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Abstract

Nonstationary panels have been widely used in empirical studies in macroe-
conomics and finance. This paper considers multiple structural changes in
nonstationary heterogeneous panels with common factors. Kapetanios, Pe-
saran, Yamagata (2011) showed that unobserved nonstationary factors can be
proxied by cross-sectional averages of observable data. This means that un-
observed error factors can be treated as additional regressors, and different
break points in slopes and error factor loadings can be considered as multiple
breaks in linear regression models with panel data. We generalize the least
squares approach by Bai and Perron (1998) to nonstationary panels and show
that the break points in both slopes and error factor loadings can be consis-
tently estimated for two important cases involving i) nonstationary factors and
ii) nonstationary regressors. Monte Carlo simulations are conducted to verify
the main results in finite samples. Finally, we illustrate our methods with
an empirical example examining the effect of international R&D spillovers on
domestic total factor productivity in OECD countries. A common break in
1992 is detected and attributed to the acceleration of globalization that began
in the early 1990s.
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1 Introduction

Nonstationary panel data models allowing for cross-sectional dependence using
a factor structure in the errors continue to be the focus of a lot of theoretical as
well as empirical studies in econometrics. Hsiao (2018) provides a very detailed
and insightful review of the main modeling and estimation approaches in the factor-
augmented panel data literature. Feng and Kao (2020) also give a textbook treatment
of this subject focusing on three main approaches for the factor-augmented panel
data models. They include Pesaran’s (2006) common correlated effects (CCE), Bai’s
(2009) iterated principal components (IPC), and the likelihood approaches proposed
by Bai and Li (2014). More recently, the transformed approach developed by Hsiao,
Shi, Zhou (2021) shows very good properties in dealing with error factors in panel
data models.

This paper contributes to the literature of nonstationary panels with common fac-
tors by allowing for structural breaks in the slopes. It is motivated by Bai and Kao
(2006) who consider a panel cointegration model with stationary factors, which are
allowed to be correlated with the regressors. \/nT-consistent fully modified (2sFM)
estimators of the slope parameters are derived. In a panel cointegration model with
nonstationary factors considered by Bai, Kao and Ng (2009), factors are treated as
parameters, and the dependent variable cointegrates with the regressors and factors.
The IPC approach is applied to deal with unobserved factors, as in Bai (2009), and
the \/nT-consistent continuously updated bias-corrected (CupBC) and continuously
updated fully modified (CupFM) estimators of the slope parameters are proposed.
Recently, Huang, Jin, and Su (2020) and Huang, Jin, Phillips, Su (2021) introduce
the heterogeneity, modeled as a latent group structure in the slope parameters of the
panel cointegration model with nonstationary factors, thus adding two features of
heterogeneity and cross-section dependence in the nonstationary panel literature. A
penalized principal component estimation, which is an iterative procedure between
penalized regression and principal component analysis (PCA), is proposed to con-
sistently estimate group membership and the slope parameters. Different from the
homogeneous panel literature considered above, Kapetanios, Pesaran, and Yamagata
(2011, KPY hereafter) estimate a model of heterogeneous panels with nonstationary
factors. They find that the CCE approach proposed by Pesaran (2006) is still valid
for 1(1) factors. In addition, Holly, Pesaran and Yamagata (2010) apply these meth-



ods to examine empirical features of the US housing markets.!

Following Huang et al. (2021) and Dong et al. (2021), this paper adds heterogene-
ity to the literature by considering multiple structural changes in the nonstationary
panels with common factors. Specifically, we consider multiple breaks in the slopes
and the error factor loadings in the heterogeneous panels with nonstationary regres-
sors and factors. As such, this paper enriches the literature of nonstationary panels
by accommodating two additional empirical features of multiple structural changes
and cross-sectional dependence. As in Pesaran (2006) and KPY, unobserved non-
stationary factors can be proxied by the cross-sectional averages of observable data.
Thus, unobserved error factors can be treated as additional regressors, and differ-
ent break points in slopes and error factor loadings can be considered as multiple
breaks in linear regression models with panel data. Therefore, we generalize the
least squares approach by Bai and Perron (1998) to nonstationary panels and show
that the break points in both slopes and error factor loadings can be consistently
estimated. In addition, different from KPY, we also consider the case of nonstation-
ary regressors after the CCE transformation. This model can be considered as an
extension of Phillips and Moon (1999, Section 5) to the case of allowing for an error
factor structure and multiple breaks in slopes. Similarly, a T-consistent estimator of
the heterogeneous slope parameters is obtained.

Estimation of structural breaks in panels has attracted a lot of attention since
Bai’s (2010) panel mean-shift model. Kim (2011) considers a common break in a
deterministic trend model for large panels with nonstationary or stationary errors.
Baltagi, Feng and Kao (2016, 2019, BFK hereafter) extend Pesaran’s (2006) heteroge-
neous panels to the cases of common breaks in slopes with exogenous and endogenous
regressors. Baltagi, Kao and Wang (2015) apply Bai’s (2009) IPC approach to deal
with interactive fixed effects in the errors of a heterogeneous stationary panel with
a common break in the slopes. Baltagi, Kao and Liu (2017) look at the estimation
of a break point in homogeneous nonstationary panels with only one regressor and
no error factor structure. These models mainly focus on the case of a single common
break. Li, Qian and Su (2017), Qian and Su (2016) propose the adaptive group
fused LASSO (AGFL) in panels with multiple breaks in slopes, with and without

interactive effects, respectively.? Lumsdaine, Okui and Wang (2023) consider the

Dong, Gao and Peng (2021) propose a general model of nonstationary panels by considering
varying-coefficient slopes and factor loadings.
2There have been important work on estimating and testing for multiple structural changes in



estimation of panel group structure models with structural breaks. Kaddoura and
Westerlund (2023) study panel data models with multiple structural breaks when T’
is fixed.3

Recently, Karavias, Narayan and Westerlund (2023) consider a single break in
stationary homogeneous panels with interactive effects, and Ditzen, Karavias and
Westerlund (2023) extend the analysis to the case of multiple breaks. Unlike these
two papers, we focus on nonstationary heterogeneous panels and nonstationary fac-
tors with multiple breaks. In addition, multiple breaks in factor loadings are also
considered in our paper. Thus, our model can be applied to empirical research using
aggregate level data over a long period, e.g., the international R&D spillover model.

This paper is also related to the literature on structural instability in factor
models since Stock and Watson (2009), and extensively studied by Breitung and
Eickmeier (2011), Chen, Dolado and Gonzalo (2014), Yamamoto and Tanaka (2015),
and Cheng, Liao and Schorfheide (2016). Recent advancements in this direction also
include Baltagi, Kao and Wang (2017), Bai, Han and Shi (2020), and Duan, Bai and
Han (2023), Baltagi, Kao and Wang (2021), Ma and Tu (2023).

