed by Bai (2009) in homogeneous panels

and extended by Song (2012) to dynamic heterogeneous panels, can be an alternative, which

allows for correlated and zero-mean factor loadings. However, the issue of structural breaks

in this setup is beyond the scope of this paper.

15Experiments with di¤erent values of parameters and distributions are conducted and similar histograms
are obtained. Results are not included here to save space.
16Since the convergence rate of the change point estimator is not required to derive the asymptotic distrib-

utions of the CCE estimators of slopes and their cross-sectional mean, we leave the derivations of convergence
rate and asymptotic distribution of the change point estimator in heterogeneous panels for future research.
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Appendix: Mathematical Proofs

Since the panel data model (6) considered here includes the time series model in Bai

(1997a) as a special case of N = 1, it can be shown similarly that k̂ � k0 = Op(1). In

the proofs that follow, we assume k̂ � k0 is stochastically bounded. With more information

along the cross-sectional dimension under the common break assumption, we further show

that k̂ � k0
p! 0 as (N; T )!1.

For i = 1; :::; N , let SSRi be the sum of squared residuals of regressing Yi on Xi in case

there is no break, i.e., Z2i(k) = 0T�q. Using the identity

SSRi � SSRi(k) = [Yi �Xi�̂i(k)� Z2i(k)�̂i(k)]
0[Yi �Xi�̂i(k)� Z2i(k)�̂i(k)]

�[Yi �Xi�̂i(k)]
0[Yi �Xi�̂i(k)]

= �̂i(k)
0[Z2i(k)

0MiZ2i(k)]�̂i(k)

with Mi = I �Xi(X
0
iXi)

�1X 0
i,

k̂ = arg min
1�k�T�1

NX
i=1

�iSSRi(k) = arg max
1�k�T�1

NX
i=1

�iSVi(k) = arg max
1�k�T�1

NX
i=1

�i[SVi(k)�SVi(k0)];

where SVi(k) = �̂i(k)
0[Z2i(k)

0MiZ2i(k)]�̂i(k). Note that SVi(k0) = �̂i(k0)
0 [Z 00iMiZ0i] �̂i(k0) is

not a function of k. For simplicity, we assume �i = 1=N , i = 1; :::; N .17

To prove Theorem 1,
PN

i=1[SVi(k) � SVi(k0)] can be decomposed into a deterministic

part and a stochastic one. Partitioned regression gives

�̂i(k) = [Z2i(k)
0MiZ2i(k)]

�1
Z2i(k)

0MiYi, i = 1; :::; N:

Substituting Yi = Xi�i + Z0i�i + "i into the equation above, we obtain

�̂i(k) = [Z2i(k)
0MiZ2i(k)]

�1
Z2i(k)

0MiZ0i�i + [Z2i(k)
0MiZ2i(k)]

�1
Z2i(k)

0Mi"i

and �̂i(k0) = �i + (Z
0
0iMiZ0i)

�1 Z0i
0Mi"i:

17Since the weights �i, i = 1; :::; N , are used to balance di¤erent variances across series, we can always
employ �i = 1=N , i = 1; :::; N , by using di¤erent notations for Xi and �2i .
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To simplify notation, k is suppressed in �̂i(k) and Z2i(k) when no confusion arises. Since

SVi(k) = �̂
0
i(Z

0
2iMiZ2i)�̂i = �0i(Z

0
0iMiZ2i)(Z

0
2iMiZ2i)

�1(Z 02iMiZ0i)�i

+ 2�0i(Z
0
0iMiZ2i)(Z

0
2iMiZ2i)

�1Z 02iMi"i + "0iMiZ2i(Z
0
2iMiZ2i)

�1Z 02iMi"i;

it follows that

SVi(k)� SVi(k0) = ��0i[(Z 00iMiZ0i)� (Z 00iMiZ2i)(Z
0
2iMiZ2i)

�1(Z 02iMiZ0i)]�i (28)

+2�0i(Z
0
0iMiZ2i)(Z

0
2iMiZ2i)

�1Z 02iMi"i � 2�0iZ 00iMi"i (29)

+"0iMiZ2i(Z
0
2iMiZ2i)

�1Z 02iMi"i � "0iMiZ0i(Z
0
0iMiZ0i)

