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Abstract

Nonstationary panels have been widely used in empirical studies in economics,

especially in macroeconomics and �nance. This paper considers multiple structural

changes in nonstationary heterogeneous panels with common factors. Kapetanios,

Pesaran, Yamagata (2011) showed that unobserved nonstationary factors can be

proxied by cross-sectional averages of observable data. This means that unobserved

error factors can be treated as additional regressors, and di¤erent break points

in slopes and error factor loadings can be considered as multiple breaks in linear

regression models with panel data. Therefore, we generalize the least squares ap-

proach by Bai and Perron (1998) to nonstationary panels and show that the break

points in both slopes and error factor loadings can be consistently estimated for two

important cases involving i) nonstationary factors and ii) nonstationary regressors

considered by Phillips and Moon (1999). Monte Carlo simulations are conducted to

study the performance of the main results in �nite samples.
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1 Introduction

Nonstationary panel data regression models allowing for cross-sectional dependence using

a factor structure in the errors continue to be the focus of a lot of theoretical as well

as empirical studies in econometrics. See Hsiao (2018) who provides a very detailed and

insightful review of some of the main modeling and estimation approaches in the factor-

augmented panel data literature. Also, Feng and Kao (2020) for a textbook treatment of

this subject focusing on three main approaches for factor-augmented panel data models.

These include Pesaran�s (2006) common correlated e¤ects (CCE) approach, Bai�s (2009)

iterated principal components (IPC) approach, and the likelihood approaches proposed

by Bai and Li (2014) and advocated by Hsiao (2018). More recently, the transformed

approach developed by Hsiao, Shi, Zhou (2021) shows very good properties in dealing

with error factors in panel data models.

This paper contributes to the nonstationary panels with common factors literature.

It is motivated by Bai and Kao (2006) who consider a panel cointegration model with

stationary factors, which are allowed to be correlated with the regressors.
p
nT -consistent

fully modi�ed (2sFM) estimators of the slope parameters are derived. In a panel cointe-

gration model with nonstationary factors yit = x0it� + 
0ift + "it considered by Bai, Kao

and Ng (2009), ft are treated as parameters, and yit cointegrates with xit and ft with

coe¢ cients (1;��0; 
0i). The IPC approach is applied to deal with unobserved factors,
as in Bai (2009), and

p
nT -consistent continuously updated bias-corrected (CupBC) and

continuously updated fully modi�ed (CupFM) estimators of the slope parameters � are

proposed. Recently, Huang, Jin, and Su (2020) and Huang, Jin, Phillips, Su (2021) in-

troduce heterogeneity modelled as a latent group structure in the slope parameters in a

panel cointegration model with nonstationary factors, thus adding two features of hetero-

geneity and cross-section dependence to the nonstationary panel literature. A penalized

principal component estimation, which is an iterative procedure between penalized regres-

sion and principal component analysis (PCA), is proposed to consistently estimate group

membership and the slope parameters. Di¤erent from the homogeneous panel literature

considered above, Kapetanios, Pesaran, and Yamagata (2011, KPY hereafter) estimate

a model of heterogeneous panels with nonstationary factors. They �nd that the CCE

approach proposed by Pesaran (2006) is still valid for I(1) factors. In addition, Holly,
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Pesaran and Yamagata (2010) apply these methods to examine empirical features of the

US housing markets.1

Following Huang et al. (2021) and Dong et al. (2021), this paper adds heterogene-

ity to the literature by considering multiple structural changes in nonstationary panels

with common factors. Speci�cally, we consider multiple breaks in slopes and error factor

loadings in heterogeneous panels with nonstationary regressors and factors. As such, this

paper enriches the literature of nonstationary panels by accommodating two additional

empirical features of multiple structural changes and cross-sectional dependence. As in

Pesaran (2006), Kapetanios, Pesaran, Yamagata (KPY), unobserved nonstationary fac-

tors can be proxied by cross-sectional averages of observable data. Thus, unobserved error

factors can be treated as additional regressors, and di¤erent break points in slopes and

error factor loadings can be considered as multiple breaks in linear regression models with

panel data. Therefore, we generalize the least squares approach by Bai and Perron (1998)

to nonstationary panels and show that the break points in both slopes and error factor

loadings can be consistently estimated. In addition, di¤erent from KPY, we also consider

the case of nonstationary regressors after the CCE transformation. This model can be

considered as an extension of Phillips and Moon (1999, Section 5) to the case of allow-

ing for an error factor structure and multiple breaks in slopes. Similarly, a T -consistent

estimator of the heterogeneous slope parameters is obtained.

There have been important work on estimating and testing for multiple structural

changes in the time series literature and here we brie�y review some of the classic papers.

Simultaneous estimation using least squares include Bai and Perron (1998) and Mohitosh

and Perron (2008) and the sequential approach examined by Bai (1997) and Pang et

al. (2021), to mention a few. Bai and Perron (2003) provide a dynamic programming

algorithm to reduce the complexity of computation. Likelihood approaches are used by Bai

(2000) in vector autoregressive models (VAR) and by Qu and Perron (2007) in multivariate

regression models. Maheu and Song (2018) use a Bayesian approach to estimate multiple

structural breaks in VAR and other multivariate models. Regarding testing for multiple

structural breaks, in addition to Bai and Perron (1998) and Qu and Perron (2007), Wald-

type tests are considered by Kejriwal and Perron (2008), and a nonparametric maximum

1Dong, Gao and Peng (2021) propose a general model of nonstationary panels by considering varying-
coe¢ cient slopes and factor loadings.
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likelihood approach is proposed by Zou et al. (2014). More recently, Oka and Perron

(2018) and Bergamelli et al. (2019) propose a multiple hypothesis testing approach in

cointegrating regressions.

Estimation of structural breaks in panels has attracted a lot of attention since the

important paper by Bai (2010). Kim (2011) estimate a common deterministic trend

break for large panels with nonstationary or stationary error. Baltagi, Feng and Kao

(2016, 2019, BFK hereafter) extend Pesaran�s (2006) heterogenous panels to the cases of

common breaks in slopes with exogenous and endogenous regressors. Baltagi, Kao and

Wang (2015) consider interactive �xed e¤ects in errors of heterogeneous panels, instead

of commonly correlated factors. Baltagi, Kao and Liu (2017) consider the estimation of

break point in simple nonstationary panels. These models mainly focus on the case of

a single common break. Li, Qian and Su (2017) propose adaptive group fused LASSO

(AGFL) in panels with multiple breaks in slopes, with and without interactive e¤ects,

respectively. Lumsdaine, Okui and Wang (2023) consider the estimation of panel group

structure models with structural breaks. Kaddoura and Westerlund (2023) consider the

estimation of panel data models with multiple structural breaks when time dimension is

�xed.

Recently, Karavias, Narayan and Westerlund (2023) consider a single break in station-

ary homogeneous panels with interactive e¤ects, and Ditzen, Karavias and Westerlund

(2023) extend the analysis to the case of multiple breaks. Unlike these two papers, we focus

on nonstationary heterogeneous panels and nonstationary factors with multiple breaks.

In addition, multiple breaks in factor loadings are also considered in our paper. Thus, our

model can be applied to empirical research using aggregate level data over a long period,

e.g., climate change analysis.

Since we are studying breaks in error factor loadings, this paper is also related to

the literature on structural instability in factor models considered by Stock and Watson

(2009), and extensively studied by Breitung and Eickmeier (2011), Chen, Dolado and

Gonzalo (2014), Yamamoto and Tanaka (2015), and Cheng, Liao and Schorfheide (2016).

Recent advancements in this direction also include Baltagi, Kao and Wang (2017), Bai,

Han and Shi (2020), and Duan, Bai and Han (2023). In addition, Baltagi, Kao and Wang

(2021) and Ma and Tu (2023) and allow for multiple breaks in the loading.

The paper is organized as follows. Section 2 introduces the model of nonstationary
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panels with common factors and multiple structural changes in slopes and error factor

loadings. Section 3 presents the main ideas for estimation. Asymptotic properties of

the estimators are derived in Section 4. In Section 5, we consider the special case of

nonstationary regressors after the CCE transformation. Monte Carlo simulations are

conducted in Section 6. Section 7 provides concluding remarks. The mathematical proofs

are relegated to the Appendix.

Notation: For any matrix or vector A, the Frobenius norm of A is de�ned as kAk =p
tr(AA0). (N; T ) ! 1 denotes N and T tend to in�nity simultaneously. [�] is the

greatest integer function. Stochastic processes such as Brownian motionW (r) on [0; 1] are

written asW; integrals such as
R d
c
W (r)dr as

R d
c
W and stochastic integrals

R d
c
W (r)dW (r)

as
R d
c
WdW: B! denotes the Brownian motion with covariance matrix �!. ")" denotes

weak convergence.

2 Model

By extending Pesaran�s (2006) in�uential framework to the nonstationary case, KPY

consider the following heterogeneous panel regression with nonstationary factors:

yit = x0it�i + 
0ift + "it, i = 1; :::; N ; t = 1; :::; T; (1)

where xit is a p�1 vector of explanatory variables with heterogeneous slopes �i, "it is the
idiosyncratic error, independent of xit; and 
i is the corresponding loading vector.

2 The

q � 1 vector of unobserved factors ft follow I(1) processes,

ft = ft�1 + 't; (2)

't is the idiosyncratic error. xit follow an I(1) processes under the Assumption of com-

monly correlated e¤ects,

xit = �
0
ift + vit; (3)

where �i is an q � p factor loading matrix. vit is a p � 1 vector of disturbances. Thus,
yit is also nonstationary. KPY show that the CCE approach is robust to nonstationary

2The �xed e¤ects model can be considered as a special case when the �rst component of xit is 1 and
the other components of the slope parameters �i are homogeneous. We examine the performance of the
break estimators in a �xed e¤ects model in the Monte Carlo experiments.
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factors. vit is assumed to be I(0) as in KPY, in what we call Case 1 in this and the next

section. Case 2 assumes vit to be I(1) and this is studied in Section 5.

This paper considers multiple structural breaks in slopes �i and error factor loadings


i in KPY�s model (1) above:

yit = x0it�i(K0) + 
0ift + "it; i = 1; ::; N ; t = 1; :::; T: (4)

Common breaks in slopes �i(K0) could arise due to technological progress or major policy
shifts in a long time horizon. Assume there are m0 breaks in the slope parameters.3 As

in Bai and Perron (1998), K0 denotes an m0-partition (K0;1; :::; K0;m0), and the value of

the slopes �i(K0) vary across m0 + 1 di¤erent regimes, i.e.,

�i(K0) =

8><>:
�i1; t = 1; :::; K0;1;
...

�i;m0+1; t = K0;m0 + 1; :::; T:

This model generalizes the analysis of stationary panels with a single break in slopes

by BFK (2016, 2019) to nonstationary panels with multiple structural breaks. Thus,

additional technical challenges are involved in the derivations of asymptotic properties of

estimators with nonstationary data in the case of multiple breaks.

Similarly, factor loadings 
i could also su¤er from structural changes often seen in the

macroeconomic literature (Stock and Watson, 2009). Assume there are m1 breaks in the

error factor loadings with an m1-partition K1 = (K1;1; :::; K1;m1),


i(K1) =

8><>:

i1; t = 1; :::; K1;1;
...


i;m1+1; t = K1;m1 + 1; :::; T:

The model becomes

yit = x0it�i(K0) + 
i(K1)0ft + "it; i = 1; ::; N ; t = 1; :::; T: (5)

In addition, the nonstationary ft and xit follow processes (2) and (3). We suppress the

superscript 0 in the true values of K0 and K1 for now. Breaks K1 in error factor loadings
are allowed to have overlaps with breaks K0 in the slopes. Di¤erent from breaks K0 in

3To accommodate the case of partial structural changes in the slopes considered by Bai and Perron
(1998), w0it�i can be added to the right-hand side of (4) to denote the regressors and their corresponding
slopes that are constant over time.

5



slopes to model the changes in long-run structural relationship between y and x, breaks

K1 in error loadings 
i can be considered equivalent to instability of variance of errors

0ift + "it in (4), or changes in error factor variance with constant loadings.

In the special case of m0 = 2;m1 = 1, of model (5), we assume K0;1 < K0;2 < K1;1,

without loss of generality. Thus, three breaks K0;1; K0;2; K1;1 split the sample into 4

regimes:

yit =

8>><>>:
x0it�i1 + 
0i1ft + "it; t = 1; :::; K0;1

x0it�i2 + 
0i1ft + "it; t = K0;1 + 1; :::; K0;2

x0it�i3 + 
0i1ft + "it t = K0;2 + 1; :::; K1;1

x0it�i3 + 
0i2ft + "it; t = K1;1 + 1; :::; T;

(6)

each of which can be considered the same as KPY. This is also the case when there are

multiple breaks in slopes and error factor loadings, i.e., m0 > 1, m1 > 1. We follow KPY

and use the CCE approach to deal with unobserved nonstationary factors ft. In this

model, the parameters to be estimated include the slopes �i(K0) and the break points
K0, K1.
Like estimating break point K0 in slopes, estimating K1 in factor loadings is equally

important. As pointed out in the growing literature since Stock and Watson (2009), the

structural instability in the factor structure could have implications on the accuracy of

forecasting and number of estimated factors. In our model (5) ignoring the break K1 in

i could bias the estimates of the factor loadings in empirical studies, e.g., US housing

markets by Holly, Pesaran and Yamagata (2010). In addition, when the focus is on "it,

e.g., testing for remaining cross-sectional dependence in "it (Juodis and Reese, 2022),

estimating K1 is necessary for obtaining a consistent estimate of "it.
Compared with Bai, Kao and Ng�s (2009) model of panel cointegration with nonsta-

tionary factors, our model (5) adds two new empirical features: heterogeneous slopes and

structural breaks in slopes and factor loadings. Structural breaks here can be regarded

as a di¤erent way of modeling parameter heterogeneity from the latent group structure

considered by Huang et al. (2021). Besides, we apply the CCE approach to deal with un-

observed factors, instead of the IPC approach used in the two papers above. In addition,

di¤erent from BFK�s (2016, 2019) models of a common structural break in heterogeneous

panels with exogenous and endogenous regressors, this paper focuses on multiple breaks

and nonstationary factors and regressors. In line with Bai, Kao and Ng (2009), ft are

treated as additional explanatory variables, instead of an error component in (5). Thus

6



K0 and K1 are considered as multiple breaks in a linear regression and are estimated by
least squares as proposed by Bai and Perron (1998).