The paper is organized as follows. Section 2 introduces the model of nonsta-
tionary panels with common factors and multiple structural changes in slopes and
error factor loadings. Section 3 presents the main ideas for estimation. Asymptotic
properties of the estimators are derived in Section 4. In Section 5, we consider the
case of additional nonstationary components in regressors. Monte Carlo simulations
are conducted in Section 6 and Section 7 displays an empirical application to inter-
national R&D spillovers. Section 8 provides concluding remarks. The mathematical
proofs are relegated to the Appendix.

Notation: For any matrix or vector A, the Frobenius norm of A is defined as
|A|| = v/tr(AA"). (N,T) — oo denotes N and T tend to infinity simultaneously. []
is the greatest integer function. Stochastic processes such as Brownian motion W (r)

on [0,1] are written as W, integrals such as fcd W (r)dr as fcd W and stochastic inte-

the time series literature, including Bai (1997), Bai and Perron (1998, 2003), Qu and Perron (2007),
Kejriwal and Perron (2008), Maheu and Song (2018), Oka and Perron ( 2018), Bergamelli et al.
(2019), Pang et al. (2021), to name a few.

3The multi-break homogeneous panel data model with fixed T considered by Kaddoura and
Westerlund (2023) is very useful in empirical studies. When T is fixed, the difference between
stationary and nonstationary data is irrelevant for the proofs. Different from their model, we
consider a long panel with nonstationary data. Thus, we connect our paper with the nonstationary
panel literature. When T is large, nonstationary data is treated differently from stationary data
in the proofs. Consequently, the technical framework used is different, including assumptions,
convergence rates and proofs.



grals fcd W (r)dW (r) as fcd WdW. B, denotes the Brownian motion with covariance

matrix >,. "=" denotes weak convergence.

2 Model

By extending Pesaran’s (2006) influential framework to the nonstationary case,
KPY (2011) consider the following heterogeneous panel regression with nonstationary
factors:

yit:x;tﬁi_‘_’%{ft—i_eita Z:17’N7 t = 17"'7Ta (1)

where x; is a p x 1 vector of explanatory variables with heterogeneous slopes f;,
£i 1s the idiosyncratic error, independent of x;, and ~; is the corresponding loading

vector.? The ¢ x 1 vector of unobserved factors f; follow I(1) processes,

Je = fio1 + ¢, (2)

¢ is the idiosyncratic error. x;; follow an I(1) processes under the Assumption of
commonly correlated effects,

Ty =L} fy 4+ vir, (3)

where I'; is an g x p factor loading matrix. wv; is a p X 1 vector of disturbances.
Thus, y;; is also nonstationary. KPY show that the CCE approach is robust to
nonstationary factors. v;; is assumed to be I(0) as in KPY, in what we call Case
1 in this and the next section. Case 2 assumes v;; to be I(1) and this is studied in
Section 5.
This paper generalizes KPY’s model (1) above by considering multiple breaks in
Bi:
v = 2, B8i(Ko) +vife +€u,i=1,. ,N;t=1,...,T. (4)
Common breaks in the slopes ;(Kg) could arise due to technological progress or ma-

jor policy shifts in a long time horizon. Assume there are mg breaks in the slope pa-

rameters.” As in Bai and Perron (1998), Ky denotes an mq-partition (Ko 1, ..., Komg)s

4The fixed effects model can be considered as a special case when the first component of x;
is 1 and the other components of the slope parameters (; are homogeneous. We examine the
performance of the break estimators in a fixed effects model in the Monte Carlo experiments.

5To accommodate the case of partial structural changes in the slopes considered by Bai and
Perron (1998), w},a; can be added to the right-hand side of (4) to denote the regressors and their
corresponding slopes that are constant over time.



and the value of the slopes 3;(Kg) vary across mg + 1 different regimes,’ i.e.,

Bit, t=1,.., Ko,
Bi(Ko) = :
Bimo+1, t=Kom,+1,....,T.

This model generalizes the analysis of stationary panels with a single break in
slopes by BFK (2016, 2019) to nonstationary panels with multiple structural breaks.
Thus, additional technical challenges are involved in the derivations of asymptotic
properties of estimators with nonstationary data in the case of multiple breaks.

Similarly, factor loadings v; could also suffer from structural changes, often seen
in the macroeconomic literature (Stock and Watson, 2009). Assume there are m;

breaks in the error factor loadings with an m;-partition Iy = (Kj1, ..., K1m,),

Yil, t= 1,...,K171,
%i(K1) = :
Vi1, t=Kim +1,...T.
The model becomes
yie = 3, Bi(Ko) + (K1) fr + €, i =1, Ny t=1,..., T. (5)

In addition, the nonstationary f; and z;; follow processes (2) and (3). Model (5)
includes model (4) above as a special case, as it allows for additional breaks in the
factor loadings. We suppress the superscript 0 in the true values of Ky and IC; for
now. Breaks i in error factor loadings are allowed to have overlaps with breaks
Ko in the slopes. Different from breaks Ky in slopes to model the changes in long-
run structural relationship between y and x, breaks K; in error loadings ; can be
considered equivalent to the instability of the variance of errors 7, f; 4+ €, in (4), or
changes in the error factor variance with constant loadings.

In the special case of mg = 2, m; = 1, of model (5), we assume Ky < Koo < K1,

without loss of generality. Thus, three breaks Ky, Koo, K11 split the sample into 4

regimes:
Ty Bin + Yinfe + €, t=1,.., Ko
Vit = Ty Bia + Vi fe + &, t=Ko1+1,..., Koo (6)
" i Bis + v fe ten t=Koa+ 1., Ky

vy Bis + Vi ft T e, t=Kii+1,..,T,

SIn this paper, we assume common breaks for the individual series in the panel. Kim (2014)
and Smith (2024) studied the case of heterogeneous breaks in the panel. However, to handle the
unobserved error factor structure in the model, we follow KPY’s CCE approach, which is not
applicable to heterogeneous breaks.



each of which can be considered the same as KPY. This is also the case when there
are multiple breaks in slopes and error factor loadings, i.e., mg > 1, m; > 1. We
follow KPY and use the CCE approach to deal with the unobserved nonstationary
factors f;. In this model, the parameters to be estimated include the slopes f;(Ko)
and the break points ICy, ;.

Like estimating break point Iy in slopes, estimating Iy in factor loadings is
equally important. As pointed out in the growing literature since Stock and Watson
(2009), the structural instability in the factor structure could have implications for
the accuracy of forecasting and number of estimated factors. In our model (5), ig-
noring the break K; in 7; could bias the estimates of the factor loadings in empirical
studies, e.g., US housing markets by Holly, Pesaran and Yamagata (2010). In addi-
tion, when the focus is on e, e.g., testing for remaining cross-sectional dependence
in €;; (Juodis and Reese, 2022), estimating K; is necessary for obtaining a consistent
estimate of ;.