�1Z 00iMi"i:(30)

The deterministic part is denoted by

J1i(k) = �0i[(Z
0
0iMiZ0i)� (Z 00iMiZ2i)(Z

0
2iMiZ2i)

�1(Z 02iMiZ0i)]�i; (31)

and the stochastic part is denoted by

J2i(k) = 2�0i(Z
0
0iMiZ2i)(Z

0
2iMiZ2i)

�1Z 02iMi"i � 2�0iZ 00iMi"i

+"0iMiZ2i(Z
0
2iMiZ2i)

�1Z 02iMi"i � "0iMiZ0i(Z
0
0iMiZ0i)

�1Z 00iMi"i:

Thus SVi(k)� SVi(k0) = �J1i(k) + J2i(k) and

k̂ = arg max
1�k�T�1

NX
i=1

[SVi(k)� SVi(k0)] = arg max
1�k�T�1

"
�

NX
i=1

J1i(k) +
NX
i=1

J2i(k)

#
:

De�ne

X�i = X2i �X0i = (0; � � � ; 0; xi;k+1; � � � ; xi;k0 ; 0; � � � ; 0)
0 ; for k < k0;

X�i = �(X2i �X0i) = (0; � � � ; 0; xi;k0+1; � � � ; xi;k; 0; � � � ; 0)
0 ; for k � k0:

Z�i can be de�ned similarly.

For a �nite large number Ck and arbitrarily small positive number a < � 0, de�ne the set

K(Ck) = fk : 1 � jk � k0j < Ck; aT < k < (1� a)Tg. Since k̂�k0 is stochastically bounded,

we only consider the values of k that belong to set K(Ck).

Let �1(k) be the minimum eigenvalue of 1N
PN

i=1R
0(X 0

�iX�i)R. De�ne �1 = mink2K(Ck) �1(k).

Under Assumption 5, �1(k) > 0 and �1 > 0.
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Lemma 1 Under Assumptions 1-7, for all large N and T , with probability tending to 1,

inf
K(Ck)

NX
i=1

J1i(k) � �1�N :

This lemma is similar to Lemma A.2 in Bai (1997a). The proof can be found in the

Supplementary Appendix.

Lemma 2 Under Assumptions 1-7, uniformly on K(Ck),

(i)
PN

i=1 �
0
iZ

0
�i"i = Op(

p
�N);

(ii) 1p
T

PN
i=1 �

0
iZ

0
�iXi(

X0
iXi
T
)�1

X0
i"ip
T
= Op(

q
�N
T
);

(iii) 1p
T

PN
i=1 �

0
i(Z

0
�iMiZ2i)(

Z02iMiZ2i
T

)�1
Z02iMi"ip

T
= Op(

q
�N
T
);

(iv) 1
T

PN
i=1 "

0
iMiZ�i(

Z02iMiZ2i
T

)�1Z 0�iMi"i = Op(
N
T
);

(v) 1
T

PN
i=1 "

0
iMiZ0i(

Z02iMiZ2i
T

)�1Z 0�iMi"i = Op(
N
T
) +Op(

q
N
T
);

(vi)
PN

i=1
"0iMiZ0ip

T

h
(
Z02iMiZ2i

T
)�1 � (Z

0
0iMiZ0i
T

)�1
i
Z00iMi"ip

T
= Op(

N
T
):

Proof of Lemma 2. (i) Under Assumption 3, for large N ,

V ar

 
NX
i=1

�0iZ
0
�i"i

!
=

NX
i=1

�0iZ
0
�i�";iZ�i�i:

It can be shown equal to O(�N)under Assumptions 4 to 7, similar to the proof of Lemma 1

in the Supplementary Appendix, implying
PN

i=1 �
0
iZ

0
�i"i = Op(

p
�N) on K(Ck).

The proofs of Lemma 2(ii)-(vi) are included in the Supplementary Appendix.

With these lemmas, we are ready to prove Theorem 1.