As in the literature on nonstationary panels with factors, the major challenge in es-

timating our model (5) lies in the unobserved factors. In this paper, we adopt the CCE

approach proposed by Pesaran (2006) and examined by KPY in the case of nonstationary

factors. To simplify the analysis, we follow Stock and Watson�s (2016, p.429) idea of

using the cross-sectional averages of xit, �xt = 1
N

PN
i=1 xit; instead of those of yit and xit,

to proxy for ft in this paper.4 The cross-sectional average of xit in (3),

�xt = ��
0ft + �vt; �� =

1

N

NX
i=1

�i and �vt =
1

N

NX
i=1

xvit:

When �� is of full rank (q � p); like OLS,

ft = (����
0)�1��(�xt � �vt): (7)

Since �vt ! 0 as N !1, it is also asymptotically valid to use �xt as observable proxies for
nonstationary ft,

ft � (����0)�1���xt
p! 0 as N !1. (8)

Hence, the idea of CCE is being used for nonstationary factors in each regime.5

Using (7) for ft, (5) can be written as

yit = x0it�i(K0) + f 0t
i(K1) + "it

= x0it�i(K0) + [(����0)�1�� (�xt � �vt)]0
i(K1) + "it

= x0it�i(K0) + �x0t
�i (K1) + "�it; (9)

where 
�i (K1)
p�1

= ��0(����0)�1
i(K1)
q�1

and "�it = "it � �v0t��0(����0)�1
i(K1). Thus, by proxying ft
with observables, equation (9) can be regarded as a panel data regression with multiple

common breaks K0;K1 in slopes �i and 
�i . In the special case of no breaks K1 in loadings
in model (4), 
�i (K1) in equation (9) becomes 
�i = ��0(����0)�1 
i. In this paper, we consider

4Karavias et al. (2023) use this proxy for ft. BFK (2019) focus on estimating a single break point in
heterogeneous slopes using the cross-sectional average (yit; xit) to proxy for ft and treat the error factor
structure as nuisance parameters. This paper also estimates break points in error factor loadings K1 along
with K0. To simplify the analysis, we use the cross-sectional average xit to proxy for ft: In additional
Monte Carlo simulations, we use the cross-sectional average (yit; xit) to proxy for ft and similar results
are obtained.

5As in KPY, when the rank condition holds, there is no need to estimate the number of error factors.
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the general model (5) and use least squares proposed by Bai and Perron (1998) to estimate

break points (K0;K1), slopes �i(K0) and their cross-sectional averages.
Remark 1: Breitung and Eickmeier (2011) point out that the structural breaks in the

factor loadings can be captured by in�ating the number of factors in the PCA estimation.

However, the in�ated number of factors may fail the rank condition required by the CCE

approach above. This implies that using the cross-sectional averages does not necessarily

capture the in�ated number of factors. As shown in the next section, our estimator of

K0 and �i(K0) can be robust to the breaks K1 in error factor structure in a simultaneous
estimation approach. Identifying the breaks K1 can be separately achieved if the rank
condition is not satis�ed with in�ated number of factors.6

3 Estimation

To simplify notation, let zit = (x0it; �x
0
t)
0, �i(K0;K1) = (�i(K0)0; 
�i (K1)0)

0. Thus, equation

(9) above can be written as

yit = z0it�i(K0;K1) + "�it: (10)

We rearrange them0+m1 breaks K0;K1 in time line as fK0g = fK0;K1g = fk01; k02; :::; k0mg
with m = m0 +m1. Superscript 0 denotes for true values of breaks. After reparameteri-

zation, model (10) can be considered as a panel data regression with multiple structural

changes in slopes:

yit = z0it�ij + "�it; t = k0j�1 + 1; :::; k
0
j ; (11)

where j = 1; :::;m+ 1, and k00 = 0; k
0
m+1 = T .

Remark 2: Equation (11) can be considered as a panel data version of the multiple

structural change model considered by Bai and Perron (1998) using nonstationary data.

It also extends the stationary panel data model with one common break in BFK (2016)

to the case of multiple common breaks with nonstationary data.

Remark 3: The intuition on identifying break points in this literature apply here as

well. First, as pointed out by Bai (1997) and Bai and Perron (1998), the key information

to identify the break points in time series regressions depend on the break magnitude

6In this case, we can use partitioned regression to consistently estimate K0 and �i(K0) �rst when
the rank condition is satis�ed with a small number of factors. After K̂0 and �̂i(K̂0) are obtained, PCA
or other methods can be applied to identify the factor structure and the breaks in loadings in errors
f 0t
i(K1) + "it estimated by yit � x0it�̂i(K̂0):
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and the variance of the regressors relative to the variance of the errors. Second, in panels

with mean shifts or (trend) stationary regressors, Bai (2010), Kim (2011) and BFK (2016)

show that the break magnitude increases with N under the common break assumption.

Thus the break point can be consistently estimated in panels as (N; T ) ! 1. Third,
Baltagi, Kao and Liu (2017), Pang Du and Chong (2021) show that using nonstationary

regressors, the variance of the regressors increases with T , implying that it is easier to

identify break points in regressions using nonstationary rather than stationary regressors.

De�ne Yi = (yi1; � � � ; yiT )0 ; �i = (�0i1; :::; �
0
i;m+1)

0, Zi(K0) = diag(Zi1; :::; Zi;m+1) with

Zij = (zi;k0j�1+1; :::; zi;k0j )
0, j = 1; :::;m + 1 and "�i = ("�i1; � � � ; "�iT )

0. Thus, equation (11)

can be written in matrix form: for i = 1; :::; N;

Yi = Zi(K0)�i + "�i (12)

For possible breaks K = m-partition (k1; :::; km), the OLS estimator of �i is �̂i(K) =
[Zi(K)0Zi(K)]

�1 Zi(K)0Yi; and the corresponding sum of squared residuals is

SSRi(K) =
h
Yi � Zi(K)�̂i(K)

i0 h
Yi � Zi(K)�̂i(K)

i
:

Thus, the OLS estimator of K0 = (k01; :::; k0m) is de�ned as

K̂ = (k̂1; :::; k̂m) = arg min
(k1;:::;km)

1

NT

NX
i=1

SSRi(K): (13)

Due to the computation complexity Op (mT 2) of the grid search algorithm, obtaining

(k̂1; :::; k̂m) by solving (13) is generally very time consuming when m � 3 and T is large.
In practice, we recommend the dynamic programming algorithm proposed by Bai and

Perron (2003).

In this paper, we assume thatm is known. This assumption can be relaxed by following

the idea of sequential estimation based on parameter-consistancy tests by Bai and Perron

(1998). Alternatively, m can be determined by an information criterion approach with a

penalty factor related to m as in Boldea et al. (2020) who consider a �xed e¤ects panel

data model with multiple breaks.

Next, we consider the estimation of �i(K0). Denote Xi = (xi1; � � � ; xiT )0 and �X =

(�x1; � � � ; �xT )0. Stacking the time dimension of equation (9) in matrix form gives

Yi = Xi�i(K0) + �X
�i (K1) + "�i :

9



Reparameterizing X i(K0) = diag (Xi1; Xi2; � � � ; Xi;m0+1) with Xi1
K0;1�p

= (xi1; :::; xi;K0;1)
0,

Xi2
(K0;2�K0;1)�p

= (xi;K0;1+1; :::; xi;K0;2)
0; � � � ; Xi;m0+1

(T�K0;m0 )�p
= (xi;K0;m0+1

; :::; xiT )
0 and bi = (�

0
i1; � � � ; �0i;m0+1

)0

gives

Yi = X i(K0)bi + �X
�i (K1) + "�i : (14)

By partitioned regression in equation (14):

b̂i = b̂i

�
K̂0
�
=
h
X i(K̂0)0M �XX i(K̂0)

i�1
X i

�
K̂0
�0
M �XYi; (15)

where M �X = I � �X
�
�X 0 �X

��1 �X 0: Similarly, the mean of bi can also be consistently esti-

mated by the following mean-group estimator

b̂MG =
1

N

NX
i=1

b̂i =
1

N

NX
i=1

h
X i(K̂0)0M �XX i(K̂0)

i�1
X i

�
K̂0
�0
M �XYi: (16)

The partitioned regression (15) suggests that the CCE transformed regressorsM �XX i(K̂0)
become stationary after partialling out I(1) ft in the case of stationary vit. This leads

to
p
T -consistent b̂i as shown in the next Section. By contrast, when vit follows an I(1)

process, M �XX i(K̂0) remains nonstationary. In this case, yit and xit are cointegrated af-
ter dealing with the unobserved factors in each regime, and T -consistency of b̂i can be

obtained. This is di¤erent from the setup in KPY. We will consider I(0) vit as Case 1 in

Section 4, and I(1) vit as Case 2 in Section 5.

4 Main Results

4.1 Assumptions

The following assumptions are needed for establishing the asymptotic properties of the

break and slope estimators above.

Assumption 1 k0j =
�
�0jT

�
with �0j 2 (0; 1), j = f1; � � � ;mg:

Assumption 2 Rank(��) = q � p.

Assumption 3 Factor loadings 
i (K1) and �i are independent and identically distributed
(IID) across i, and independent of "jt; vjt and ft for all i; j; t. Assume 
i (K1) = 
 (K1)+�i;
�i � IID(0;�
) and �i = � + �i; �i � IID(0;
�), i = 1; :::N; where the means 
, � are

non-zero and �xed and the variances 
�; 
� are �nite.
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Assumption 4 For i = 1; :::; N , bi = b+vb;i; vb;i � iid(0;�b); where b =
�
�01; �

0
2; � � � ; �0m0+1

�0
,

vb;i = (v0�1;i; v
0
�2;i
; � � � v0�m0+1;i)

0 and �b = diag(��1 ;��2 ; � � � ;��m0+1) for i = 1; 2; :::; N ,

where kbk <1, k�bk <1, and the random deviations vb;i are independent of xit and "jt

for all i; j and t.

Assumption 5 't is an vector of L2+#, # > 0 and stationary near epoque dependent

process of size 1=2, on some �-mixing process of size �(2 + #)=# and independent of vjt

and "jt for all i; j; t.

Assumption 6 Matrices 1
Th

hX
t=1

ftf
0
t,

1
Th

TX
t=T�h+1

ftf
0
t, and

1
Th

�jT+hX
t=�jT+1

ftf
0
t, for j = f1; � � � ;mg,

have minimum eigenvalues bounded away from zero in probability for all 1 � h � T .

Assumption 7 (i) Matrices 1
NTh

NX
i=1

hX
t=1

zitz
0
it,

1
NTh

NX
i=1

TX
t=T�h+1

zitz
0
it,

1
NTh

NX
i=1

�jT+hX
t=�jT+1

zitz
0
it

and 1
NTh

NX
i=1

�jT+hX
t=�jT+1

zitz
0
it, for j = f1; � � � ;mg, have minimum eigenvalues bounded away

from zero in probability for 1 � h � T ; (ii) for each t, 1
N

PN
i=1 zitz

0
it is stochastically

bounded as N !1.

Assumption 8 (i) The disturbances "it; i = 1; :::; N; are cross-sectionally independent;

(ii) For each series i, "it is independent of 't0 for all t and t
0; (iii) errors "is and vjt

are independent for all i; j; s; t; (iv) "it is a stationary process with absolute summable

autocovariances, such that "it =
P1

l=0 ail� i;t�l, where f� it; t = 1; :::; Tg are IID random

variables with zero mean and have a �nite fourth-order moments. Assume 0 < V ar("it) =P1
l=0 a

2
il = �2i < 1. (v) for the T � 1 vector "i = ("i1; "i2; � � � ; "i;T )0, V ar("i) = �";i and

0 < k�";ik <1.

Assumption 9 (i) The disturbances vit; i = 1; :::; N; are cross-sectionally independent;

(ii) For each series i, vit is independent of 't0 for all t and t
0; (iii) vit are linear stationary

processes with zero mean and absolute summable autocovariances, vit =
P1

l=0 �il�i;t�l;

where (� it; �
0
it )

0 are (p+ 1)� 1 vectors of IID random variables with variance-covariance

matrix Ip+1 and has a �nite fourth-order moments, and V ar(vit) =
P1

l=0 �il�
0
il = �v;i,

and 0 < k�v;ik <1:
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Assumption 10 For i = 1; :::; N , 1
T
X i(K0)0M �XX i(K0) is nonsingular, and their inverses

have �nite second-order moments, and lim
N!1

1
N

PN
i=1�v;i is nonsingular.