Compared with Bai, Kao and Ng’s (2009) model of panel cointegration with
nonstationary factors, our model (5) adds two new empirical features: heterogeneous
slopes and structural breaks in slopes and factor loadings. Structural breaks here
can be regarded as a different way of modeling parameter heterogeneity from the
latent group structure considered by Huang et al. (2021). Besides, we apply the CCE
approach to deal with unobserved factors, instead of the IPC approach used in the two
papers above. In addition, different from BFK’s (2016, 2019) models of a common
structural break in heterogeneous panels with exogenous and endogenous regressors,
this paper focuses on multiple breaks and nonstationary factors and regressors. In
line with Bai, Kao and Ng (2009), f; are treated as additional explanatory variables,
instead of an error component in (5). Thus, Ky and K; are considered as multiple
breaks in a linear regression and are estimated by least squares as proposed by Bai
and Perron (1998).

As in the literature on nonstationary panels with factors, the major challenge in
estimating our model (5) lies in the unobserved factors. In this paper, we adopt the
CCE approach proposed by Pesaran (2006) and examined by KPY in the case of
nonstationary factors. To simplify the analysis, we follow Stock and Watson’s (2016,
p.429) idea of using the cross-sectional averages of x;, T; = % ZZ]\LI Ty, instead of

those of 1;; and x;, to proxy for f; in this paper.” The cross-sectional average of x;

"Karavias et al. (2023) use this proxy for f;. BFK (2019) focus on estimating a single break



in (3),

) R | XN
T = F/ft+1_)t7 I'= NZZIFZ and Uy = Nizlvit.
When T is of full rank (¢ < p), like OLS,
fe=(IT)'T(Z; — ). (7)

Since v; — 0 in probability as N — oo, it is also asymptotically valid to use z; as

observable proxies for nonstationary f;,
fi— (T 'T'z, B 0as N — oo. (8)

Hence, the idea of CCE is being used for nonstationary factors in each regime.®

Using (7) for f;, (5) can be written as

yie = oBi(Ko) + fi1:(K1) + €

= 23,(Ko) + [(TT)7'T (& — 0,)]"7(K1) + €t

= Bi(Ko) + 777 (K1) + €5, (9)
where 77 (K;) = I'(TTY) 1y (Ky) and &}, = g —v,1"(TTY)"*;(K4). Thus, by proxying
fr with gf)lservables, equatig)?ll (9) can be regarded as a panel data regression with
multiple common breaks Ky, K in slopes 3; and 7. In the special case of no breaks
K1 in the loadings of model (4), 77(K;) in equation (9) becomes ~; = IV(I'T")~! ;.
In this paper, we consider the general model (5) and use least squares proposed by
Bai and Perron (1998) to estimate break points (Co, K1), slopes ;(Ky) and their
cross-sectional averages.

Remark 1: Breitung and Eickmeier (2011) point out that the structural breaks
in the factor loadings can be captured by inflating the number of factors in the PCA
estimation. However, the inflated number of factors may fail the rank condition
required by the CCE approach above. This implies that using the cross-sectional
averages does not necessarily capture the inflated number of factors. As shown in

the next section, our estimator of Ky and (;(Ky) can be robust to the breaks K in

point in heterogeneous slopes using the cross-sectional average (y;t, x;) to proxy for f; and treat
the error factor structure as nuisance parameters. This paper also estimates break points in error
factor loadings K along with Ky. To simplify the analysis, we use the cross-sectional average ;¢
to proxy for f;. In additional Monte Carlo simulations, we use the cross-sectional average (yit, i)
to proxy for f; and similar results are obtained.

8As in KPY, when the rank condition holds, there is no need to estimate the number of error
factors.



error factor structure in a simultaneous estimation approach. Identifying the breaks
K1 can be separately achieved if the rank condition is satisfied with inflated number

of factors.?

3 Estimation

To simplify notation, let z; = (2,7}, & (Ko, K1) = (8:;(Ko)', 7 (K1)"). Thus,

2px1 2px1
equation (9) above can be written as

Yit = Zzl‘téi(lcm K1) + €5, (10)

We rearrange the mg + m; breaks Ko, K; in time line as {K°} = {Ko, K1} =
{KO K, ..., kO } with m = mg + my. Superscript 0 denotes for true values of breaks.
After reparameterization, model (10) can be considered as a panel data regression

with multiple structural changes in slopes:

Yit :Z;téij+€;<t7t:k??_l‘i‘l,...,k??, (11)

where j =1,....m + 1, and kJ = 0, k9n+1 =T.

Remark 2: Equation (11) can be considered as a panel data version of the
multiple structural change model considered by Bai and Perron (1998) using non-
stationary data. It also extends the stationary panel data model with one common
break in BFK (2016) to the case of multiple common breaks with nonstationary data.

Remark 3: The intuition on identifying break points in this literature apply
here as well. First, as pointed out by Bai (1997) and Bai and Perron (1998), the
key information to identify the break points in time series regressions depend on
the break magnitude and the variance of the regressors relative to the variance of
the errors. Second, in panels with mean shifts or (trend) stationary regressors, Bai
(2010), Kim (2011) and BFK (2016) show that the break magnitude increases with
N under the common break assumption. Thus the break point can be consistently
estimated in panels as (N,7) — oo. Third, Baltagi, Kao and Liu (2017), Pang
Du and Chong (2021) show that using nonstationary regressors, the variance of the
regressors increases with 7', implying that it is easier to identify break points in

regressions using nonstationary regressors than stationary regressors.

9In this case, we can use partitioned regression to consistently estimate Ko and S;;(Ko) first
when the rank condition is satisfied with a small number of factors. After I@o and Bit(/@()) are
obtained, PCA or other methods can be applied to identify the factor structure and the breaks in
loadings in errors f{v;: (K1) + i estimated by y;; — x;tﬁit(léo)‘

8



Define Y; = (yil,"' ayiT)/7 0 = ( §1>- - ;m+1) (’CO) = dzag( 21,---,Zz’,m+1)
with Z;; = (Zi7k?_l+1,---,zi7k§))/, j=1,..m+1and e = (gf,---,e). Thus,

equation (11) can be written in matrix form: for i =1,..., N,

Yi = Z;(K")di + ¢} (12)

For possible breaks IC = m-partition (ki, ..., k), the OLS estimator of §; is SZ(IC) =
(Z,(K)Z,(K)]" Z,(K)'Y;, and the corresponding sum of squared residuals is

SSR(K) = [V - 2,K)5.(K)] [¥i - 2,00)3.0)|

Thus, the OLS estimator of K° = (k?, ..., kY ) is defined as

K = (ki,....kn) = arg kmm NT ZSSR (13)

Due to the computation complexity O, (T™) of the grid search algorithm, obtain-
ing (1251, s l%m) by solving (13) is generally very time consuming when m > 3 and T'
is large. In practice, we recommend the dynamic programming algorithm proposed
by Bai and Perron (2003).*

In this paper, we assume that m is known. This assumption can be relaxed
by following the idea of sequential estimation based on parameter-consistancy tests
by Bai and Perron (1998). Alternatively, m can be determined by an information
criterion approach with a penalty factor related to m as in Boldea et al. (2020) who

consider a fixed effects panel data model with multiple breaks.