Proof of Theorem 1. To prove lim(N;T )!1 P (k̂ = k0) = 1, it is equivalent to showing

that for any given � > 0, for both large T and N , P (jk̂ � k0j � 1) < �. It is su¢ cient to

show that P
�
supK(Ck)

PN
i=1 [SVi(k)� SVi(k0)] � 0

�
< �; or

P

 
sup
K(Ck)

�����
NX
i=1

J2i(k)

����� � inf
K(Ck)

NX
i=1

J1i(k)

!
< �:

By Lemma 1, it su¢ ces to show P (supK(Ck)
1
�N

���PN
i=1 J2i(k)

��� � �1) < �:For any k 2 K(Ck),
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�����
NX
i=1

J2i(k)

����� �
�����
NX
i=1

�
2�0i(Z

0
0iMiZ2i)(Z

0
2iMiZ2i)

�1Z 02iMi"i � 2�0iZ 00iMi"i
������

+

�����
NX
i=1

�
"0iMiZ2i(Z

0
2iMiZ2i)

�1Z 02iMi"i � "0iMiZ0i(Z
0
0iMiZ0i)

�1Z 00iMi"i
������ :

Consider the �rst term, Z2i = Z0i + Z�i for k < k0;�����
NX
i=1

�
2�0i(Z

0
0iMiZ2i)(Z

0
2iMiZ2i)

�1Z 02iMi"i � 2�0iZ 00iMi"i
������

=

�����
NX
i=1

�
2�0iZ

0
�iMi"i � 2�0i(Z 0�iMiZ2i)(Z

0
2iMiZ2i)

�1Z 02iMi"i
������

� 2
�����
NX
i=1

�0iZ
0
�i"i

�����+ 2p
T

�����
NX
i=1

�0iZ
0
�iXi(

X 0
iXi

T
)�1

X 0
i"ip
T

�����
+

2p
T

�����
NX
i=1

�0i

�
(Z 0�iMiZ2i)(

Z 02iMiZ2i
T

)�1
Z 02iMi"ip

T

������ :
By (i), (ii) and (iii) of Lemma 2, the �rst term�����

NX
i=1

�
2�0i(Z

0
0iMiZ2i)(Z

0
2iMiZ2i)

�1Z 02iMi"i � 2�0iZ 00iMi"i
������ = Op(

p
�N). (32)

Now consider the second term�����
NX
i=1

�
"0iMiZ2i(Z

0
2iMiZ2i)

�1Z 02iMi"i � "0iMiZ0i(Z
0
0iMiZ0i)

�1Z 00iMi"i
������

� 1

T

�����
NX
i=1

"0iMiZ�i(
Z 02iMiZ2i

T
)�1Z 0�iMi"i

�����+ 2 1pT
�����
NX
i=1

"0iMiZ0ip
T

(
Z 02iMiZ2i

T
)�1Z 0�iMi"i

�����
+

�����
NX
i=1

"0iMiZ0ip
T

�
(
Z 02iMiZ2i

T
)�1 � (Z

0
0iMiZ0i
T

)�1
�
Z 00iMi"ip

T

����� :
Similarly, by (iv), (v) and (vi) of Lemma 2, the second term�����

NX
i=1

�
"0iMiZ2i(Z

0
2iMiZ2i)

�1Z 02iMi"i � "0iMiZ0i(Z
0
0iMiZ0i)

�1Z 00iMi"i
������ = Op(

N

T
) +Op(

r
N

T
):

(33)

Combining (32) and (33), we obtain

1

�N

�����
NX
i=1

J2i(k)

����� = 1

�N
[Op(

p
�N)+Op(

N

T
)+Op(

r
N

T
)] = Op(

1p
�N
)+

1

�N
[Op(

N

T
)+Op(

r
N

T
)]:

Under Assumption 2, 1
�N

���PN
i=1 J2i(k)

��� vanishes for any k 2 K(Ck), so does its maximum.
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Compared with (8) of Model 1, (21) of Model 2 has the same form using transformed

data f ~Yi; ~Xi; i = 1; :::; Ng, except for the additional term MwF
i. The focus of the proof of

Theorem 2 is on showing that MwF
i can be ignored asymptotically as (N; T )!1.