For j = f1; � � � ;mg; de�ne �N;j =
PN

i=1(�i;j+1 � �ij)
0(�i;j+1 � �ij) in equation (11) as

the magnitude of common breaks in panels.

Assumption 11 �N;j !1, T
N
�N;j !1, as (N; T )!1 for j = f1; � � � ;mg.

Assumption 1 is common in the time series and panel data literature of structural

changes, e.g., Bai (1997), Bai and Perron (1998), Bai (2010), BFK (2016, 2019). It rules

out the case that true breaks happen on the boundary of the observed time period. It also

implies that there are su¢ cient number of observations between breaks for large sample

approximation. However, Bai (2010) pointed out that the common breaks close to the

boundary are allowed in a panel mean shift model when T=N ! 0. To simplify our proofs,

we adopt this convenient assumption. We explore the performance of our break estimator

in the case of boundary breaks in Monte Carlo experiments.

Assumption 2 on the rank condition guarantees that equation (7) is valid, see Pesaran

(2006) and KPY who discuss the situation of rank de�ciency. This assumption can be

relaxed to accommodate more empirical situations. For example, Karabiyik, Urbain and

Westerlund (2019) consider the case of p < q. When p < q, additional exogenous co-

variates should be included to proxy the unobserved error factors. Karabiyik, Reese and

Westerlund (2017) explore the case when using too many observables causes the second

moment matrix of the estimated factors to become asymptotically singular. Juodis, Kara-

biyik and Westerlund (2021) establish the theory of CCE allowing common factors to be

correlated with the regressors. Our theoretical results can be extended to the case of rank

de�ciency by following the papers mentioned above. We will explore the performance of

the estimators in case that Assumption 2 is not satis�ed in the Monte Carlo simulations.

Assumptions 3, and 7 are borrowed from BFK (2016, 2019). Assumptions 4, 5 on

random coe¢ cients, and 10 on the identi�cation condition for the individual slopes are

borrowed from KPY. Under Assumptions 8 and 9, the idiosyncratic errors "it and vit follow

a general linear stationary process with heteroscedasticity and autocorrelation for each

i. Assumption 11 speci�es the relationship between T=N and the magnitude of breaks

�N;j; j = 1; :::;m. �N;j can grow slower or faster than N; depending on the relative rate of

12



T=N: The condition on the magnitude of breaks in Assumption 11 generalizes Assumption

2 in stationary panels considered by BFK (2019) to the multiple breaks case.

Under these assumptions, we can show that the multiple breaks are estimated consis-

tently, as summarized in the following theorem:

Theorem 1 Under Assumptions 1-11, lim(N;T )!1 P
�
k̂j = k0j

�
= 1; j = f1; � � � ;mg:

The rate of convergence and the distribution of the estimated structural breaks in sta-

tionary or nonstationary homogeneous panels have been discussed by Bai (2010), Baltagi,

Kao and Liu (2017) and others. As pointed out by Bai (2020), Theorem 1 implies a de-

generate limiting distribution for k̂j. To obtain a non-degenerate distribution, a di¤erent

framework of shrinking magnitude of breaks is usually assumed. Baltagi, Kao and Liu

(2017) show the convergence rates of break estimator in homogeneous cointegrated panels

and stationary panel regression are Op(1=NT ) and Op(1=N), respectively, suggesting the

bene�t of using observations in the cross-sectional dimension under the common break

assumption in panels. In our model, similar insights can be carried over. However, when

the slopes are heterogeneous, the derivation of convergence rate and limiting distribution

of the break point estimators is technically nontrivial. In addition, as shown in the follow-

ing proposition, the convergence rate of k̂j is not required for the asymptotic distribution

of the slope estimators, so we leave it for future research.

Given the consistency of estimated structural breaks K̂ above, we can obtain consistent
estimators of the slope parameters.

Proposition 1 Under Assumptions 1-11, as (N; T ) ! 1; and
p
T
N
! 0, for each i =

f1; � � � ; Ng,
p
T
�
b̂i � bi

�
d! N

�
0;��1X;i�X";i�

�1
X;i

�
;

where �X;i = plimT!1
1
T
X i(K0)0M �XX i(K0) and �X";i = plimT!1

1
T
X i(K0)M �X�";iM �XX i(K0)0.

As in Pesaran (2006), KPY and BFK, a consistent Newey-West type estimator of �X";i

can be obtained as

b�X";i = b�i0+ !X
j=1

�
1� j

! + 1

��b�ij + b�0ij� ; b�ij = 1

T

!X
t=j+1

eitei;t�jX it(K̂0)X it(K̂0)0; (17)

13



where ! is the window size, eit is the tth element of ei = M �XYi � M �XX i(K̂0)b̂i and
X it(K̂0) is the tth row of M �XX i(K̂0). Thus, a consistent Newey-West type estimator of

��1X;i�X";i�
�1
X;i is given by�

1

T
X i(K̂0)0M �XX i(K̂0)

��1 b�X";i � 1
T
X i(K̂0)0M �XX i(K̂0)

��1
: (18)

Proposition 2 Under Assumptions 1-11, and (N; T )!1,

p
N
�
b̂MG � b

�
d! N (0;�b) ;

where �b can be consistently estimated by

1

N � 1

NX
i=1

�
b̂i � b̂MG

��
b̂i � b̂MG

�0
:

5 Nonstationary Regressors

In this section, our analysis of nonstationary panels is extended to the case of both

nonstationary ft and vit. Idiosyncratic errors "it remain I(0). Compared with Section

5 of Phillips and Moon (1999), our model acommodates additional features of an error

factor structure and multiple breaks in slopes. In equation (3) xit = �0ift + vit; errors vit

follow I(1) processes:

vit = vi;t�1 + & it; i = 1; ::; N; (19)

where & it follows the assumption below:

Assumption 12 & it, i = 1; :::; N , are cross-sectionally independent. For each i; (i) & it =

	i(L)�it with �it is IID random variables with zero mean and has a �nite fourth-order

moments; (ii) V ar(�it) = ��;i = PiP
0
i ; and 	i(L) =

P1
j=0	ijL

j with
P1

j=0 j k	ijk < 1;

and 	i(1) =
P1

j=0	ij:

Di¤erent from Case 1 of stationary vit considered in Section 4, in Case 2 of I(1) vit, the

CCE transformed regressors in the partitioned regression (15) remain nonstationary. We

will show that K̂ de�ned in equation (13) above are still consistent and b̂i is T -consistent.
In addition, di¤erent from Case 1, the restriction on the relative diverging rate between

T and N in Assumption 11 is not required here.
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Theorem 2 Under Assumptions 1-10, 12, as (N; T ) ! 1, lim(N;T )!1 P
�
k̂j = k0j

�
=

1; j = f1; � � � ;mg:

With an additional Assumption 13 on 't below, we obtain the following Proposition

3. In line with equation (5.8) in Phillips and Moon (1999) in nonstationary heterogeneous

panels without structural breaks and error factors, for each i = 1; :::; N , b̂i is also super

consistent in our model.

Assumption 13 't is linear stationary process, (i) 't = �(L)ut with �t; t = 1; :::; T ,

have a �nite fourth-order moments; (ii) V ar(ut) = �u = QQ0; and �(L) =
P1

j=0�jL
j

with
P1

j=0 j k�jk <1; and �(1) =
P1

j=0�j:

Proposition 3 Under Assumptions 1-8, 11, 12 and 13, for each i; T (b̂i � bi) converges

weakly to a non-degenerate distribution, as (N; T )!1:

Intercept estimator is not included in b̂i above, and its convergence rate is
p
T as in a

cointegration model (Hamilton, 1994, p.588). The intercept can be wiped out by adding

vector of ones to �X in the M �X .

For the mean group estimator of b,

p
N
�
b̂MG � b

�
=

1p
N

NX
i=1

vb;i+
1p
NT

NX
i=1

"�
1

T 2
X i(K0)0M �XX i(K0)

��1
1

T
X i(K0)0M �X"i

#
+op (1) :

(20)

The second term is dominated by the �rst term in the above equation. Thus, we can obtain

a similar result to Proposition 2 in Case 1:
p
N
�
b̂MG � b

�
d! N (0;�b) as (N; T )!1:

In a special case of homogeneous slopes bi = b with vb;i = 0, the �rst term in equation

(20) disappears. Thus, equation (20) reduces to

p
NT

�
b̂MG � b

�
=

1p
N

NX
i=1

"�
1

T 2
X i(K0)0M �XX i(K0)

��1
1

T
X i(K0)0M �X"i

#
+ op (1) :

(21)

The convergence rate of b̂MG in a homogeneous panel becomes
p
NT , same as in Bai, Kao

and Ng (2009) and Huang et al. (2020).

With an additional Assumption 14 below, we obtain the following Proposition 4.

Assumption 14 1
T 2
X i(K̂0)0M �XX i(K̂0) is nonsingular, and its inverse has a �nite second-

order moment.
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Proposition 4 Under Assumptions 1-8, 11 and 12-14, in a homogeneous panel with

bi = b, as (N; T )!1;
p
NT

�
b̂MG � b

�
d! N (0;�MG) ;

where �MG is de�ned in the Appendix A.4.

For simplicity, asymptotic bias mentioned in Theorem 8 of Phillips and Moon (1999)

and Proposition 1 of Bai, Ng and Kao (2009) disappears here under the assumptions

of no serial/ cross-sectional correlation and heteroskedasticity. In addition, we leave the

expression of �MG in the appendix since its form is too complicated to be used in practice.

6 Monte Carlo Simulations

In this section, Monte Carlo experiments are conducted to examine the �nite sample

properties of the break estimators. We consider the case of three breaks, i.e., m = 3,

including two common breaks in slopes (k01; k
0
2) and a third one in error factor loadings k

0
3

in various scenarios. We �nd supporting results to the main �ndings in Theorems 1 and 2.

This is done by looking at the frequency of choosing true breaks using the proposed break

estimators. For nonstationary panels, nonstationarity could come from either ft or vit or

both under the common factor assumption (3). Thus, we consider six di¤erent scenarios:

i) Case 1 with I(1) factors ft and I(0) vit; ii) Case 1 under rank de�ciency; iii) Case 2 of

a panel cointegration model with I(1) ft and I(1) vit; iv) Case 2 with I(0) ft and I(1)

vit; v) Case 2 with I(1) errors "it; vi) Case 1 with mixed stationary and nonstationary

regressors and factors.

6.1 Data Generating Process

Our basic design is similar to the one used in KPY but now with multiple breaks:

yit = �i + �i
�
k01; k

0
2

�
xit + 
1;i

�
k03
�
ft + "it; i = 1; :::; N ; t = 1; :::; T; (22)

where �i � iidN(1; 1). The scalar regressor xit is a¤ected by the common correlated

e¤ect ft:

xit = ai + 
2;ift + vit; (23)
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with ai � iidN(0:5; 0:5) and 
2;i � iidN(0:5; 0:5). The scalar factor ft follows an I(1)

process:

ft = ft�1 + vft; t = �49; :::; 0; 1; :::; T ;

where f�50 = 0, vft � iidN(0; 1).

Two common breaks k01; k
0
2 in slopes are assumed at [0:3T ] and [0:5T ] of the time span:

�i(k
0
1; k

0
2) =

8<:
�i; t = 1; :::; k01;
�i +��i; t = k01 + 1; :::; T;
�i + 2��i; t = k02 + 1; :::; T

where �i � iidN(1; 0:04) and ��i � iidN(0; 0:5): A third break k03 = [0:7T ] occurs in the

error factor loadings:


1;i(k
0
3) =

�

1;i; t = 1; :::; k03;

1;i +�
i; t = k03 + 1; :::; T;

(24)

where 
1;i � iidN(1; 0:2) and �
i � iidN(0:5; 0:5):

In scenario (i) of Case 1, as in KPY, both "it and vit are stationary. "it = �i""i;t�1 +

�i (1� �2i")
0:5
!it; for i = 1; 2; :::; [N=2] and "it = �i

�
1 + �2i"

��0:5
(!it + �i"!i;t�1), for i =

[N=2] + 1; :::; N , with !it � iidN(0; 1); �2i � iidU [0:5; 1:5]; �i" = iidU [0:05; 0:95] and

�i" � iidU [0; 1]. Similarly, vit = �vivi;t�1 +  it;  it � iidN(0; 1� �2vi); with vi;�49 = 0; and

�vi � iidU [0:05; 0:95].7

In scenario (ii), we consider the importance of rank de�ciency in �nite samples. The

DGP here is the same as above, except that the means of ai and 
2;i change to zero, i.e.,

ai � iidN(0; 0:5) and 
2;i � iidN(0; 0:5) in equation (23). In the current design, the rank

condition is not satis�ed asymptotically.