Next, we consider the estimation of 3;(Ky). Denote X; = (x4, ,2;7) and
X = (z1,---,7r)". Stacking the time dimension of equation (9) in matrix form gives
w3 Bin TV
Yi= : + : +ey
T Bimot1 i’/T’Yi*,mlH

.. . . ,
Reparameterizing X, (Ko) = diag (Xi1, Xia, -+, Ximot1) wWith X1 = (251, ..., 25 k)

/ / o / / /
Xi2 - (Ii,Koyl-l—la ceey xi,Koqg) y T T Xi,m0+1 - (a’;i,Ko’mO—i-h seey xiT) and bz - ( R 7/8i’m0+1>
gives

Y; = X, (Ko)b; + X(K1)g: + €, (14)

where X(ICI) = d’LCLg ((J_‘le (XY} 1_"/[(1,1)/7 R (f,KLml 41 j/T)I> and gi = (7:1/7 e a’yzifml—l—l)/‘

10Tn the simulations and empirical application, our selection range of breaks is 0.17 < k; < --- <
km < 0.97. To avoid the singularity problem, we also impose the restriction of min; k; — k;j—1 > p
forj=2,---m



In equation (14), we focus on the individual slopes b;. Hence, we perform a parti-
tioned regression that removes the second term X,(K;)g;.!* This partitioned regres-

sion on equation (14) yields:

N P . R 1

bi = b; (’Co, ’Cl) = [&(’Co) MX(;Q)&(’CO)} <’C0> XY (19)
where Mgy = 1 — X (K)[X (K1) X (Ky)] 7" X (K,)'. Similarly, the mean of b; can

also be estimated consistently by the following mean-group estimator

N

A 1 L. T B

bio = 3 Db = NZ[ Mg X,(Ko)| X, (Ko) Mg, Vi (16)

i=1
In the case of no breaks in error factors considered in equation (4), equation (14)
reduces to
Y; = X, (Ko)bi + X + ¢,

thus

~ ~ ~ -1 N /
b= b (Ko ) = [Xu(Ko) MeX,(Ko)| X, (Ko) MY,
where Mgy =1 — X (X' 'X )_1 X’ and the corresponding mean-group estimator be-

comes v
LS [ M X ()] X (o) Mg
1=1

The partitioned regression (15) suggests that the CCE transformed regressors
Mz )X X, (Ky) become stationary after partialling out I(1) f; in the case of stationary
vi. This leads to v/T-consistent bi as shown in the next Section. By contrast, when
vy follows an (1) process, MX(IG)K i(lﬁo) remains nonstationary. In this case, y;
and x; are cointegrated after dealing with the unobserved factors in each regime,
and T-consistency of b; can be obtained. This is different from the setup in KPY.

We will consider I(0) vy as Case 1 in Section 4, and I(1) v;; as Case 2 in Section 5.

4 Main Results

4.1 Assumptions

The following Assumptions are needed for establishing the asymptotic properties

of the breaks and slope estimators above.

HTf the structural breaks Ky exist in the loadings Ty, i.e., z; = I, (K2) fi + vy where T';(K2) is
similarly defined as 7;+(K1). It is still asymptotically valid to use Z; as proxies for the nonstationary
ft- We can simultaneously estimate the breaks (K1, 3) as in Section 3, or we can ignore them if
the focus is on estimating Ky and the slopes, and the rank condition still holds after using a bigger
set of factors to represent breaks in factor loadings. For simplicity, we only consider the case of no
breaks in I'; in this paper.

10



Assumption 1 For j ={1,--- m}, kY = [NIT] with 0 <\ <--- < X0, < 1.
Assumption 2 Rank(I') = q < p.

Assumption 3 Factor loadings v; (KC1) and T'; are independent and identically dis-

tributed (1ID) across i, and independent of €, vy and fi for all i,j,t. Assume
1, 1<t< Kiq

Vi(K1) = (K1) +m = m + : : with n; ~ I1D(0,%,)

Yontt,  Kma+l<t<T
and vec(I';) = vec(l') + &, & ~ 1I1D(0,), i = 1,...N, where the means y(K1), I'

are non-zero and fized and the variances €, d¢ are finite.

Assumption 4 Fori=1,..,N, b; = b+vy;,vp; ~ [1D(0,%,), whereb = (8}, By, -+, Blngs1) s
Vpi = (U};l’i, Vg, is " 'U/ﬁm0+1,i)/ and ¥y = diag(Xg,, Xgs,, - ,Zﬁmoﬂ) fori=1,2,...,N,
where ||b]] < oo, |Es|| < oo, and the random deviations vy; are independent of x;

and € for all i,5 and t.

Assumption 5 In the nonstationary factor process f = fi—1 + ¢, @1 1S a vector of

Loy bounded process for some ¥ > 0,such that E[||¢]|**’] < oo, and stationary near
epoque dependent process of size 1/2, on some a-mizing process of size —(2 + 1) /v

and independent of vy, and € for all i, j,t.

Assumption 6 \) =1/T and for j ={1,--- ,m}, \J € (0,1), and X, ,, = 1. Ma-

[A?-HT] N P‘?-HT]
: 1 ! 1 / o :
trices 7 E Jofi and w7 E g zinzy, have minimum eigenvalues bounded away
t=[\)T] i=1¢=[\IT]

from zero in probability.

Assumption 7 (i) The disturbances y,i = 1,..., N, are cross-sectionally indepen-
dent; (ii) For each series i, €y is independent of py for all t and t'; (iii) errors ;s
and vj; are independent for all i,j,s,t; (i) € is a stationary process with abso-
lute summable autocovariances, such that e,y =y = auCr—i, where {(y,t =1,..,T}
are IID random wvariables with zero mean and have a finite fourth-order moments.
Assume 0 < Var(ey) = Y jopay = o7 < 00. (v) for the T x 1 wector &; =

(Eil,SiQ, s ,8@7‘)’, VCLT(E—:Z‘) = 2571‘ and 0 < ”Es,zH < 0.