For i = 1; :::; N , let]SSRi be the sum of squared residuals of regressing ~Yi on ~Xi alone. Us-

ing the identity]SSRi�]SSRi(k) = ~�i(k)
0[ ~Z2i(k)

0 ~Mi
~Z2i(k)]~�i(k) with ~Mi = I� ~Xi( ~X

0
i
~Xi)

�1 ~X 0
i,

we obtain

~k = arg min
1�k�T�1

NX
i=1

�i]SSRi(k) = arg max
1�k�T�1

NX
i=1

�igSV i(k) = arg max
1�k�T�1

NX
i=1

�i[gSV i(k)�gSV i(k0)]

wheregSV i(k) = ~�i(k)
0[ ~Z2i(k)

0 ~Mi
~Z2i(k)]~�i(k). Assume �i = 1=N , i = 1; :::; N for simplicity.

The rest proof proceeds in the same way as that of Theorem 1 using the new notations with

"~".

Partitioned regression gives

~�i(k) =
h
~Z2i(k)

0 ~Mi
~Z2i(k)

i�1
~Z2i(k)

0 ~Mi
~Yi:

Substituting ~Yi = ~Xi�i + ~Z0i�i + ~"
0
i into the equation above, we obtain

~�i(k) =
h
~Z2i(k)

0 ~Mi
~Z2i(k)

i�1
~Z2i(k)

0 ~Mi
~Z0i�i +

h
~Z2i(k)

0 ~Mi
~Z2i(k)

i�1
~Z2i(k)

0 ~Mi~"
0
i

and ~�i(k0) = �i +
�
~Z 00i
~Mi
~Z0i

��1
~Z0i

0 ~Mi~"
0
i : Note that there is an additional term MwF
i in

~"0i =MwF
i + ~"i.

As in the proof of Theorem 1, we suppress k in ~�i(k) and ~Z2i(k) for simplicity. Since

gSV i(k) = ~�
0
i( ~Z

0
2i
~Mi
~Z2i)~�i

= �0i(
~Z 00i
~Mi
~Z2i)( ~Z

0
2i
~Mi
~Z2i)

�1( ~Z2i
0 ~Mi

~Z0i)�i

+2�0i(
~Z 00i
~Mi
~Z2i)( ~Z

0
2i
~Mi
~Z2i)

�1 ~Z 02i
~Mi~"

0
i + ~"

00
i
~Mi
~Z2i( ~Z

0
2i
~Mi
~Z2i)

�1 ~Z 02i
~Mi~"

0
i ;

andgSV i(k0) = �0i(
~Z0i

0 ~Mi
~Z0i)�i + 2�

0
i
~Z 00i
~Mi~"

0
i + ~"

00
i
~Mi
~Z0i( ~Z

0
0i
~Mi
~Z0i)

�1 ~Z 00i
~Mi~"

0
i , it follows that

gSV i(k)�gSV i(k0) = �0i[(
~Z 00i
~Mi
~Z2i)( ~Z

0
2i
~Mi
~Z2i)

�1( ~Z2i
0 ~Mi

~Z0i)� ( ~Z0i0 ~Mi
~Z0i)]�i

+2�0i(
~Z 00i
~Mi
~Z2i)( ~Z

0
2i
~Mi
~Z2i)

�1 ~Z 02i
~Mi~"

0
i � 2�0i ~Z 00i ~Mi~"

0
i

+~"00i
~Mi
~Z2i( ~Z

0
2i
~Mi
~Z2i)

�1 ~Z 02i
~Mi~"

0
i � ~"00i ~Mi

~Z0i( ~Z
0
0i
~Mi
~Z0i)

�1 ~Z 00i
~Mi~"

0
i :

32



De�ne

~J1i(k) = �0i[( ~Z0i
0 ~Mi

~Z0i)� ( ~Z 00i ~Mi
~Z2i)( ~Z

0
2i
~Mi
~Z2i)

�1( ~Z2i
0 ~Mi

~Z0i)]�i:

In addition, de�ne

~J2i(k) = 2�0i(
~Z 00i
~Mi
~Z2i)( ~Z

0
2i
~Mi
~Z2i)

�1 ~Z 02i
~Mi~"

0
i � 2�0i ~Z 00i ~Mi~"

0
i

+~"00i
~Mi
~Z2i( ~Z

0
2i
~Mi
~Z2i)

�1 ~Z 02i
~Mi~"

0
i � ~"00i ~Mi

~Z0i( ~Z
0
0i
~Mi
~Z0i)