In scenario (iii) of Case 2 of panel cointegration, both vit and "it follow I(1) processes,

vit = vi;t�1 +  it;  it � iidN(0; 1); t = �49; :::; 0; 1; :::; T:

We also allow for I(0) ft in the design above in scenario (iv). In addition, in scenario (v),

we examine the impact of nonstationary errors on break point estimators, we also consider

Case 2 with nonstationary errors, i.e., I(1) "it, "it = "i;t�1 + #it; #it � iidN(0; 1); t =

�49; :::; 0; 1; :::; T:
7In this design, the signal-to-noise ratio is about 1.5.
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Finally, in scenario (vi), we also consider the case of mixed stationary and nonsta-

tionary regressors and factors. To allow for a stationary regression, we add an additional

regressor and factor in the regression (22) above. More speci�cally,

yit = �i + �1;i
�
k01
�
x1;it + �2;i

�
k02
�
x2;it + 
11;i

�
k03
�
f1;t + 
12;i

�
k03
�
f2;t + "it;

where both regressors are generated by

x1;it = ai + 
21;if1;t + 
22;if2;t + v1;it;

x2;it = ai + 0 � f1;t + 
23;if2;t + v2;it:

We assume that both v1;it and v2;it are I(0) as vit in Case 1 above. Two factors f1;t and

f2;t are generated as I(1) and I(0) processes, respectively, as follows:

f1;t = f1;t�1 + v1;ft; and f2;t = 0:5f2;t�1 + v2;ft:

Thus, x1;it is I(1) and x2;it is I(0). Same as 
2i, loadings 
21;i; 
22;i; 
23;i � iidN(0:5; 0:5).

The break points k01 = [0:3T ]; k
0
2 = [0:5T ] appear in the slopes:

�1;i
�
k01
�
=

�
�11;i; t = 1; :::; k01;
�11;i +��1;i; t = k01 + 1; :::; T;

�2;i
�
k02
�
=

�
�21;i; t = 1; :::; k02;
�21;i +��2;i; t = k02 + 1; :::; T;

where ��1;i;��2;i � iidN(0; 0:16): Here 
11;i (k
0
3) and 
12;i (k

0
3) have the same design as


1;i (k
0
3) in (24) but the variance of �
i changes from 0:5 to 0:16:

Di¤erent combinations of T = 20; 50; 100 and N = 10; 50; 200 are considered in the

Monte Carlo experiments with 1,000 replications. Due to limited space, only the results

with T = 50 are reported in the paper.

6.2 Results

Figure 1 presents the histograms of estimators (k̂1, k̂2; k̂3) in Case 1 with nonstationary

factors for T = 50. The true values of the break points are k01 = 15, k02 = 25; k03 =

35. In each replication, a dynamic programming algorithm proposed by Bai and Perron

(2003) is applied to obtain k̂1, k̂2; k̂3 simultaneously. The upper, middle and lower panels

represent the empirical distributions of k̂1; k̂2 and k̂3, respectively. Figure 1 shows that
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the frequencies of choosing (k01, k
0
2; k

0
3) increase substantially as N increases from 10 to

200. For example, the probability of choosing k01 increases from 36% for N = 10 to 69%

for N = 200. This �nding supports the results in Theorem 1.

Figure 2 reports the histograms of (k̂1, k̂2; k̂3) in Case 1 for T = 50 under rank de�-

ciency. The rank condition is required for the validity of the CCE approach to deal with

unobserved common factors. We examine the �nite sample properties of these break esti-

mators when the rank condition is not satis�ed asymptotically. Although the probabilities

of choosing the true break points are smaller than those in Figure 1, they still increase

substantially with N , showing that under rank de�ciency, the estimators (k̂1, k̂2; k̂3) are

still very informative about choosing (k01, k
0
2; k

0
3) when N is large.

In Figure 3, we consider Case 2 of panel cointegration with nonstationary regressors

and both ft and vit are nonstationary in xit. Similar patterns as in Figure 1 are observed.

The probabilities of choosing true break dates increase with N , e.g., nearly 100% for

choosing k01 by k̂1 for N = 200 and T = 50. This �nding supports the consistency of the

break estimators in Theorem 2. In Figure 4, we also consider a scenario of an I(0) ft and

I(1) vit in Case 2, where ft = 0:5ft�1 + vft and vft � iidN(0; 0:75). As expected, as long

as xit is still I(1), k̂1, k̂2; k̂3 are consistent. Little impact is spotted from changing ft from

I(1) to I(0) in Figure 4.

In Figure 5, we consider the scenario of nonstationary errors "it in the design of Case

2 above. Under the current design, ft; vit and "it follow I(1) processes. Di¤erent from

Case 2, I(1) "it could lead to a spurious regression and thus, the least squares estimators

of slopes could be inconsistent. In addition, nonstationary "it could lead to a smaller

signal-to-noise ratio in the DGP of Figure 5 than that of Figure 3 with I(0) "it. Thus, we

observe smaller probabilities of choosing (k01; k
0
2; k

0
3) here, even though the same pattern

remains. That is, big N helps to date the break points.

Lastly, we examine the scenario of mixed stationary and nonstationary regressors in

Figure 6, as in Bai, Kao and Ng (2009), Huang, Jin, Phillips, Su (2021). Slightly di¤erent

from the designs used in Figures 1-4, an additional regressor and factor are added to the

design (22). In our modi�ed design, given an I(1) f1;t and an I(0) f2;t, x1;it, x2;it are I(1)

and I(0), respectively. We consider I(0) vit in this scenario to avoid potential spurious

regression after f1;t and f2;t are partialled out from the regressors and yit: As expected,

the frequency of choosing k02, the break point in the stationary regressor, is smaller than
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that of choosing k01 under the same design parameters for a same N . After scaling up the

magnitude of the break in �2;i (k
0
2), we �nd a similar pattern as in Figure 1, still observing

increasing probabilities of dating the true break points with N in the histograms of k̂1,

k̂2; k̂3.

Moreover, we also conduct additional robustness checks, including using (�y�t; �x�t) in-

stead of �xi�; to proxy ft, boundary breaks, �xed e¤ects model, di¤erent magnitude of

breaks in slopes and factor loadings, adding a time trend etc. These results can be found

in Figures A1-A6 in the supplementary Appendix B. The results with T = 20 and 100

are in line with those with T = 50 reported above, and are available upon request from

the authors.

[Insert Figures 1-6 Here]

7 Conclusion

This paper proposes the estimation of unknown multiple structural breaks both in slopes

and factor loadings in nonstationary panels with common factors. Based on KPY�s ap-

proach for dealing with nonstationary factors in panels, we extend Bai and Perron�s least

squares estimator for multiple breaks in time series regression to nonstationary heteroge-

neous panels with unobserved factors in errors. We show that the proposed estimators,

including the estimated structural breaks and slopes, are consistent in both cases of non-

stationary factors and nonstationary regressors. These main �ndings are supported by

the Monte Carlo simulations.

There are potentially two important issues to explore in the current framework. One

is testing for multiple structural changes in nonstationary panels. In this paper, we only

assume multiple breaks in slopes and factor loadings and estimate these break points.

It would be meaningful to test the existence of the breaks in many empirical studies

before applying our estimation methods. A candidate is to extend Bai and Perron�s

(1998) supF or double maximum tests into nonstationary panels. Another important

issue is related to sequential estimation of the break points. In this paper, we estimate

multiple breaks simultaneously. In the case of mixed stationary and nonstationary factors

and regressors as considered in Figures 4 and 5, it would matter a lot whether breaks are

estimated simultaneously or sequentially. It would be interesting to explore the asymptotic
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properties of sequential estimation of multiple breaks as in Bai and Perron (1998) and

Pang, Du and Chong (2021). We leave these research questions for future research.
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Appendixes: Proofs of Theorems and Propositions

The section includes detailed proofs of the main results in the text. To further simplify

notation, in this section we consider the case of three breaks, m = 3, including two in

slopes, (k01; k
0
2); and one in error factor loadings, k

0
3. The proofs of the general case in

model (10) can be presented at the cost of additional notation.

Speci�cally, Appendix A includes detailed proofs of Theorems 1 and 2, Propositions 1-

4. Subsection A.1 provides necessary Lemmas and detailed proof of Theorem 1. Similarly,

subsection A.2 provides necessary lemmas and proof of Theorem 2. Lastly, Subsection

A.3 provides proofs of Propositions 1- 2, and A.4 provides proofs of Propositions 3-4

respectively. Detailed proofs of lemmas are collected in the supplementary Appendix B.

Appendix A: Proofs of Theorems and Propositions

A.1 Proof of Theorem 1

Proof of Theorem 1.
Following Bai and Perron (1998), we decompose the analysis of multiple breaks into

several problems involving a single structural change in each. Without loss of generality,

we only provide the proof of lim(N;T )!1 P (k̂1 = k01) = 1. The proof of lim(N;T )!1 P (k̂j =

k0j ) = 1; j = 2; 3; can be shown similarly and is omitted.

To show k̂1 � k01
p! 0, it is equivalent to show that for any given � > 0, for both

large T and N , P (jk̂1 � k01j � 1) < �. As in BFK (2016), we assume that k̂1 � k01;

k̂2 � k02 and k̂3 � k03 are bounded here for simplicity. Under Assumptions 1 and that the

estimators of break fractions are consistent, we consider the set K(Ck) = f(k1; k2; k3) :
1 � jk1 � k01j; jkj � k0j j � Ck; aT � kj � (1 � a)T; j = 1; 2; 3g for a �nite constant Ck
and a > 0. By de�nition, S(k1; k2; k3) =

PN
i=1 SSRi(k1; k2; k3) is minimized globally at

(k̂1; k̂2; k̂3), i.e., S(k̂1; k̂2; k̂3) � S(k01; k̂2; k̂3) with probability 1.

Therefore, we examine the behavior of S(k1; k2; k3) on the set K(Ck). It is su¢ cient to

show that for each � > 0, for both large T andN; P (minK(Ck)[S(k1; k2; k3)�S(k01; k2; k3)] �
0) < �: Without loss of generality, assume k1 < k01 < k2,

S(k1; k2; k3)� S(k01; k2; k3)

=[S(k1; k2; k3)� S(k1; k
0
0; k2; k3)]� [S(k01; k2; k3)� S(k1; k

0
1; k2; k3)]: (25)

=
PN

i=1

�
SSRi(k1; k2; k3)� SSRi(k1; k

0
0; k2; k3)

�
�
PN

i=1

�
SSRi(k

0
1; k2; k3)� SSRi(k1; k

0
1; k2; k3)

�
;
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where, SSRi(k1; k01; k2; k3) is the sum of squared residuals in the regression with four

breaks at (k1; k01; k2; k3) for series i and S(k1; k
0
1; k2; k3) =

PN
i=1 SSRi(k1; k

0
1; k2; k3). Thus,

the analysis of a three-break or multiple break problem can be decomposed into two prob-

lems involving a single break. The �rst term SSRi(k1; k2; k3)�SSRi(k1; k01; k2; k3) allows
an additional fourth break k01 between k1 and k2, and the second term SSRi(k

0
1; k2; k3)�

SSRi(k1; k
0
1; k2; k3) adds an additional fourth break at k1 between 1 and k

0
1. Thus, it is

convenient to derive each part above as a single common break issue in panel data as in

BFK (2016).

Following Bai and Perron (1998), we denote �̂i(k̂1; k̂2; k̂3) =
�
�̂
0
i1; �̂

0
i2; �̂

0
i3; �̂

0
i4

�0
the esti-

mator of (�i1; �i2; �i3; �i4) in the regression with three breaks k1; k2 and k3, and (�̂
�
i1; �̂i�; �̂

�
i2; �̂

�
i3; �̂

�
i4)

the estimator of (�i1; �i1; �i2; �i3; �i4) based on the partition (k1, k01; k2, k3). In particular,

�̂
�
i1 is an estimate of �i1 associated with regressor (zi1; :::; zi;k1 ; 0; :::; 0)

0, �̂i� is the esti-

mate of �i1 associated with regressor Zi� = (0; :::; 0; zi;k1+1; :::; zi;k01 ; 0; :::; 0)
0, and �̂

�
i2 is the

estimate of �i2 associated with regressor (0; :::; 0; zi;k01+1; :::; zi;k2 ; 0; :::; 0)
0. �̂

�
i3; �̂

�
i4 can be

de�ned similarly.

By de�nition,

SSRi(k1; k2; k3) =

k1X
t=1

�
yit � z0it�̂i1

�2
+

k2X
t=k1+1

�
yit � z0it�̂i2

�2
+

k3X
t=k2+1

�
yit � z0it�̂i3

�2
+

TX
t=k3+1

�
yit � z0it�̂i4

�2
;

and

SSRi(k1; k
0
1; k2; k3) =

k1X
t=1

�
yit � z0it�̂

�
i1

�2
+

k01X
t=k1+1

�
yit � z0it�̂i�

�2
+

k2X
t=k01+1

�
yit � z0it�̂

�
i2

�2
+

k3X
t=k2+1

�
yit � z0it�̂

�
i3

�2
+

TX
t=k3+1

�
yit � z0it�̂

�
i4

�2
:

It�s worth noting that �̂i1 and �̂
�
i1 are the estimators associated with same regressor

(zi1; :::; zi;k1 ; 0; :::; 0)
0, thus, �̂i1 = �̂

�
i1. Similarly, �̂i3 = �̂

�
i3; �̂i4 = �̂

�
i4. Thus,

SSRi(k1; k2; k3)� SSRi(k1; k
0
1; k2; k3) (26)

=

k2X
t=k1+1

�
yit � z0it�̂i2

�2
�

24 k01X
t=k1+1

�
yit � z0it�̂i�

�2
+

k2X
t=k01+1

�
yit � z0it�̂

�
i2

�235 :
Since the term SSRi(k1; k2; k3)�SSRi(k1; k01; k2; k3) involves a regression with a break

k01 between k1 and k2, we focus on the interval [k1 + 1; k2]. k01 splits [k1 + 1; k2] into

26



two parts [k1 + 1; k01] and [k
0
1 + 1; k2]. These three intervals are referred to as F, �

and F � �, respectively, i.e., F = [�; F � �]. Under the current assumptions, the
number of observations on interval � is �nite, di¤erent from that on F or F � �.
De�ne YiF = (yi;k1+1; :::; yi;k2)

0, Yi� = (yi;k1+1; :::; yi;k01 ; 0; :::; 0)
0 and Yi(F��) = YiF� Yi� =

(0; :::; 0; yi;k01+1; :::; yi;k2)
0. ZiF, "�iF, Zi�, Zi(F��) can be de�ned in the same fashion. By

construction, Y 0
i�Yi(F��) = 0 and Z

0
i�Zi(F��) = 0.