Assumption 8 (i) The disturbances vy,i = 1,..., N, are cross-sectionally indepen-

dent; (ii) For each series i, vy is independent of oy for all t and t'; (iii) vy are

11



linear stationary processes with zero mean and absolute summable autocovariances,
Vit = Y o0 Zi0ig—1, where (i, 0l ) are (p + 1) x 1 wectors of IID random vari-
ables with variance-covariance matriz I,.1 and has a finite fourth-order moments,
and Var(vi) = 327%Za=) = Do, and 0 < |[Sy] < oo (iv) lim SN B, s

nonsingular.

FOI'j = {1, cee ,m}, define (bN,j = Zﬁil(di,j+1 — 5ij)/(6i,j+1 — (51]) in equation (11)

as the magnitude of common breaks in panels.
Assumption 9 ¢y ; = 00, Loy, — 00, as (N, T) — oo for j ={1,--- ,m}.

Assumption 1 is common in the time series and panel data literature of structural
changes, e.g., Bai (1997), Bai and Perron (1998), Bai (2010), BFK (2016, 2019). It
rules out the case that true breaks happen on the boundary of the observed time
period. It also implies that there are sufficient number of observations between
breaks for large sample approximation. However, Bai (2010) pointed out that the
common breaks close to the boundary are allowed in a panel mean shift model when
T/N — 0. To simplify our proofs, we adopt this convenient assumption. We explore
the performance of our break estimator in the case of boundary breaks in Monte
Carlo experiments.

Assumption 2 on the rank condition guarantees that equation (7) is valid, see
Pesaran (2006) and KPY who discuss the situation of rank deficiency. This as-
sumption can be relaxed to accommodate more empirical situations. For example,
Karabiyik, Urbain and Westerlund (2019) consider the case of p < ¢. When p < ¢,
additional combinations of regressors (Karabiyik, Urbain and Westerlund, 2019) or
additional exogenous variables (Bai and Ng, 2010) should be included to proxy the
unobserved error factors. Karabiyik, Reese and Westerlund (2017) provide a new an-
alytic framework to address the problem that too many observables cause the second
moment matrix of the estimated factors to become asymptotically singular. Juodis,
Karabiyik and Westerlund (2021) establish the theory of pooled CCE, while the true
number of common factors can be larger than the number of estimated factors. Our
theoretical results can be extended to the case of rank deficiency by following the
papers mentioned above. We will explore the performance of the estimators in case
that Assumption 2 is not satisfied in the Monte Carlo simulations.

In Assumption 3, we assume that I'; and 7, are independent, so the regressors

and the error factor loadings are uncorrelated. Different from Pesaran (2006), we use
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the cross-section averages of regressors only to proxy the unobserved factors f; in
this paper, thus v; does not appear in equation (7) above, implying that whether ~;
is correlated with I'; or not does not affect the rank condition. In addition, breaks
Ky in ~; in Assumption 3 will not affect the rank condition as well.

Assumptions 4, 5 on the identification condition for the individual slopes are
borrowed from KPY. Under Assumptions 7 and 8, the idiosyncratic errors €;; and vy
follow a general linear stationary process with heteroscedasticity and autocorrelation
for each i. Assumption 9 specifies the relationship between 7'/N and the magnitude
of breaks ¢n;,j = 1,....,m. ¢n; can grow slower or faster than N, depending on
the relative rate of 7'/N. The condition on the magnitude of breaks in Assumption
9 generalizes Assumption 2 in stationary panels considered by BFK (2019) to the
multiple breaks case.

Under these assumptions, we can show that the multiple breaks are estimated

consistently, as summarized in the following theorem:
Theorem 1 Under Assumptions 1-9, imy 1y—oc P <IA€J = k;)) =1,7={1,---,m}.

The rate of convergence and the distribution of the estimated structural breaks in
stationary or nonstationary homogeneous panels have been discussed by Bai (2010),
Baltagi, Kao and Liu (2017) and others. As pointed out by Bai (2010), Theo-
rem 1 implies a degenerate limiting distribution for l%j. To obtain a non-degenerate
distribution, a different framework of shrinking magnitude of breaks is usually as-
sumed. Baltagi, Kao and Liu (2017) show the convergence rates of break estimators
in homogeneous cointegrated panels and stationary panel regression are O,(1/NT)
and O,(1/N), respectively, suggesting the benefit of using observations in the cross-
sectional dimension under the common break assumption in panels. In our model,
similar insights can be carried over. However, when the slopes are heterogeneous,
the derivation of convergence rate and limiting distribution of the break point esti-
mators is technically nontrivial. In addition, as shown in the following proposition,
the convergence rate of /%j is not required for the asymptotic distribution of the slope
estimators, so we leave it for future research.

Denote V(Ko) = diag (Vi1, Vi, -+, Vimo+1) With Vii = (vi1, ..., vik,,), Vi
(VisKoa415 - Vikos) s s Vimot1 = (vi,K07m0+1, ..,vr). Given the consistency of es-
timated structural breaks K above, we can obtain consistent estimators of the slope

parameters.
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Proposition 1 Under Assumptions 1-9, as (N,T) — oo, and ‘/TT — 0, for each
Z:{]-) ’N}?
VT (b= bi) 5 N (0,55 555

where Xx,; = plimT%m%Ki(lCo)’Ki(lCo) and Xx.; = plzmT_mTV (Ko) 2V, (Ko)'.

According to Lemma 6 in the Appendix, ¥ x; can be estimated by 72X, (Ko) M-
which can be easily computed when Ky and K; are replaced with their least squares
estimates. It has a well-behaved probability limit when 7" — oo. Similarly, as in
Pesaran (2006), KPY and BFK, a consistent Newey-West type estimator of ¥x.;

can be obtained as

w+1

)Xz (ICO)a

ixm = /A\z'(ﬂ—z (1 - L) (/A\zg + K;;) ) A = Z €itCit— ] ’6 Kl)zit“&m,@l)/’
j=1

t J+1

(17)
e; is the t" element of e; = Mz gy Yi—Mx e X (lCo)b
and X, (Ko, K1) is the t row of MX(;Q)Xi(Ko)- Thus, a consistent Newey-West type

where w is the window size, 2

estimator of E)_(’IZZ xeiXy is given by

1o, o, s 1 17
T My X, Kn) | S | F XK M XK - 19

Proposition 2 Under Assumptions 1-9, and (N,T) — oo,
VN (bug = b) % N (0,%),
where X, can be consistently estimated by
LS (i — i) (b i)’
S ) ()

This result suggests that Theorem 1 in KPY (2011) holds as if Ky and K; were

treated as known. Similarly, a pooled estimator

bp—[Z& Mg X, (Ko) Z&( o) MY (19)

can be defined as in equation (20) in KPY (2011).'3

12Tn practice, the selection of the window size w is important. Pesaran and Timmermann (2007)
propose the cross-validation methods for selection of a single estimation window in the presence of
breaks.