�1 ~Z 00i
~Mi~"

0
i :

Thus,gSV i(k)�gSV i(k0) = � ~J1i(k) + ~J2i(k) and

~k = arg max
1�k�T�1

NX
i=1

[gSV i(k)�gSV i(k0)] = arg max
1�k�T�1

"
�

NX
i=1

~J1i(k) +
NX
i=1

~J2i(k)

#
:

For each i, i = 1; � � � ; N , de�ne ~Z�i = ~Z2i(k) � ~Z2i(k0) for k < k0 and ~Z2i(k0) � ~Z2i(k)

for k � k0: Since Z0i = X0iR and Z2i = X2iR, ~Z�i =MwZ�i =MwX�iR = ~X�iR.

As in the proof of Theorem 1, we assume that ~k� k0 is stochastically bounded, and only

consider the values of k belonging to the setK(Ck) = fk : 1 � jk � k0j < Ck; aT < k < (1� a)Tg.

Let ~�1(k) be the minimum eigenvalue of 1N
PN

i=1R
0( ~X 0

�i
~X�i)R. De�ne ~�1 = mink2K(Ck) ~�1(k).

Under Assumption 14, ~�1(k) > 0 and ~�1 > 0.

Lemma 3 Under Assumptions 1, 2, 8-15 (or 16), for all large N and T , with probability

tending to 1,

inf
K(Ck)

NX
i=1

~J1i(k) � ~�1�N :

Lemma 3 can be shown in the same way as Lemma 1 using the transformed data or the

"~" notation. See the Supplementary Appendix.

Di¤erent from Model 1, there is an extra term MwF
i in the error ~"
0
i , thus in ~J2i(k).

To examine the e¤ect of this extra term on the estimated ~k and ~bi, we introduce some new

matrix notation. Since xit = �0ift + vit in (3), we write

Xi
T�p

= F
T�m

�i
m�p

+ Vi
T�p

;
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where Vi = (vi1; � � � ; viT )0. Denote F0 = (0; � � � ; 0; fk0+1; � � � ; fT )0 and V0i = (0; � � � ; 0; vi;k0+1; � � � ; vi;T )0.

Thus,

X0i = (0; � � � ; 0; xi;k0+1; � � � ; xi;T )0 = (0; � � � ; 0;�0ifk0+1 + vi;k0+1; � � � ;�0ifT + vi;T )
0

= F0�i + V0i:

For the error term (18), denote �ut =
�
�"t +

PN
i=1 �iv

0
it�i

�vt

�
and

��ut(k0) =

8>><>>:
�
0
0

�
; t = 1; :::; k0;� PN

i=1 �iv
0
itR�i

0

�
; t = k0 + 1; :::; T:

Thus, �ut(k0) =
PN

i=1 �iuit(k0) = �ut +��ut(k0): Denote �U = (�u1; :::; �uT )
0 and

��U(k0) =

��
0
0

�
; � � � ;

�
0
0

�
;

� PN
i=1 �iv

0
i;k0+1

R�i
0

�
; � � � ;

� PN
i=1 �iv

0
i;TR�i

0

��0
:

Thus, stacking cross-sectional averages �wt = �C(k0)
0ft + �ut(k0), we obtain

�W
T�(p+1)

= ( �w1; :::; �wk0 ; �wk0+1; � � � ; �wT )0

= ( �C 01f1 + �u1; :::;
�C 01fk0 + �uk0 ;

�C 02fk0+1 + �uk0+1; � � � ; �C 02fT + �uT )0

= F �C1 + F0( �C2 � �C1) + �U +��U(k0):

Denote F
T�2m

= (F; F0), C
2m�(p+1)

= ( �C 01; (
�C2 � �C1)

0)0 and �U
T�(p+1)

=�U +��U(k0). Therefore,

�W = FC+ �U: (34)

With this notation, we obtain a lemma, which can be proved similarly to Lemmas 1, 2 and

3 in Pesaran (2006).