Recall that the OLS estimators of (�i1; �i2) on intervals of [k1 + 1; k01] and [k
0
1 + 1; k2]

are �̂i�; �̂
�
i2, respectively. Without considering a break in slopes on the interval [k1+1; k2],

the OLS estimator for �i2 is �̂i2. The �rst term in (26),
Pk2

t=k1+1
(yit � z0it�̂i2)

2 = [YiF �
ZiF�̂i2]

0[YiF�ZiF�̂i2] is the sum of squared residuals in the regression of y on z for series

i using time series sample on the interval [k1 + 1; k2]. The second term in equation (26)Pk01
t=k1+1

(yit � z0it�̂i�)
2 +

Pk2
t=k01+1

(yit � z0it�̂
�
i2)

2

=
Pk01

t=k1+1
(yit � z0it�̂i�)

2 +
Pk2

t=k01+1
(yit � z0it�̂i� + z0it(�̂i� � �̂

�
i2))

2

= [YiF � ZiF�̂i� � Zi(F��)(�̂
�
i2 � �̂i�)]

0[YiF � ZiF�̂i� � Zi(F��)(�̂
�
i2 � �̂i�)]

is the sum of squared residuals in the regression of y on z for series i with a break k01 on

the interval [k1 + 1; k2]. Thus, according to Amemiya (1985, p. 31),

SSRi(k1; k2; k3)� SSRi(k1; k
0
1; k2; k3) = (�̂

�
i2 � �̂i�)

0Z 0i(F��)MZiFZi(F��)(�̂
�
i2 � �̂i�)

= (�̂
�
i2 � �̂i�)

0Z 0i�MZiFZi�(�̂
�
i2 � �̂i�):

The second equality above is due to the facts of Zi(F��) = ZiF � Zi� and

Z 0i(F��)MZiFZi(F��) = Z 0i�MZiFZi�;

whereMZiF = Ik2�k1+1�ZiF
�
Z 0iFZiF

�
Z 0iF and I(k2�k1+1) is the (k2�k1+1)�(k2�k1+1)

identity matrix. Next, following BFK (2016) we derive the expression of SSRi(k1; k2; k3)�
SSRi(k1; k

0
1; k2; k3).

For t 2 [k1+1; k01], �̂i� = (Z 0i�Zi�)�1Z 0i�Yi� and �̂
�
i2 = (Z

0
i(F��)Zi(F��))

�1Z 0i(F��)Yi(F��)

for t 2 [k01 + 1; k2]. Partitioned regression gives

�̂
�
i2 � �̂i� = (Z

0
i(F��)MZiFZi(F��))

�1Z 0i(F��)MZiFYiF

= �(Z 0i�MZiFZi�)
�1Z 0i�MZiFYiF:

Plugging YiF = ZiF�i1 + Zi(F��) (�i2 � �i1) + "�iF into the equation above gives,

�̂
�
i2 � �̂i� = (�i2 � �i1) +

�
Z 0i(F��)MZiFZi(F��)

��1
Z 0i(F��)MZiF"

�
iF (27)

= (�i2 � �i1)�
�
Z 0i�MZiFZi�

��1
Z 0i�MZiF"

�
iF:
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Thus, we can get

SSRi(k0; k1)� SSRi(k0; k
0
0; k1) = (�i2 � �i1)

0 Z 0i�MZiFZi� (�i2 � �i1) (28)

�2 (�i2 � �i1)
0 Z 0i�MZiF"

�
iF

+"�0iFMZiFZi�
�
Z 0i�MZiFZi�

��1
Z 0i�MZiF"

�
iF:

Similarly, the second term SSRi(k
0
1; k2; k3) � SSRi(k1; k

0
1; k2; k3) in (25) involves a

regression with a break at k1 between 1 and k01. Denote the interval [1; k
0
1] by �. k1 splits

[1; k01] into two parts [1; k1] and [k1+1; k
0
1]. Note that the latter interval has been denoted

as � above. Similarly, de�ne Yi� = (yi;1; :::; yi;k01)
0, Zi� and "�i� on the interval �. The

number of observations on the interval � is unbounded under Assumption 1 as T ! 1.
Note that there is no true break in slopes on the interval [1; k01] and the corresponding

true slope parameter is �i1. The OLS estimators of (�i1; �i1) on intervals of [1; k1] and

[k1 + 1; k
0
1] are �̂

�
i1, �̂i�, respectively. As in equation (25), we can obtain

SSRi(k
0
1; k2; k3)� SSRi(k1; k

0
1; k2; k3) = (�̂i� � �̂

�
i1)

0Z 0i�MZi�Zi�(�̂i� � �̂
�
i1):

Partitioned regression gives �̂i�� �̂
�
i1 = (Z

0
i�MZi�Zi�)

�1Z 0i�MZi�Yi�; where MZi� = Ik01 �
Zi�(Z

0
i�Zi�)

�1Z 0i�. Plugging Yi� = Zi��i1 + "�i� into the equation above gives

�̂i� � �̂
�
1i = (Z

0
i�MZi�Zi�)

�1Z 0i�MZi�"
�
i�: (29)

Since there is no break in slopes on the interval [1; k01], no slope shift term appears in (29),

which is di¤erent from (27). Thus, we can get

SSRi(k
0
1; k2; k3)� SSRi(k1; k

0
1; k2; k3) = "�0i�MZi�Zi�(Z

0
i�MZi�Zi�)

�1Z 0i�MZi�"
�
i�: (30)

Combining equations (28) and (30), we obtain,

S(k1; k2; k3)� S(k01; k2; k3)

=
PN

i=1

�
Si(k1; k2; k3)� Si(k1; k

0
1; k2; k3)

�
�
PN

i=1

�
Si(k

0
1; k2; k3)� Si(k1; k

0
1; k2; k3)

�
=

PN
i=1 (�i2 � �i1)

0 Z 0i�MZiFZi� (�i2 � �i1)� 2
PN

i=1 (�i2 � �i1)
0 Z 0i�MZiF"

�
iF

+
PN

i=1"
�0
iFMZiFZi�

�
Z 0i�MZiFZi�

��1
Z 0i�MZiF"

�
iF

�
PN

i=1"
�0
i�MZi�Zi�

�
Z 0i�MZi�Zi�

��1
Z 0i�MZi�"

�
i�:

Like in Bai (1997) and BFK (2016), here S(k1; k2; k3) � S(k01; k2; k3) can be ex-

pressed as the sum of a deterministic part
PN

i=1 J1i(k1; k2; k3) and a stochastic term

�
PN

i=1 J2i(k1; k2; k3), where J1i(k1; k2; k3) = (�i2 � �i1)
0Z 0i�MZiFZi�(�i2 � �i1);

J2i(k1; k2; k3) = [2(�i2 � �i1)
0Z 0i�MZiF"

�
iF]� ["�0iFMZiFZi�(Z

0
i�MZiFZi�)

�1Z 0i�MZiF"
�
iF]

+ ["�0i�MZi�Zi�(Z
0
i�MZi�Zi�)

�1Z 0i�MZi�"
�
i�]:
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Thus, S(k1; k2; k3)� S(k01; k2; k3) =
PN

i=1 J1i(k1; k2; k3)�
PN

i=1 J2i (k1; k2; k3).

To prove Theorem 1 and the statement P (minK(Ck)[S(k1; k2; k3)�S(k01; k2; k3)] � 0) <
� for both large T and N , it su¢ ces to show

P (supK(Ck)j
1

T

PN
i=1J2i(k1; k2; k3)j � infK(Ck)

1

T

PN
i=1J1i(k1; k2; k3)) < �: (31)

Consider the term 1
T
Z 0i�MZiFZi� in J1i(k1; k2; k3). Since ZiF = Zi� + Zi(F��) and

Zi�0Zi(F��) = 0,

T�1Z 0i�MZiFZi� = T�1Z 0i�Zi� � T�1Z 0i�ZiF(Z
0
iFZiF)

�1Z 0iFZi�

= T�1Z 0i�Zi� � T�2Z 0i�Zi�(T
�2Z 0iFZiF)

�1T�1Z 0i�Zi�:

Note that the numbers of observations on the intervals of F and � are k2 � k1 and

k01 � k1. On the set K(Ck), k01 � k1 is �nite, while k2 � k1 is unbounded as T ! 1. By
Lemma 1(i), 1

T
Z 0i�Zi� = Op(1) and 1

T 2
Z 0i�Zi�(

1
T 2
Z 0iFZiF)

�1 1
T
Z 0i�Zi� = op(1) on K(Ck),

thus, T�1Z 0i�MZiFZi� = T�1Z 0i�Zi� + op(1): Last,

infK(Ck)
1

T

PN
i=1J1i(k1; k2; k3) = infK(Ck)

PN
i=1 (�i2 � �i1)

0 (
1

T
Z 0i�Zi�) (�i2 � �i1) + op(1):

Under Assumption 7, let a �nite %min > 0 be the minimum eigenvalue of
1
N

PN
i=1(

1
T
Z 0i�Zi�)

uniformly on K(Ck). Following the proof of Lemma 1 in BFK�s (2016) appendix, we ob-

tain

infK(Ck)
1

T

PN
i=1J1i(k1; k2; k3) � %min�N;1;

with probability tending to 1 and �N;1 =
PN

i=1(�i2 � �i1)0(�i2 � �i1). Thus, from equation

(31), to prove Theorem 1, it is su¢ cient to show

P (supK(Ck)
1

T�N;1
j
PN

i=1J2i(k1; k2; k3)j � %min) < �: (32)

By Lemma 2,

j
PN

i=1J2i(k1; k2; k3)j � j
PN

i=1[2(�i2 � �i1)
0Z 0i�MZiF"

�
iF]j

+j
PN

i=1["
�0
iFMZiFZi�(Z

0
i�MZiFZi�)

�1Z 0i�MZiF"
�
iF]j

+j
PN

i=1["
�0
i�MZi�Zi�(Z

0
i�MZi�Zi�)

�1Z 0i�MZi�"
�
i�]j

= Op(T
1=2�

1=2
N;1) +Op(N):

Thus, 1
T�N;1

���PN
i=1 J2i(k1; k2; k3)

��� = Op(
1p
T�N;1

) + Op(
N

T�N;1
). Under Assumption 11 that

N
T�N;1

! 0, as (N; T ) ! 1, the term 1
T�N;1

jJ2(k1; k2; k3)j vanishes for any (k1; k2; k3) 2
K(Ck). Therefore, (32) and then Theorem 1 are established.

The following Lemmas 1 and 2 are needed to prove Theorem 1.
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Lemma 1 Under Assumptions 1-5, 8,9, and uniformly over K (Ck) , as (N; T ) ! 1,
for i = 1; :::; N;

(i) 1
T
Z 0i�Zi� = Op (1), 1

T 2
Z 0iFZiF = Op (1);

(ii) 1p
T
Z 0i�"iF =

1p
T
Z 0i�"i� = Op (1), 1

T
Z 0iF"iF = Op (1);

(iii) 1p
T
Z 0i�"i� =

1p
T
Z 0i�"i� = Op (1), 1

T
Z 0i�"i� = Op (1);

(iv) 1
T
�V 0
F
�VF = Op

�
1
N

�
, 1p

T
Z 0i�

�VF = Op

�
1p
N

�
, 1
T
Z 0iF

�VF = Op

�
1p
N

�
.

Lemma 2 Under Assumptions 1-9, uniformly on K (Ck),
(i)
PN

i=1 (�i2 � �i1)
0 Z 0i�MZiF"

�
iF = Op

�p
T�N;1

�
;

(ii)
PN

i=1 "
�0
iFMZiFZi�

�
Z 0i�MZiFZi�

��1
Z 0i�MZiF"

�
iF = Op (N);

(iii)
PN

i=1 "
�0
i�MZi�Zi�

�
Z 0i�MZi�Zi�

��1
Z 0i�MZi�"

�
i� = Op (N).

The proofs of Lemmas 1 and 2 can be found in the supplementary Appendix B.

A.2 Proof of Theorem 2

The proof of Theorem 2 is similar to that of Theorem 1. To obtain the inequality (31)

in Case 2 of I(1) vit, Lemmas 3 and 4 are needed.

Lemma 3 Under Assumptions 1-10 and 12, uniformly on K(Ck) and for each i =

1; :::; N , as (N; T )!1,
(i) 1

T
Z 0i�Zi� = Op (1), 1

T 2
Z 0iFZiF = Op (1);

(ii) 1p
T
Z 0i�"iF =

1p
T
Z 0i�"i� = Op (1), 1

T
Z 0iF"iF = Op (1);

(iii) 1p
T
Z 0i�"i� =

1p
T
Z 0i�"i� = Op (1), 1

T
Z 0i�"i� = Op (1);

(iv) 1
T 2
�V 0
F
�VF = Op

�
1
N

�
, 1
T
Z 0i�

�VF = Op

�
1p
N

�
, 1
T
p
T
Z 0iF

�VF = Op

�
1p
N

�
.