131ts limiting distribution can be proved in line with Theorem 2 of KPY:

\/N(Bp—b) 4 N (0,5p).
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5 Additional Nonstationary Components in the
Regressors

In this section, our analysis of nonstationary panels is extended to the case of both
nonstationary f; and vy. Idiosyncratic errors e; remain 7(0). Compared with Section
5 of Phillips and Moon (1999), our model accommodates additional features of an
error factor structure and multiple breaks in slopes. In equation (3) x;; = T f; + vy,

errors vy follow I(1) processes:
Uitzvi,t—1+§ita 1= 17"7Na (20)
where ¢;; follows the assumption below:

Assumption 10 ¢, ¢« = 1,..., N, are cross-sectionally independent. For each 1,
(i) si = Vi(L)ey with ey is IID random variables with zero mean and has a finite
fourth-order moments; (ii) Var(ex) = Xc; = BiF, and V(L) = > VL7 with
Z;ioj W3] < o0, and W;(1) = Z;io Wi

Different from Case 1 of stationary v;; considered in Section 4, in Case 2 of
I(1) vy, the CCE transformed regressors in the partitioned regression (15) remain
nonstationary. We will show that K defined in equation (13) above are still consistent
and b; is T-consistent. In addition, different from Case 1, the restriction on the

relative diverging rate between 7" and N in Assumption 9 is not required here.

Theorem 2 Under Assumptions 1-8, 10, as (N, T) — oo, lim(n 1)—ec P (l%J = k:?) =

1,j={1,---,m}.

With an additional Assumptions 11 and 12 on ¢; and identifying b; below, respec-
tively, we obtain the following Proposition 3. In line with equation (5.8) in Phillips
and Moon (1999) in nonstationary heterogeneous panels without structural breaks

and error factors, for each i = 1,..., N, b; is also super consistent in our model.

Assumption 11 ¢, is linear stationary process, (i) ¢ = H(L)uy with p, t =
1,....,T, have a finite fourth-order moments; (it) Var(u;) = X, = QQ’, and II(L) =
S L with Y222 5 T < oo, and TI(1) = 3722 T1;.
Yp can be estimated consistently by p = VAl
2N A X (KoY Mz g X (/Co)} (ih - BJV[G) (Bi - l;zwc), {% i
b = ﬁ Z]\L1 Xi(XO)/MX(}Cl)Xi(KO)'

A 1 where R =
0)

1R
Ko) M, X, (ICO)] and
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Assumption 12 %Xi(Ko)/MX(Kl)Xi(}CO) has minimum eigenvalues bounded away

from zero in probability, and its inverse has a finite second-order moment.

Proposition 3 Under Assumptions 1-7, 9-12, for each t, T(l;i—bi) converges weakly

to a non-degenerate distribution, as (N,T) — oc.

Intercept estimator is not included in b, above, and its convergence rate is vT'
as in a cointegration model (Hamilton, 1994, p.588). The intercept can be wiped
out by adding a vector of ones to X(I@l) in the Mz g,). The limiting distribution
of T (IA)l — b;) is complicated and inconvenient in practice. It is of a similar form to
Theorem 8 of Phillips and Moon (1999) and is reported in Appendix A.

In empirical applications of heterogeneous panels, the cross-section means of b;
are usually of interest, thus a popular estimator is either the mean-group estimator

or the pooled estimator. For the mean group estimator of b,

\/N<Z;MG —b> Z bz+\/—T§: ( 12—1(760) )&'(’CO)) B %X (Ko)' M

(21)

The second term is O,(1/T"), dominated by the first term in the equation above.
Thus, we can obtain a similar result to Proposition 2 in Case 1: VN (ZA)MG — b) N
N (0,%) as (N, T) — oc.

In a special case of homogeneous slopes b, = b with v,; = 0, the first term in

equation (21) disappears. Thus, equation (21) reduces to

VNT (z}MG —b) \/_Z

-1
(1ot Ko Mo, Kak) ) X, Ko >sz] +o,(1).
(22)
The convergence rate of EMG in a homogeneous panel becomes v NT, same as in Bali,
Kao and Ng (2009) and Huang et al. (2020).
We obtain the following Proposition 4.

Proposition 4 Under Assumptions 1-7, 9 and 10-12, in a homogeneous panel with
b; =10, as (N,T) — o0

VNT <ISMG _ b) 4 N0, Swa)

where

zMG—Jégnoo—ZE T2 X, (Ko) Mgy, Xo(K0)) ™ (17X, (o) Mg 1)

x (I 15'M e X (o) N (T 72X, (Ko) M) X (Ko)) '
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More details can be found in Appendix A.4. For simplicity, the asymptotic bias
mentioned in Theorem 8 of Phillips and Moon (1999) and Proposition 1 of Bai, Ng
and Kao (2009) disappears here under the assumptions of no serial/ cross-sectional

correlation and heteroskedasticity. ;4 can be estimated consistently by

-1
/ c 1 A
ZMG TN Z ( 2—Z MX(/&l)Xi(’CO)) (T—Z(KO) X(K1)5>

< (M) ) (7o Mg, X, </€o>)_1] ,

where & = Y; — X,(Ko)buc.

6 Monte Carlo Simulations

In this section, Monte Carlo experiments are conducted to examine the finite
sample properties of the break estimators. We consider the case of three breaks, i.e.,
m = 3, including two common breaks in slopes (¢, k9) and a third one in error factor
loadings k9 in various scenarios. We find supporting results to the main findings in
Theorems 1 and 2. This is done by looking at the frequency of choosing true breaks
using the proposed break estimators. For nonstationary panels, nonstationarity could
come from either f; or vy or both under the common factor assumption (3). Thus,
we consider six different scenarios: i) Case 1 with I(1) factors f; and I(0) vy; ii)
Case 1 under rank deficiency; iii) Case 2 with (1) f; and I(1) vy; iv) Case 2 with
I(0) fy and I(1) vy; v) Case 2 with I(1) errors g;; vi) Case 1 with mixed stationary

and nonstationary regressors and factors.

6.1 Data Generating Process
Our basic design is similar to the one used in KPY but now with multiple breaks:
Yir = o + 5 (k(f, )azlt + Vi ( g) fi+ew, i=1,..,N; t=1,..T, (23)

where a; ~ iidN(1,1). The scalar regressor x;; is affected by the common correlated
effect f:

Tit = a; + Yo, ft + Vi, (24)
with a; ~ iidN(0.5,0.5) and v5; ~ #dN(0.5,0.5). The scalar factor f; follows an

I(1) process:
fi = fic1 +vp,t =—49,...,0,1,...,T;
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where f_50 =0, vp ~ itdN(0,1).
Two common breaks £, k9 in slopes are assumed at [0.37] and [0.57] of the time

span:
Bis t=1,.., k),
Bk K9) = Bi+AB, t=kK+1,..T,
Bi+ 2083, t=k+1,.,T
where f3; ~ #idN(1,0.04) and AB; ~ #idN(0,0.5). A third break k3 = [0.7T] occurs

in the error factor loadings:

0y ) s t=1,..k3,
%M@—{7M+&mt:@+Lwﬂ (25)

where 71 ; ~ itdN(1,0.2) and Avy; ~ iidN(0.5,0.5).