Lemma 4 Under Assumptions 1, 2, 8-15, uniformly on K(Ck),

(i) �ut = Op(
1p
N
); ��ut(k0) = Op(

1p
N
);

(ii) 1
T
�U0 �U = Op(

1
N
); 1

T
F0 �U = Op(

1p
NT
), 1

T
V 0
i F = Op(

1p
T
);

(iii) 1
T
V 0
i
�U = Op(

1
N
) +Op(

1p
NT
); 1

T
"0i
�U = Op(

1
N
) +Op(

1p
NT
), 1

T
V 0
0i
�U = Op(

1
N
) +Op(

1p
NT
);

(iv) 1
T
X 0
i
�U = Op(

1
N
) +Op(

1p
NT
); 1

T
X 0
0i
�U = Op(

1
N
) +Op(

1p
NT
):
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Lemma 5 Under Assumptions 1, 2, 8-15, uniformly on K(Ck),

(i) 1
T
F0F = Op(1);

1
T
F0F = Op(1);

(ii) 1
T
X 0
iF = Op(1);

1
T
Xi(k)0F = Op(1):

Proof of Lemma 5. (i) is obvious by Assumption 8.

(ii) SinceXi = F�i+Vi = (F; F0)(�
0
i; 0)

0+Vi, 1TX
0
iF can be written as (�0i; 0)( 1T F

0F)+ 1
T
V 0
i F.

By (i) and Lemma 4 (iv), 1
T
X 0
iF = Op(1). Similarly, 1TXi(k)

0F = Op(1):

With Lemmas 4 and 5, we are ready to establish the property of the T � m matrix

MwF
i, which will be frequently used in the derivations below. Denote

E
(p+1)�(p+1)

=
1

T
C0F0 �U+

1

T
�U0FC+

1

T
�U0 �U;

f(E)
(p+1)�(p+1)

=
1P
k=1

(�1)k+1[( 1
T
C0F0FC)�1E]k(

1

T
C0F0FC)�1:

By Lemma 5 (v), E = Op(
1
N
) + Op(

1p
NT
), thus f(E) = Op(

1
N
) + Op(

1p
NT
). In addition,

denote

D1
2m�m

= �Cf(E)C0F
0F

T
+ C[(C0

F0F
T
C)�1 + f(E)]

�U0F
T

(35)

and

D2
(p+1)�m

= �[(C0F
0F
T
C)�1 + f(E)](C0

F0F
T
+
�U0F
T
): (36)

Since C = O(1), F
0F
T
and F0F

T
are Op(1), f(E) = Op(

1
N
) +Op(

1p
NT
), and �U0F

T
= Op(

1p
NT
),

D1 = Op(1)[Op(
1

N
) +Op(

1p
NT

)]Op(1) +Op(1)[Op(1) +Op(
1

N
) +Op(

1p
NT

)]Op(
1p
NT

)

= Op(
1

N
) +Op(

1p
NT

):

Similarly,

D2 = [Op(1) +Op(
1

N
) +Op(

1p
NT

)][Op(1) +Op(
1p
NT

)] = Op(1):

Lemma 6 Under Assumptions 1, 2, 8-15, uniformly on K(Ck),

MwF
i = FD1
i + �UD2
i:
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By Lemma 4 (i) where each element of �U is Op(
1p
N
), each element of MwF
i is of order

Op(
1p
N
):

Proof of Lemma 6. Plugging in (34), we obtain

1

T
�W 0 �W =

1

T
C0F0FC+

1

T
C0F0 �U+

1

T
�U0FC+

1

T
�U0 �U =

1

T
C0F0FC+ E:

By Lemma 5 (i), 1
T
C0F0FC is Op(1). Since E = Op(

1
N
) + Op(

1p
NT
), it could be very small

when both N and T are large. By Horn and Johnson (1985, p.335)

(
1

T
C0F0FC)�1 � ( 1

T
�W 0 �W )�1 = (

1

T
C0F0FC)�1 � ( 1

T
C0F0FC+ E)�1

= (
1

T
C0F0FC)�1 � [I + ( 1

T
C0F0FC)�1E]�1(

1

T
C0F0FC)�1

=
1P
k=1

(�1)k+1[( 1
T
C0F0FC)�1E]k(

1

T
C0F0FC)�1 = f(E):

This yields

(
1

T
�W 0 �W )�1 = (

1

T
C0F0FC)�1 + f(E):

It follows that

MwF = [IT � �W (
1

T
�W 0 �W )�1

1

T
�W 0]F = [IT � (FC+ �U)[(

1

T
C0F0FC)�1 + f(E)]