Lemma 4 Under Assumptions 1-10 and 12, uniformly on K (Ck),

(i)
PN

i=1 (�i2 � �i1)
0 Z 0i�MZiF"

�
iF = Op

�p
T�N;1

�
+Op

�
T

q
�N;1
N

�
;

(ii)
PN

i=1 "
�0
iFMZiFZi�

�
Z 0i�MZiFZi�

��1
Z 0i�MZiF"

�
iF = Op (N) +Op (T );

(iii)
PN

i=1 "
�0
i�MZi�Zi�

�
Z 0i�MZi�Zi�

��1
Z 0i�MZi�"

�
i� = Op (N) +Op (T ).

Proof of Theorem 2. As in the proof of Theorem 1, it is su¢ ces to show for any

� > 0, for large N and T ,

P (supK(Ck)j
1

T

PN
i=1J2i(k1; k2; k3)j � infK(Ck)

1

T

PN
i=1J1i(k1; k2; k3)) < �:

In Case 2, the only di¤erence lies in that vit changes from I(0) to I(1). Since xit = �0ift+vit
and �xt = ��0ft + �vt, zit = (x0it; �x

0
�t)
0 remains I(1) for I(1) ft. Thus, with Lemma 3,
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the following result remains unchanged, infK(Ck)
1
T

PN
i=1J1i(k1; k2; k3) � %min�N;1 with

probability tending to 1. As in the proof of Theorem 1, we need to show

P (supK(Ck)
1

T�N;1
j
PN

i=1J2i(k1; k2; k3)j � %min) < �: (33)

By Lemma 4,

j
PN

i=1J2i(k1; k2; k3)j � j
PN

i=1[(�i2 � �i1)
0Z 0i�MZiF"

�
iF]j

+j
PN

i=1["
�0
iFMZiFZi�(Z

0
i�MZiFZi�)

�1Z 0i�MZiF"
�
iF]j

+j
PN

i=1["
�0
i�MZi�Zi�(Z

0
i�MZi�Zi�)

�1Z 0i�MZi�"
�
i�]j

= Op(
q
T�N;1) +Op(T�

1=2
N;1N

�1) +Op (N) +Op (T ) :

Thus,

1

T�N;1
jJ2(k1; k2; k3)j = Op(T

�1=2�
�1=2
N;1 ) +Op(N

�1=2�
�1=2
N;1 ) +Op(NT

�1��1N;1) +Op(
1

�N;1
):

Under Assumption 11, �N;1 !1 and N
T�N;1

! 0, as as (N; T )!1, 1
T�N;1

jJ2(k1; k2; k3)j
vanishes for any (k1; k2; k3) 2 K(Ck). Therefore, (33) is established, and Theorem 2 is

proved.

A.3 Proofs of Propositions 1 and 2

In this subsection, we also assume m = 3, including two breaks k01; k
0
2 in slopes and a

third one k03 in error factor loadings. In order to prove Propositions 1 and 2, we �rst give

the following lemma.

Lemma 5 Under Assumptions 1-5, 8, 9, and uniformly over K (Ck) and for each i =
1; :::; N , as (N; T )!1,
(i) 1

T
�V 0M �X

�V = Op(N
�1), 1

T
V 0
iM �XVi = Op(1)

(ii) 1
T
F 0M �XF = Op (N

�1), 1
T
V 0
iM �XF = Op(N

�1=2);

(iii) 1
T
X 0
iM �XXi = Op(1), 1

T
X i(k̂1; k̂2)

0M �XX i(k̂1; k̂2) = Op(1).

Proof of Proposition 1. For individual series i = 1; :::; N , equation (14) can be

written as

Yi = X i(k
0
1; k

0
2)bi +

�X
�i (k
0
3) + "�i (34)

= X i(k̂1; k̂2)bi + [X i(k
0
1; k

0
2)�X i(k̂1; k̂2)]bi + �X
�i (k

0
3) + "i � �V ��0(����0)�1
i(k

0
3):
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Plugging equation (34) above into the expression of b̂i gives,

b̂i = b̂i(k̂1; k̂2) = [X i(k̂1; k̂2)
0M �XX i(k̂1; k̂2)]

�1X i(k̂1; k̂2)
0M �XYi (35)

= bi + [X i(k̂1; k̂2)
0M �XX i(k̂1; k̂2)]

�1X i(k̂1; k̂2)
0M �X [X i(k

0
1; k

0
2)�X i(k̂1; k̂2)]bi

+[X i(k̂1; k̂2)
0M �XX i(k̂1; k̂2)]

�1X i(k̂1; k̂2)
0M �X"i

�[X i(k̂1; k̂2)
0M �XX i(k̂1; k̂2)]

�1X i(k̂1; k̂2)
0M �X

�V ��0(����0)�1
i(k
0
3):

Thus, we decompose
p
T (b̂i � bi) into �ve terms,

p
T (b̂i � bi) = [

1

T
X i(k̂1; k̂2)

0M �XX i(k̂1; k̂2)]
�1 1p

T
X i(k

0
1; k

0
2)
0M �X"i (36)

� [ 1
T
X i(k̂1; k̂2)

0M �XX i(k̂1; k̂2)]
�1 1p

T
[X i(k

0
1; k

0
2)�X i(k̂1; k̂2)]M �X"i

� [ 1
T
X i(k̂1; k̂2)

0M �XX i(k̂1; k̂2)]
�1 1p

T
X i

�
k01; k

0
2

�0
M �X

�V ��0(����0)�1
i(k
0
3)

+ [
1

T
X i(k̂1; k̂2)

0M �XX i(k̂1; k̂2)]
�1 1p

T
[X i(k

0
1; k

0
2)�X i(k̂1; k̂2)]M �X

�V ��0(����0)�1
i(k
0
3)

+ [
1

T
X i(k̂1; k̂2)

0M �XX i(k̂1; k̂2)]
�1 1p

T
X i(k̂1; k̂2)

0M �X [X i(k
0
1; k

0
2)�X i(k̂1; k̂2)]bi:

As in KPY, in the model considered in Case 1, after the transformation using M �X ,

M �XX i(k̂1; k̂2) becomes stationary since I(1) ft is removed asymptotically in regressors

xit. Thus, 1TX i(k̂1; k̂2)
0M �XX i(k̂1; k̂2) = Op(1) for large N and T . For the second term, by

Theorem 1, P
�
k̂1 6= k01; k̂2 6= k02

�
= P

�
jk̂1 6= k01j � 1; jk̂2 6= k02j � 1

�
! 0. For any � > 0,

P (jjT�1=2[X i(k
0
1; k

0
2)�X i(k̂1; k̂2)]M �X"ijj > �)

= P (jjT�1=2[X i(k
0
1; k

0
2)�X i(k̂1; k̂2)]M �X"ijj > �; k̂1 = k01; k̂2 = k02)

+P (jjT�1=2[X i(k
0
1; k

0
2)�X i(k̂1; k̂2)]M �X"ijj > �; k̂1 6= k01; k̂2 6= k02)

= P (0 > �)P (k̂1 = k01; k̂2 = k02)

+P ( jjT�1=2[X i(k
0
1; k

0
2)�X i(k̂1; k̂2)]M �X"ijj > �

��� k̂1 6= k01; k̂2 6= k02)P (k̂1 6= k01; k̂2 6= k02)

� P (0 > �)(k̂1 = k01; k̂2 = k02) + P (k̂1 6= k01; k̂2 6= k02)! 0:

Thus, T�1=2[X i(k
0
1; k

0
2)�X i(k̂1; k̂2)]M �X"i = op(1): Similarly, T�1=2X i(k̂1; k̂2)

0M �X [X i(k
0
1; k

0
2)�

X i(k̂1; k̂2)]bi = op(1) and T�1=2[X i(k
0
1; k

0
2)�X i(k̂1; k̂2)]M �X

�V ��0(����0)�1
i(k
0
3) = op(1).

According to Lemma 5(ii), 1
T
X i(k

0
1; k

0
2)
0M �X

�V = Op(N
�1), T�1=2X i(k̂1; k̂2)

0M �X
�V =

Op
�
T 1=2N�1�, thus, the third term

[T�1X i(k̂1; k̂2)
0M �XX i(k̂1; k̂2)]

�1T�1=2X i(k̂1; k̂2)
0M �X

�V ��0(����0)�1
i(k
0
3) = Op(T

1=2N�1):
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Combining all these terms, we obtain

p
T (b̂i�bi) = [

1

T
X i(k̂1; k̂2)

0M �XX i(k̂1; k̂2)]
�1T�1=2X i(k̂1; k̂2)

0M �X"i+Op
�
T 1=2N�1�+op (1) :

Now we consider the asymptotic distribution of

[T�1X i(k̂1; k̂2)
0M �XX i(k̂1; k̂2)]

�1T�1=2X i(k̂1; k̂2)
0M �X"i:

Under Theorem 1, k̂1�k01 = op(1) and k̂2�k02 = op(1), for each i, X i(k̂1; k̂2)
p! X i(k

0
1; k

0
2).

Thus, under Assumption 6 (ii),

1

T
X i(k̂1; k̂2)

0M �XX i(k̂1; k̂2)�
1

T
X i(k

0
1; k

0
2)
0M �XX i(k

0
1; k

0
2)

p! 0:

Let�X;i = plimT!1
1
T
X i(k

0
0)
0M �XX i(k

0
0) and�X";i = plimT!1

1
T
X i(k

0
1; k

0
2)
0M �X�";iM �XX i(k

0
1; k

0
2),

as T 1=2N�1 ! 0, we obtain
p
T (b̂i � bi)

d! N(0;��1X;i�X";i�
�1
X;i):

Proof of Proposition 2. Under Assumption 4, the asymptotic distribution of mean-
group estimator can be derived similarly. Thus, we obtain

p
N
�
b̂MG � b

�
= N�1=2PN

i=1vb;i

+
1p
N

PN
i=1[

1

T
X i(k̂1; k̂2)

0M �XX i(k̂1; k̂2)]
�1 1

T
X i(k

0
1; k

0
2)
0M �X"i

+
1p
N

PN
i=1[

1

T
X i(k̂1; k̂2)

0M �XX i(k̂1; k̂2)]
�1 1

T
[X i(k̂1; k̂2)�X i(k

0
1; k

0
2)]

0M �X"i

+
1p
N

PN
i=1[

1

T
X i(k̂1; k̂2)

0M �XX i(k̂1; k̂2)]
�1 1

T
X i(k̂1; k̂2)

0M �X [X i(k̂1; k̂2)�X i(k
0
1; k

0
2)]bi

+
1p
N

PN
i=1[

1

T
X i(k̂1; k̂2)

0M �XX i(k̂1; k̂2)]
�1 1

T
X i(k̂1; k̂2)

0M �X
�V ��0(����0)�1
i(k

0
3):

By Assumption 4, the limiting distribution of the �rst term is N(0;�b): For the second

term,

V ar(N�1=2PN
i=1[T

�1X i(k̂1; k̂2)
0M �XX i(k̂1; k̂2)]

�1T�1X i(k
0
1; k

0
2)
0M �X"i)

=
1

NT

PN
i=1(T

�1X i(k̂1; k̂2)
0M �XX i(k̂1; k̂2))

�1(T�1X i(k
0
1; k

0
2)
0M �XV ar("i)M �XX i(k

0
1; k

0
2))

� (T�1X i(k̂1; k̂2)
0M �XX i(k̂1; k̂2))

�1 = Op(T
�1):

Thus, N�1=2PN
i=1[T

�1X i(k̂1; k̂2)
0M �XX i(k̂1; k̂2)]

�1T�1X i(k
0
1; k

0
2)
0M �X"i = Op(T

�1=2). Simi-

larly, the last term is Op(N�1=2T�1).

As in the proof of Proposition 1, the second and third terms are also op(1). Therefore,

as (N; T )!1,
p
N(b̂MG � b) = N�1=2PN

i=1vb;i + op(1)
d! N (0;�b) :
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A.4 Proofs of Propositions 3, 4

Proof of Proposition 3. We will show that the convergence rate of b̂i is T . From
equation (34), T (b̂i � bi) can be decomposed into �ve terms,

T (b̂i � bi) = [T
�2X i(k̂1; k̂2)

0M �XX i(k̂1; k̂2)]
�1 1

T
X i(k

0
1; k

0
2)
0M �X"i

�[T�2X i(k̂1; k̂2)
0M �XX i(k̂1; k̂2)]

�1 1

T
[X i(k

0
1; k

0
2)�X i(k̂1; k̂2)]M �X"i

�[T�2X i(k̂1; k̂2)
0M �XX i(k̂1; k̂2)]

�1 1

T
X i(k̂1; k̂2)

0M �X
�V ��0(����0)�1
i(k

0
3)

+[T�2X i(k̂1; k̂2)
0M �XX i(k̂1; k̂2)]

�1 1

T
[X i(k

0
1; k

0
2)�X i(k̂1; k̂2)]

0M �X
�V ��0(����0)�1
i(k

0
3)

+[T�2X i(k̂1; k̂2)
0M �XX i(k̂1; k̂2)]

�1 1

T
X i(k̂1; k̂2)

0M �X [X i(k
0
1; k

0
2)�X i(k̂1; k̂2)]bi:

Under Theorem 2, k̂1 � k01 = op(1) and k̂2 � k02 = op(1); for each i, X i

�
k̂1; k̂2

�
�

X i (k
0
1; k

0
2)

p! 0. Thus, similar to equation (37) in the proof of Proposition 1, except

the �rst term, the other four terms above are op (1), i.e.,

T (b̂i � bi) = [T
�2X i(k̂1; k̂2)

0M �XX i(k̂1; k̂2)]
�1T�1X i

�
k01; k

0
2

�0
M �X"i + op (1) :

Thus, to prove Proposition 3, we need to show that the �rst term above converges weakly

to a non-degenerate distribution. Given that

T�2X i(k̂1; k̂2)
0M �XX i(k̂1; k̂2)� T�2X i(k

0
1; k

0
2)
0M �XX i(k

0
1; k

0
2)

p! 0;

it is equivalent to show that
�
1
T 2
X i(k

0
1; k

0
2)
0M �XX i(k

0
1; k

0
2)
��1 1

T
X i (k

0
1; k

0
2)
0
M �X"i converges

weakly to a non-degenerate distribution.