In scenario (i) of Case 1, as in KPY, both ¢;; and v;; are stationary. ;s = pic€ir—1+
o; (1 — p?s)o'5 wit, for i = 1,2,...,[N/2] and ¢ = o0; (1 + 91-25)70'5 (wit + Ojew; 1), for
i = [N/2] +1,.... N, with wy ~ idN(0,1),02 ~ idU[0.5,1.5], p; = iidU[0.05,0.95]
and ;. ~ 4dU|[0,1]. Similarly, vy = pyivii—1 + Vi, Yy ~ WdN(0,1 — p%), with
v;—19 = 0, and p,; ~ #dU|[0.05,0.95].*

In scenario (ii), we consider the importance of rank deficiency in finite samples.
The DGP here is the same as above, except that the means of a; and ~;,; change to
zero, i.e., a; ~ 1idN(0,0.5) and vo; ~ #dN(0,0.5) in equation (24). In the current
design, the rank condition is not satisfied asymptotically.

In scenario (iii) of Case 2, both v; and ¢;; follow I(1) processes,
Vit = Vit—1 + wita ¢it ~ ZZdN(O, 1), t= —49, ceey O, ]_, ,T

We also allow for I(0) f; in the design above in scenario (iv). In addition, in scenario
(v), we examine the impact of nonstationary errors on break point estimators, we
also consider Case 2 with nonstationary errors, i.e., I(1) €i, €it = €i4-1 + Uit, Uiz ~
itdN(0,1), t = —49,...,0,1,...,T.

Finally, in scenario (vi), we also consider the case of mixed stationary and non-
stationary regressors and factors. To allow for a stationary regression, we add an

additional regressor and factor in the regression (23) above. More specifically,
Vit = oG + P (ktl)) T + Boi (kS) Tt + V11,4 (kg) i+ M2 (kg) for + €it,
where both regressors are generated by

Tiie = ;i + Yo f1e + Vo2, for + Vit
Toi = a; + 0 fio+ 723, for + Vot

141n this design, the signal-to-noise ratio is about 1.5.
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We assume that both vy, and vy are 1(0) as vy in Case 1 above. Two factors fi,

and fo, are generated as I(1) and 7(0) processes, respectively, as follows:

fie = fre—1 +vip, and fo, = 0.5f2 1 + va g

Thus, 21 ;4 is (1) and x5, is 1(0). Same as yo;, loadings v21,, Y224, V23,i ~ 1dN(0.5,0.5).
The break points &) = [0.3T], kY = [0.5T] appear in the slopes:

. t=1,... Kk

. ko 611,17 [ )
B (k7) { Biii+ ABrs, t=k+1,..T,

oy Bori, t=1,..., k9,
Boi (K9) = { Boti+ Aoy, t=k)+1,..,T,

where ABy ;, ABsy; ~ 19dN(0,0.16). Here v11; (k9) and 12, (k9) have the same design
as v1,; (k9) in (25) but the variance of A~,; changes from 0.5 to 0.16.

Different combinations of T = 20, 50,100 and N = 10, 50, 200 are considered in
the Monte Carlo experiments with 1,000 replications. Due to limited space, only the

results with 7" = 50 are reported in the paper.

6.2 Results

Figure 1 presents the histograms of estimators (lAcl, ks, /;'3) in Case 1 with nonsta-
tionary factors for T' = 50. The true values of the break points are k¥ = 15, k9 = 25,
k9 = 35. In each replication, a dynamic programming algorithm proposed by Bai
and Perron (2003) is applied to obtain /%1, /%2, /%3 simultaneously. The upper, middle
and lower panels represent the empirical distributions of /2:1, ks and /%3, respectively.
Figure 1 shows that the frequencies of choosing (Y, k9, k9) increase substantially as
N increases from 10 to 200. For example, the probability of choosing k¥ increases
from 36% for N = 10 to 69% for N = 200. This finding supports the results in
Theorem 1.

Figure 2 reports the histograms of (1%1, ko, 1%3) in Case 1 for T' = 50 under rank
deficiency. The rank condition is required for the validity of the CCE approach to deal
with unobserved common factors. We examine the finite sample properties of these
break estimators when the rank condition is not satisfied asymptotically. Although
the probabilities of choosing the true break points are smaller than those in Figure
1, they still increase substantially with N, showing that under rank deficiency, the
estimators (ky, ks, ks) are still very informative about choosing (9, k9, k) when N

is large.
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In Figure 3, we consider Case 2 with nonstationary regressors and both f; and
v; are nonstationary in x;. Similar patterns as in Figure 1 are observed. The
probabilities of choosing true break dates increase with N, e.g., nearly 100% for
choosing kY by ky for N = 200 and T = 50. This finding supports the consistency
of the break estimators in Theorem 2. In Figure 4, we also consider a scenario of an
I(0) fi and I(1) vy in Case 2, where f, = 0.5f;_1 + vy and vy ~ 14dN(0,0.75). As
expected, as long as x; is still I(1), l%l, /%2, ks are consistent. Little impact is spotted
from changing f; from I(1) to I(0) in Figure 4.

In Figure 5, we consider the scenario of nonstationary errors €; in the design of
Case 2 above. Under the current design, f;, vy and e;; follow I(1) processes. Different
from Case 2, I(1) &; could lead to a spurious regression and thus, the least squares
estimators of slopes could be inconsistent. In addition, nonstationary &;; could lead
to a smaller signal-to-noise ratio in the DGP of Figure 5 than that of Figure 3 with
I(0) ei. Thus, we observe smaller probabilities of choosing (Y, k9, k9) here, even
though the same pattern remains. That is, big /V helps to date the break points.

Lastly, we examine the scenario of mixed stationary and nonstationary regressors
in Figure 6, as in Bai, Kao and Ng (2009), Huang, Jin, Phillips, Su (2021). Slightly
different from the designs used in Figures 1-4, an additional regressor and factor are
added to the design (23). In our modified design, given an I(1) f;, and an I(0)
fat, 1, T2 are I(1) and I1(0),respectively. We consider 1(0) v;; in this scenario
to avoid potential spurious regression after fi, and f,; are partialled out from the
regressors and ;. As expected, the frequency of choosing k9, the break point in
the stationary regressors, is smaller than that of choosing k¢ under the same design
parameters for a same N. After scaling up the magnitude of the break in S, (k9),
we find a similar pattern as in Figure 1, still observing increasing probabilities of
dating the true break points with /N in the histograms of /%1, /;;2, 1%3.