1

T
(FC+ �U)0]F

= [IT � (FC)(C
0F0FC)�1(FC)0]F � (FC)ff(E)( 1

T
FC)0 + [(

1

T
C0F0FC)�1 + f(E)]

1

T
�U0gF

��U[( 1
T
C0F0FC)�1 + f(E)](

1

T
FC+

1

T
�U)0F;

As discussed in Pesaran (2006), MFC = IT � (FC)(C
0F0FC)�1(FC)0 = IT � F(F0F)�1F under

the rank assumption. This implies that the �rst term is 0. Therefore, plugging in (35) and

(36), we obtain

MwF
i = FD1
i + �UD2
i: (37)

The following lemma collects terms involving MwF
i.

Lemma 7 Under Assumptions 1, 2, 8-15 (or 16), uniformly on K(Ck),
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(i)
PN

i=1 �
0
i
~Z 0�iMwF
i = Op(

p
�N);

(ii) 1
T

PN
i=1 �

0
i
~Z 0�i

~Xi(
~X0
i
~Xi
T
)�1 ~X 0

iMwF
i = Op(
q

�N
N
) +Op(

q
�N
T
);

(iii) 1
T

PN
i=1 �

0
i( ~Z

0
�i
~Mi
~Z2i)(

~Z02i
~Mi
~Z2i

T
)�1 ~Z 02i ~MiMwF
i = Op(

q
�N
N
) +Op(

q
�N
T
);

(iv)a. 1
T

PN
i=1 ~"

0
i
~Mi
~Z�i(

~Z02i
~Mi
~Z2i

T
)�1 ~Z 0�i

~MiMwF
i = Op(
1
T
);

b. 1
T

PN
i=1 


0
iF

0M 0
w
~Mi
~Z�i(

~Z02i
~Mi
~Z2i

T
)�1 ~Z 0�i

~MiMwF
i = Op(
1
T
);

(v)a. 1
T

PN
i=1 ~"

0
i
~Mi
~Z0i(

~Z02i
~Mi
~Z2i

T
)�1 ~Z 0�i

~MiMwF
i = Op(
1p
T
);

b. 1
T

PN
i=1 


0
iF

0Mw
~Mi
~Z0i(

~Z02i
~Mi
~Z2i

T
)�1 ~Z 0�i

~Mi~"i = Op(
1p
N
) +Op(

1p
T
);

c. 1
T

PN
i=1 


0
iF

0Mw
~Mi
~Z0i(

~Z02i
~Mi
~Z2i

T
)�1 ~Z 0�i

~MiMwF
i = Op(
1p
N
) +Op(

1p
T
);

(vi)a. 1p
T

PN
i=1

~"0i
~Mi
~Z0ip
T

h
(
~Z02i

~Mi
~Z2i

T
)�1 � ( ~Z

0
0i
~Mi
~Z0i

T
)�1
i
~Z 00i ~MiMwF
i = Op(

1p
NT
) +Op(

1
T
);

b. 1
T

PN
i=1 


0
iF

0Mw
~Mi
~Z0i

h
(
~Z02i

~Mi
~Z2i

T
)�1 � ( ~Z

0
0i
~Mi
~Z0i

T
)�1
i
~Z 00i
~MiMwF
i = Op(

1
N
)+Op(

1
T
)+

Op(
1p
NT
):

Proof of Lemma 7.

(i) Consider the term

~Z 0�iMwF
i = Z 0�iMwF
i = Z 0�iFD1
i + Z 0�i
�UD2
i:

Since there are jk � k0j non-zero elements in Z�i, Z 0�iF is equal to the sum of jk � k0j

elements, and is �nite on K(Ck). Similarly, Z 0�i �U is also equal to the sum of jk � k0j

elements, each is Op(
1p
N
). Due to the fact that D1 = Op(

1
N
) +Op(

1p
NT
) and D2 = Op(1),

Z 0�iMwF
i = Op(
1

N
) +Op(

1p
NT

) +Op(
1p
N
) = Op(

1p
N
):

Therefore,
NX
i=1

�0i
~Z 0�iMwF
i = Op(

p
N�N)Op(

1p
N
) = Op(

p
�N):

The rest of this lemma can be proved similarly. See the Supplementary Appendix for a

detailed proof.