Following Phillips and Moon (1999), we will show that as T !1;

1

T 2
X i(k

0
1; k

0
2)
0M �XX i(k

0
1; k

0
2) ) Gi;

1

T
X i

�
k01; k

0
2

�0
M �X"i ) Hi;

whereGi andHi are two non-degenerate distributions, respectively, which will be speci�ed

below. Therefore, as T !1; T (b̂i � bi)) G�1i Hi:

Consider the term 1
T 2
X i(k

0
1; k

0
2)
0M �XX i(k

0
1; k

0
2) �rst. DenoteX i(k

0
1; k

0
2) = diag (Xi1; Xi2; Xi3)

with Xi1(k
0
1)

(k01�p)
= (xi1; :::; xi;k01)

0, Xi2(k
0
1; k

0
2)

(k02�k01)�p
= (xi;k01+1; :::; xik02)

0, Xi3(k
0
2)

(T�k02)�p
= (xi;k02+1; :::; xiT )

0:

F1 = (f1; :::; fk01)
0; F2 = (fk01+1; :::; fk02)

0; and F3 = (fk02+1; :::; fT )
0, and Vi1; Vi2, Vi3, "1i; "2i,

"3i are similarly de�ned. Thus, X i(k
0
1; k

0
2) = diag(F1�i + Vi1; F2�i + Vi2; F3�i + Vi3):
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When the rank condition is satis�ed and �X = F ��+�V ,M �XX i(k
0
1; k

0
2) =MFX i(k

0
1; k

0
2)+

op(1), as (N; T )!1. Thus,

T�2X i(k
0
1; k

0
2)
0MFX i(k

0
1; k

0
2)

= T�2diag(F1�i + Vi1; F2�i + Vi2; F3�i + Vi3)
0 � diag(F1�i + Vi1; F2�i + Vi2; F3�i + Vi3)

� [T�2diag(F1�i + Vi1; F2�i + Vi2; F3�i + Vi3)
0F ](T�2F 0F )�1

� [T�2F 0diag(F1�i + Vi1; F2�i + Vi2; F3�i + Vi3)]: (37)

According to Phillips and Moon (1999, P.1062), under Assumption 12, for any 0 �
� 1 � � 2 � 1;

T�2
P[�2T ]

[�1T ]
vitv

0
it ) 	i(1)Pi(

Z �2

�1

W&;iW
0
&;i)P

0
i	i(1)

0 =

Z �2

�1

B&;iB
0
&;i; (38)

where B&;i is a Brownian motion with covariance 	i(1)PiP 0i	i(1)
0. Similarly, under As-

sumptions 5, 12 and 13,

T�2
P[�2T ]

[�1T ]
ftf

0
t ) �(1)Q(

Z �2

�1

W'W
0
')Q

0�(1)0 =

Z �2

�1

B'B
0
'; (39)

T�2
P[�2T ]

[�1T ]
ftv

0
it ) �(1)Q(

Z �2

�1

W'W
0
&;i)P

0
i	i(1)

0 =

Z �2

�1

B'B
0
&;i: (40)

In addition, under Assumptions 5, 8, and Lemma 8 of Phillips and Moon (1999),

T�1
P[dT ]

[cT ]ft"it ) �(1)Q(

Z d

c

W'd(W":i))�i +
P1

t=0

P1
s=0E('t"i;t+s)

=

Z d

c

B'd(B":i) +
P1

t=0

P1
s=0E('t"i;t+s): (41)

Moreover, under Assumptions 5, 12 and 13,

T�1
P[dT ]

[cT ]vit"it ) 	i(1)Pi(

Z d

c

W&;id(W":i))�i +
P1

t=0

P1
s=0E(& it"i;t+s)

=

Z d

c

B&;id(B";i) +
P1

t=0

P1
s=0E(& it"i;t+s): (42)

Consider the �rst term in equation (37) above,

T�2diag(F1�i + Vi1; F2�i + Vi2; F3�i + Vi3)
0 � diag(F1�i + Vi1; F2�i + Vi2; F3�i + Vi3)

=T�2diag ((F1�i + Vi1)
0(F1�i + Vi1); (F2�i + Vi2)

0(F2�i + Vi2); (F3�i + Vi3)
0(F3�i + Vi3)) :
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According to equations (38)-(40),

T�2(Fj�i+Vj1)
0(Fj�i+Vij)) �0i

Z �0j

�0j�1

B'B
0
'�i+(

Z �0j

�0j�1

B&;iB
0
')�i+�

0
i(

Z �0j

�0j�1

B'B
0
&;i)+

Z �0j

�0j�1

B&;iB
0
&;i;

for j = f1; 2; 3g with �00 = 0 and �03 = 1. Thus,

T�2diag(F1�i + Vi1; F2�i + Vi2; F3�i + Vi3)
0 � diag(F1�i + Vi1; F2�i + Vi2; F3�i + Vi3)

)diag(�0i

Z �01

0

B'B
0
'�i + (

Z �01

0

B&;iB
0
')�i + �

0
i(

Z �01

0

B'B
0
&;i) +

Z �01

0

B&;iB
0
&;i;

�0i

Z �02

�01

B'B
0
'�i + (

Z �02

�01

B&;iB
0
')�i + �

0
i(

Z �02

�01

B'B
0
&;i) +

Z �02

�01

B&;iB
0
&;i;

�0i

Z 1

�02

B'B
0
'�i + (

Z 1

�02

B&;iB
0
')�i + �

0
i(

Z 1

�02

B'B
0
&;i) +

Z 1

�02

B&;iB
0
&;i):

Similarly, according to equations (39) and (40), the second term in equation (37)

T�2diag(F1�i + Vi1; F2�i + Vi2; F3�i + Vi3)
0F

=T�2 (F 01F1�i + F 01Vi1; F
0
2F2�i + F 02Vi2; F

0
3F3�i + F 03Vi3)

0

)(
R �01
0
B'B

0
'�i +

Z �01

0

B'B
0
&;i;

Z �02

�01

B'B
0
'�i +

Z �02

�01

B'B
0
&;i;

Z 1

�02

B'B
0
'�i +

Z 1

�02

B'B
0
&;i)

0;

and 1
T 2
F 0F )

R 1
0
B'B

0
': Thus, we obtain

T�2X i(k
0
1; k

0
2)
0MFX i(k

0
1; k

0
2) (43)

)diag(�0i

Z �01

0

B'B
0
'�i + (

R �01
0
B&;iB

0
')�i + �

0
i(

Z �01

0

B'B
0
&;i) +

Z �01

0

B&;iB
0
&;i;

�0i

Z �02

�01

B'B
0
'�i + (

Z �02

�01

B&;iB
0
')�i + �

0
i(

Z �02

�01

B'B
0
&;i) +

Z �02

�01

B&;iB
0
&;i;

�0i

Z 1

�02

B'B
0
'�i + (

Z 1

�02

B&;iB
0
')�i + �

0
i(

Z 1

�02

B'B
0
&;i) +

Z 1

�02

B&;iB
0
&;i)�

(

Z �01

0

B'B
0
'�i +

Z �01

0

B'B
0
&;i;

Z �02

�01

B'B
0
'�i +

Z �02

�01

B'B
0
&;i;

Z 1

�02

B'B
0
'�i +

Z 1

�02

B'B
0
&;i)

0(

Z 1

0

B'B
0
')
�1

� (
Z �01

0

B'B
0
'�i +

Z �01

0

B'B
0
&;i;

Z �02

�01

B'B
0
'�i +

Z �02

�01

B'B
0
&;i;

Z 1

�02

B'B
0
'�i +

Z 1

�02

B'B
0
&;i) � Gi:

36



Likewise,

T�1X i

�
k01; k

0
2

�0
M �X"i

= T�1diag(F1�i + Vi1; F2�i + Vi2; F3�i + Vi3)
0"i

� T�1diag(F1�i + Vi1; F2�i + Vi2; F3�i + Vi3)
0F (F 0F )�1F"i

=

24 T�1�0iF
0
1"1i + T�1V 0

i1"1i
T�1�0iF

0
2"2i + T�1V 0

i2"2i
T�1�0iF

0
3"3i + T�1V 0

i3"3i

35�
24 T�2�0iF

0
1F1 + T�2V 0

i1F1
T�2�0iF

0
2F2 + T�2V 0

i2F2
T�2�0iF

0
2F2 + T�2V 0

3iF3

35�T�2F 0F��1� 1
T
F 0"i

�
:

According to equations (39), (41), and (42),

T�1X i

�
k01; k

0
2

�0
M �X"i (44)

)

2664
�0i
R �01
0
B'd(B":i) + �

0
i

P1
t=0

P1
s=0E ('t"i;t+s) +

R �01
0
B&;id(B":i) +

P1
t=0

P1
s=0E (& it; "i;t+s)

�0i
R �02
�01
B'd(B":i) + �

0
i

P1
t=0

P1
s=0E ('t"i;t+s) +

R �02
�01
B&;id(B":i) +

P1
t=0

P1
s=0E (& it; "i;t+s)

�0i
R �02
�01
B'd(B":i) + �

0
i

P1
t=0

P1
s=0E ('t"i;t+s) +

R �02
�01
B&;id(B":i) +

P1
t=0

P1
s=0E (& it; "i;t+s)

3775

�

2664 �
0
i

R �01
0
B'B

0
' +

R �01
0
B'B

0
&;i

�0i
R �02
�01
B'B

0
' +

R �02
�01
B'B

0
&;i

�0i
R 1
�02
B'B

0
' +

R 1
�02
B'B

0
&;i

3775�Z 1

0

B'B
0
'

��1 "Z 1

0

B'd(B":i) +
1X
t=0

1X
s=0

E ('t"i;t+s)

#
� Hi:

Proof of Proposition 4. By the same argument in the proof of Proposition 2, we
can obtain equation (20),

p
N
�
b̂MG � b

�
=

1p
N

NX
i=1

vb;i+
1p
NT

NX
i=1

"�
1

T 2
X i(k̂1; k̂2)

0M �XX i(k̂1; k̂2)

��1
1

T
X i(k̂1; k̂2)

0M �X"i

#
+op (1) :

In a special case of homogeneous slopes bi = b with vb;i = 0, we have,

p
NT

�
b̂MG � b

�
=

1p
N

NX
i=1

"�
1

T 2
X i(k̂1; k̂2)

0M �XX i(k̂1; k̂2)

��1
1

T
X i(k̂1; k̂2)

0M �X"i

#
+op (1) :

As in the proof of Proposition 3 above,
�
1
T 2
X i(k̂1; k̂2)

0M �XX i(k̂1; k̂2)
��1

1
T
X i(k̂1; k̂2)

0M �X"i

weakly converges a non-degenerate distribution G�1i Hi.

Under the assumptions that "it; 's; &jt0 are independent for all (i; j) and (t; s; t
0);

and E("it) = 0; E
h
1
T
X i(k̂1; k̂2)

0M �X"i

i
= 0: Thus,

p
NT

�
b̂MG � b

�
is consistent, as

(N; T )!1: In addition, under the assumption cross-sectional independence of "it; G�1i Hi

are independent across i. Thus, by the Central Limit Theory, the limiting distribution

of
p
NT

�
b̂MG � b

�
is multivariate normal, i.e., as (N; T ) ! 1;

p
NT

�
b̂MG � b

�
d!

N(0;�MG): Next, we derive the expression of �MG. For simplicity, asymptotic bias men-

tioned in Theorem 8 of Phillips and Moon (1999) and Proposition 1 of Bai, Ng and Kao
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(2009) dissappears here under the assumptions of no serial/ cross-sectional correlation

and heteroskedasticity.