Moreover, we also conduct additional robustness checks, including using (4.4, Z.¢)
instead of z;., to proxy f;, boundary breaks, fixed effects model, different magnitude
of breaks in slopes and factor loadings, adding a time trend etc. These results can be
found in Figures A1-A6 in the supplementary Appendix B. The results with T' = 20
and 100 are in line with those with T" = 50 reported above, and are available upon

request from the authors.

[Insert Figures 1-6 Here]
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Finally, we examine the finite sample properties of the slope estimators in Case 1.
Table 1 reports the root mean squared error (RMSE) and bias of I % Zfil l;i(lgrl,
ko, l%g) defined in (16) under the design described in Figure 1. The size of the ¢ test
is also included. The results show that the RMSE as well as bias decrease notably
with (N, T'), in line with the simulation results in KPY.

7 Application: International R&D Spillovers

In this section, we apply our approach to an empirical example of international
R&D spillovers, which was studied by Coe and Helpman (1995) and Coe, Helpman,
Hoffmaister (2009, CHH hereafter). Huang et al. (2021) find a latent group structure
in the long-run relationship between technological change, domestic R&D stock,
foreign R&D stock for 24 OECD countries during 1971-2004. Different from CHH
(2009) and Huang et al. (2021) who emphasize heterogeneous international R&D
spillovers in different countries, we focus on the heterogeneous effects in different
time periods along with the changing global economic conditions.

As pointed out by Coe et al. (2009), the total factor productivity (TFP) and
domestic R&D stock accelerated after 1990 for some countries. To accommodate
this pattern, we allow common breaks in their long-run relationships. We follow the

specification considered by Huang et al. (2021, model (5.1)),

log(yir) = B7 (k) log(sh) + B/ (kY) log(sh) + 7. f: + eur, (26)

where y;; is the TFP in country i in year t. s& and sf; are real domestic and foreign
R&D capital stocks, respectively. 3¢ (k9) and 3/ (k9) represent heterogeneous effects
of domestic and foreign R&D stocks on the TFP. We allow a common break k) in
the slopes. Detailed data information is provided by Coe et al. (2009) and Huang et
al. (2021), who found a single nonstationary common factor in the data. Here, we
also assume an I(1) factor f;.

Table 2 columns (1) and (2) include the dynamic OLS estimates of CHH (2009)
and pooled FM-OLS by Huang et al. (2021, Table 7) without considering a latent
group structure in the slopes for comparison. Using the cross-sectional averages
of log(s%) and log(sf;) to proxy the unobserved common factor, we estimate the
common break and slopes in (26) with the least squares estimation method proposed

in Section 3. There are two key findings in our estimation results. First, we find that
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there is a common break in the slopes in 1992.1% It splits the sample period into two
regimes, 1971-1992 and 1993-2004, and the estimation results in these two sample
periods are reported in columns (3) and (4), respectively. Second, the coefficients of
log(s%) and log(slft) are significantly different in these two periods, with a doubling
effect of foreign R&D spillovers during 1993-2004. 16

The doubling effect of foreign R&D spillovers suggests that international tech-
nology diffusion via importing foreign R&D plays a more important role in boosting
domestic productivity growth than domestic R&D in the OECD countries, and this
effect is more pronounced starting from 1993. Following the German reunification in
October 1990, the collapse of the former Soviet Union in December 1991, the formal
establishment of the European Union in 1993, and globalization accelerated in the
early 1990s. According to the well cited KOF Globalization Index, the world overall
index sped up starting from 1991. 17

In a globalized economy, R&D activities concentrate in a few rich countries. For
example, Keller (2004) documented that 84 percent of the world’s R&D spending
was contributed by the G-7 countries in 1995. With more free trade and foreign
direct investment, small and developing economies depend more on foreign technolo-
gies than domestic R&D in their productivity growth. According to Keller (2004),
“for most countries, foreign sources of technology account for 90 percent or more of
domestic productivity growth. ” Our estimates in columns (3) and (4) indicate that

this is also the case for OECD countries.

8 Conclusion

This paper proposes the estimation of unknown multiple structural breaks both
in slopes and factor loadings in nonstationary panels with common factors. Based
on KPY’s approach for dealing with nonstationary factors in panels, we extend Bai
and Perron’s least squares estimator for multiple breaks in time series regression to
nonstationary heterogeneous panels with unobserved factors in errors. We show that

the proposed estimators, including the estimated structural breaks and slopes, are

15The CUSUM test of common breaks proposed by Jiang and Kurozumi (2023) suggests that
there is one comon break in the data.

6When there are two common breaks, our second estimated break date occurs in 1976. The
second break of 1976 splits the period 1971-1992 into two sub-regimes.

1"The KOF Globalisation Index is provided by KOF Swiss Economic Institute at ETH Zurich.
The link: https://kof.ethz.ch/en/forecasts-and-indicators/indicators/kof-globalisation-index.html.
Also see Figure 2 in Lecler (2009, p.361).
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Table 2: Structural Change In International R&D Spillover

Dependent Variable: Total Factor Productivity

Periods 1971-2004 | 1971-2004 | 1971-1992 | 1993-2004

Columns (1) (2) (3) (4)

Methods CHH2009 | FM-OLS CCEMG CCEMG

log(s%) 0.095%#* 0.099%#* 0.084*#* 0.098%##*
(0.005) (0.027) (0.005) (0.005)

log(slft) 0.213%** 0.121%** 0.123%** 0.251%%*
(0.014) (0.044) (0.035) (0.054)

Note: (1) Standard errors are reported in parentheses. (2) The stars, *, ** and ***

indicate the significance level at 10%, 5% and 1%, respectively.

consistent in both cases of nonstationary factors and nonstationary regressors. These
main findings are supported by the Monte Carlo simulations.

There are potentially two important issues to explore in the current framework.
One is testing for multiple structural changes in nonstationary panels. In this paper,
we only assume multiple breaks in slopes and factor loadings and estimate these
break points. It would be meaningful to test the existence of the breaks in many
empirical studies before applying our estimation methods. A candidate is to extend
Bai and Perron’s (1998) supF or double maximum tests into nonstationary panels.
Another important issue is related to sequential estimation of the break points. In
this paper, we estimate multiple breaks simultaneously. In the case of mixed sta-
tionary and nonstationary factors and regressors as considered in Figures 4 and 5, it
would matter a lot whether breaks are estimated simultaneously or sequentially. It
would be interesting to explore the asymptotic properties of sequential estimation of
multiple breaks as in Bai and Perron (1998) and Pang, Du and Chong (2021). We

leave these research questions for future research.
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