Lemma 2 in Model 1 can be extended to Model 2 using transformed data as Lemma 8.

Lemma 8 Under Assumptions 1, 2, 8-15 (or 16), uniformly on K(Ck),
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(i)
PN

i=1 �
0
i
~Z 0�i~"i = Op(

p
�N);

(ii) 1p
T

PN
i=1 �

0
i
~Z 0�i

~Xi(
~X0
i
~Xi
T
)�1

~X0
i~"ip
T
= Op(

q
�N
T
);

(iii) 1p
T

PN
i=1 �

0
i

h
( ~Z 0�i

~Mi
~Z2i)(

~Z02i
~Mi
~Z2i

T
)�1

~Z02i
~Mi~"ip
T

i
= Op(

q
�N
T
);

(iv) 1
T

PN
i=1 ~"

0
i
~Mi
~Z�i(

~Z02i
~Mi
~Z2i

T
)�1 ~Z 0�i

~Mi~"i = Op(
N
T
);

(v) 1p
T

PN
i=1

~"0i
~Mi
~Z0ip
T
(
~Z02i

~Mi
~Z2i

T
)�1 ~Z 0�i

~Mi~"i = Op(
N
T
) +Op(

q
N
T
);

(vi)
PN

i=1
~"0i
~Mi
~Z0ip
T

h
(
~Z02i

~Mi
~Z2i

T
)�1 � ( ~Z

0
0i
~Mi
~Z0i

T
)�1
i
~Z00i

~Mi~"ip
T

= Op(
N
T
):

When the error ~"i is replaced with ~"0i = MwF
i + ~"i, terms involving MwF
i in Lemma

7 are used to obtain the following lemma.

Lemma 9 Under Assumptions 1, 2, 8-15 (or 16), uniformly on K(Ck),

(i)
PN
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0
i
~Z 0�i~"

0
i = Op(
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T
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0
ip
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q
�N
N
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q
�N
T
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(iii) 1p
T
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0
i( ~Z

0
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~Mi
~Z2i)(

~Z02i
~Mi
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T
)�1
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ip

T
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q
�N
N
) +Op(

q
�N
T
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(iv) 1
T
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i=1 ~"
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i
~Mi
~Z�i(
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T
)�1 ~Z 0�i
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N
T
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(v) 1p
T
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(
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N
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(vi)
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Proof of Lemma 9. (i) Plugging in ~"0i =MwF
i + ~"i, we obtain

NX
i=1

�0i
~Z 0�i~"

0
i =

NX
i=1

�0i
~Z 0�iMwF
i +

NX
i=1

�0i
~Z 0�i~"i

Lemma 7(i) shows that the �rst term is Op(
p
�N). By Lemma 8 (i), the second term

NX
i=1

�0i ~Z
0
�i~"i = Op(

p
�N)

uniformly on K(Ck). It follows that

NX
i=1

�0i
~Z 0�i~"

0
i = Op(

p
�N) +Op(

p
�N) = Op(

p
�N):

The proofs of Lemma 9(ii)-(vi) are included in the Supplementary Appendix.
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With these lemmas, we are ready to prove Theorem 2.

Proof of Theorem 2. To prove lim(N;T )!1 P (~k = k0) = 1, it is equivalent to show that

for any given � > 0, for both large T and N , P (j~k � k0j � 1) < �. It is su¢ cient to show

that P
�
supK(Ck)

PN
i=1

hgSV i(k)�gSV i(k0)
i
� 0
�
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P
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�����
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!
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By Lemma 3, it is su¢ cient to show
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Consider the �rst term, with ~Z2i = ~Z0i � ~Z�i,�����
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By (i), (ii) and (iii) of Lemma 9, the �rst term�����
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�N): (38)
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Now consider the second term�����
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By (iv), (iv) and (vi) of Lemma 9, the second term�����
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Therefore, we get
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Compared with the proof of Theorem 1, there is an extra term 1
�N
Op(

1p
N
) = op(1). But,

1
�N

���PN
i=1

~J2i(k)
��� vanishes for any k 2 K(Ck) as (N; T )!1, so does its maximum.
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