Let wit = ("it; '
0
t; &

0
it)
0. Denote the long-run covariance matrix of wit; partitioned

conformably for wit; by


i =
1X

j=�1
E(wi0w

0
ij) =

24 
":i 
"'i 
"&i

'"i 
' 
'&i

&"i 
&'i 
&:i

35.
Denote L1 � N(0; Ir) and L2 � N(0; Ip). thus, as T ! 1; 1

T
F 0"i )

R 1
0
B'd(B":i) �

�i1
r�1

� 
1=2":i 

1=2
' � L1;

1
T
V 0
i "i )

R 1
0
B&;id(B":i) � �i2

p�1
� 
1=2":i 


1=2
&:i � L2; where �i1 and �i2 are

Gaussian processes, independent across i: Similarly, as T !1;

1

T 2
V 0
i F1 )

Z 1

0

B'B
0
&;i � �i3

p�r
;
1

T 2
F 0F )

Z 1

0

B'B
0
' � �4

r�r
;
1

T 2
V 0
i Vi )

Z 1

0

B&;iB
0
&;i � �i5

p�p

where �i3; �i4 and �i5 are Gaussian processes. The proof of Proposition 3 above shows,
1
T 2
X i(k

0
1; k

0
2)
0MFX i(k

0
1; k

0
2) ) Gi: According to the de�nitions of �i1; �i2; �i3; �4; and let

� = (�01; �
0
2 � �01; 1� �02)

0 we obtain

Gi = diag(�01; �
0
2 � �01; 1� �02)
 (�0i�4�i + �i3�i + �

0
i�
0
i3 + �i5)

�

24 �01(�
0
i�4 + �i3)

(�02 � �01)(�
0
i�4 + �i3)

(1� �02)(�
0
i�4 + �i3)

35 ��14 [�01(�4�i + �0i3); (�
0
2 � �01)(�4�i + �0i3); (1� �02)(�4�i + �0i3)]

=diag(�01; �
0
2 � �01; 1� �02)
 (�0i�4�i + �i3�i + �

0
i�
0
i3 + �i5)

� [�
 (�0i�4 + �i3)] �
�1
4 [�
 (�0i�4 + �i3)]

0
:

Similarly, since 1
T
X i (k

0
1; k

0
2)
0
M �X"i ) Hi and

Hi =

24 �01�
0
i�i1 + �01�i2

(�02 � �01)�
0
i�i1 + (�

0
2 � �01)�i2

(1� �02)�
0
i�i1 + (1� �02)�i2

35�
24 �01�

0
i�4 + �01�i3

(�02 � �01)�
0
i�4 + (�

0
2 � �01)�i3

(1� �02)�
0
i�4 + (1� �02)�i3

35 ��14 �i1

=

24 �01(�i2 � �i3�
�1
4 �i1)

(�02 � �01)(�i2 � �i3�
�1
4 �i1)

(1� �02)(�i2 � �i3�
�1
4 �i1)

35 = �
 (�i2 � �i3�
�1
4 �i1):
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Therefore,

�MG = lim
N!1

1

N

NX
i=1

E[(T�2X i(k̂1; k̂2)
0M �XX i(k̂1; k̂2))

�1(T�1X i(k̂1; k̂2)
0M �X"i)

� (T�1"0iM �XX i(k̂1; k̂2)
0)(T�2X i(k̂1; k̂2)

0M �XX i(k̂1; k̂2))
�1]

= lim
N!1

1

N

NX
i=1

EfG�1i
�
�
 (�i2 � �i3�

�1
4 �i1)

� �
�
 (�i2 � �i3�

�1
4 �i1)

�0
G�1i g

= lim
N!1

1

N

NX
i=1

EfG�1i
�
(��0)


�
(�i2 � �i3�

�1
4 �i1)(�i2 � �i3�

�1
4 �i1)

0��G�1i g:
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Figure 1: Histograms of Break Point Estimators in Case 1 with Nonstationary Factors (T = 50) 
 N =10 N =50 N =200 
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Note: 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖(𝑘𝑘10, 𝑘𝑘20)𝑥𝑥𝑖𝑖,𝑡𝑡 + 𝛾𝛾1,𝑖𝑖(𝑘𝑘30)𝑓𝑓𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑖𝑖 , with 𝛽𝛽𝑖𝑖(𝑘𝑘10, 𝑘𝑘20) = �
𝛽𝛽𝑖𝑖 ,                            𝑡𝑡 = 1, … , 𝑘𝑘10

𝛽𝛽𝑖𝑖 + 𝛥𝛥𝛥𝛥𝑖𝑖 ,        𝑡𝑡 = 𝑘𝑘10 + 1, … , 𝑘𝑘20,
𝛽𝛽𝑖𝑖 + 2𝛥𝛥𝛥𝛥𝑖𝑖 ,      𝑡𝑡 = 𝑘𝑘20 + 1, … ,𝑇𝑇.

  𝛼𝛼𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(1, 1), 𝛽𝛽𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(1, 0.04), Δ𝛽𝛽𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(0, 0.5), 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖 + 𝛾𝛾2,𝑖𝑖𝑓𝑓𝑡𝑡 + 𝑣𝑣𝑖𝑖𝑖𝑖 , 

where 𝑎𝑎𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(0.5, 0.5), 𝛾𝛾2,𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(0.5,0.5) and 𝑣𝑣𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖,𝑡𝑡−1 + 𝜓𝜓𝑖𝑖𝑖𝑖 ,𝜓𝜓𝑖𝑖𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(0, 1 − 𝜌𝜌𝑣𝑣𝑣𝑣2 ), 𝑣𝑣𝑖𝑖,−50 = 0, 𝜌𝜌𝑣𝑣𝑣𝑣~𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖[0.05,0.95]. 𝑓𝑓𝑡𝑡 = 𝑓𝑓𝑡𝑡−1 + 𝑣𝑣𝑓𝑓𝑓𝑓 , 𝑡𝑡 = −50,… ,𝑇𝑇, 𝑣𝑣𝑓𝑓𝑓𝑓~𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(0, 1 − 𝜌𝜌𝑓𝑓2), 

𝑓𝑓−50 = 0. 𝛾𝛾1,𝑖𝑖(𝑘𝑘30) = �
𝛾𝛾1,𝑖𝑖 ,                 𝑡𝑡 = 1, … , 𝑘𝑘30,
𝛾𝛾1,𝑖𝑖 + Δ𝛾𝛾𝑖𝑖 , 𝑡𝑡 = 𝑘𝑘30 + 1, … ,𝑇𝑇,

    𝛾𝛾1,𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(1,0.2), Δ𝛾𝛾𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(0.5, 0.5). 𝜀𝜀𝑖𝑖𝑖𝑖 =

�
𝜌𝜌𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖,𝑡𝑡−1 + 𝜎𝜎𝑖𝑖(1 − 𝜌𝜌𝑖𝑖𝑖𝑖2 )0.5𝜔𝜔𝑖𝑖𝑖𝑖 ,       𝑖𝑖 = 1, … , [𝑁𝑁 2⁄ ],

𝜎𝜎𝑖𝑖(1 + 𝜃𝜃𝑖𝑖𝑖𝑖2 )−0.5�𝜔𝜔𝑖𝑖𝑖𝑖 + 𝜃𝜃𝑖𝑖𝑖𝑖𝜔𝜔𝑖𝑖,𝑡𝑡−1�,    𝑖𝑖 = [𝑁𝑁 2⁄ ] + 1, … ,𝑇𝑇,
 𝜎𝜎𝑖𝑖2~𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(0.5,1.5),𝜔𝜔1𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(0,1),  𝜌𝜌𝑖𝑖𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖[0.05, 0.95],  𝜃𝜃𝑖𝑖𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖[0,1]. These variables are mutually independent. The 

replication number is 1,000. 𝑇𝑇 = 50, 𝑘𝑘10 = [0.3𝑇𝑇] = 15, 𝑘𝑘20 = [0.5𝑇𝑇] = 25, 𝑘𝑘30 = [0.7𝑇𝑇] = 35.  𝑘𝑘�𝑗𝑗: The OLS estimator of the change point 𝑘𝑘𝑗𝑗0, 𝑗𝑗 = 1,2,3.  
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Figure 2: Histograms of Break Point Estimators in Case 1 Under Rank Deficiency (T = 50) 
 N =10 N =50 N =200 
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         Note: The DGP is the same as that in Figure 1, except that the means of 𝑎𝑎𝑖𝑖 and 𝛾𝛾2,𝑖𝑖 change to zero, i.e., 𝑎𝑎𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(0, 0.5), 𝛾𝛾2𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(0, 0.5). In the current design,  

the rank condition is not satisfied asymptotically.  
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Figure 3: Histograms of Break Point Estimators in Case 2 (Panel Cointegration) (T = 50)  
 N =10 N =50 N =200 
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Note: The DGP is the same as that of Figure 1, except nonstationary 𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑖𝑖,𝑡𝑡−1 + 𝜓𝜓𝑖𝑖𝑖𝑖 ,𝜓𝜓𝑖𝑖𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(0, 1 − 𝜌𝜌𝑣𝑣𝑣𝑣2 ), 𝑣𝑣𝑖𝑖,−50 = 0. 
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  Figure 4: Histograms of Break Point Estimators in Case 2 with Stationary Factors (T = 50)  
 N =10 N =50 N =200 
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Note: The DGP is the same as that of Figure 3, except stationary factors, 𝑓𝑓𝑡𝑡 = 0.5𝑓𝑓𝑡𝑡−1 + 𝑣𝑣𝑓𝑓𝑓𝑓, 𝑡𝑡 = −49, … ,0,1, …𝑇𝑇, 𝑣𝑣𝑓𝑓𝑓𝑓~𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(0, 1 − 𝜌𝜌𝑓𝑓
2) with 𝜌𝜌𝑓𝑓 = 0.5, 𝑓𝑓−50 = 0.  
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Figure 5: Histograms of Break Point Estimators in Case 2 with Nonstationary Error (T = 50) 
 N =10 N =50 N =200 
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Note: The DGP is the same as that of Figure 3, except nonstationary errors, 𝜀𝜀𝑖𝑖𝑖𝑖 = 𝜀𝜀𝑖𝑖,𝑡𝑡−1 + 𝜗𝜗𝑖𝑖𝑖𝑖 , 𝑡𝑡 = −49, … ,0,1, …𝑇𝑇, 𝜗𝜗𝑖𝑖𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�0, 1 − 𝜌𝜌𝜀𝜀𝜀𝜀
2 �, 𝜀𝜀𝑖𝑖,−50 = 0.  
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Figure 6: Histograms of Break Point Estimators in Case 1 with Mixed Stationary and Nonstationary Regressors (T = 50)  
 N =10 N =50 N =200 
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Note: An additional regressor and factor are added in the DGP used in Figure 1 to allow for mixed stationary and nonstationary regressors. 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽1,𝑖𝑖(𝑘𝑘10)𝑥𝑥1,𝑖𝑖𝑖𝑖 + 𝛽𝛽2,𝑖𝑖(𝑘𝑘20)𝑥𝑥2,𝑖𝑖𝑖𝑖 +
𝛾𝛾11,𝑖𝑖(𝑘𝑘30)𝑓𝑓1,𝑡𝑡 + 𝛾𝛾12,𝑖𝑖(𝑘𝑘30)𝑓𝑓2,𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑖𝑖 , where 𝑥𝑥1,𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖 + 𝛾𝛾21,𝑖𝑖𝑓𝑓1,𝑡𝑡 + 𝛾𝛾22,𝑖𝑖𝑓𝑓2,𝑡𝑡 + 𝑣𝑣1,𝑖𝑖𝑖𝑖 , 𝑥𝑥2,𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖 + 𝛾𝛾23,𝑖𝑖𝑓𝑓2,𝑡𝑡 + 𝑣𝑣2,𝑖𝑖𝑖𝑖 . 𝛾𝛾21,𝑖𝑖  , 𝛾𝛾22,𝑖𝑖 , 𝛾𝛾23,𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(0.5,0.5). Two factors 𝑓𝑓1,𝑡𝑡 = 𝑓𝑓1,𝑡𝑡−1 + 𝑣𝑣1,𝑓𝑓𝑓𝑓 , 𝑓𝑓2,𝑡𝑡 =
0.5𝑓𝑓2,𝑡𝑡−1 + 𝑣𝑣2,𝑓𝑓𝑓𝑓, 𝑓𝑓1,−50 = 𝑓𝑓2,−50 = 0. 𝑘𝑘10 = 0.3𝑇𝑇, 𝑘𝑘20 = 0.5𝑇𝑇, 𝑘𝑘30 = 0.7𝑇𝑇. 𝛾𝛾11,𝑖𝑖(𝑘𝑘30), 𝛾𝛾12,𝑖𝑖(𝑘𝑘30) have the same design as 𝛾𝛾1,𝑖𝑖(𝑘𝑘30) in Figure 1 except the variance of the shift term changes 

from 0.5 to 0.16. 𝛽𝛽1,𝑖𝑖(𝑘𝑘10) = �
𝛽𝛽11,𝑖𝑖 ,                𝑡𝑡 = 1, … , 𝑘𝑘10

𝛽𝛽11,𝑖𝑖 + 𝛥𝛥𝛥𝛥1,𝑖𝑖 , 𝑡𝑡 = 𝑘𝑘10 + 1, … ,𝑇𝑇,
 and 𝛽𝛽2,𝑖𝑖(𝑘𝑘20) = �

𝛽𝛽21,𝑖𝑖,                𝑡𝑡 = 1, … , 𝑘𝑘20

𝛽𝛽21,𝑖𝑖 + 𝛥𝛥𝛥𝛥2,𝑖𝑖 , 𝑡𝑡 = 𝑘𝑘20 + 1, … ,𝑇𝑇,
 with 𝛥𝛥𝛥𝛥1,𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(0, 0.16),𝛥𝛥𝛥𝛥2,𝑖𝑖~𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(0, 0.16).  
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