Abstraction of Nondeterministic Automata

Dr Rong Su S1-B1b-59, School of EEE Nanyang Technological University Tel: +65 6790-6042, Email: rsu@ntu.edu.sg

Outline

- Motivation
- Automaton Abstraction
- Relevant Properties
- Conclusions

Key Concepts of RW Supervisory Control Theory (SCT)

- Controllability
- Observability
- Nonblockingness
 - Checking nonblockingness is computationally intensive
 - Let $L_m(S/G) = L_m(G_1) \parallel \ldots \parallel L_m(G_n) \parallel L_m(S_1) \parallel \ldots \parallel L_m(S_r)$
 - Let $L(S/G) = L(G_1) \parallel ... \parallel L(G_n) \parallel L(S_1) \parallel ... \parallel L(S_r)$
 - Check whether or not $L_m(S/G) = L(S/G)$

We have the state-space explosion issue here!

A Few Attempts to Deal with Nonblockingness

- State-feedback Control and Symbolic Computation, e.g.
 - supervisory control of state tree structures (STS)
- Abstraction-Based Synthesis, e.g.
 - coordinated modular supervisory control (MSC)
 - hierarchical supervisory control (HSC)
- Synthesis based on Structural Decoupling, e.g.
 - interface-based supervisory control (IBSC)

Problems Associated with These Attempts

- STS is centralized, not suitable for very large systems
- Current hierarchical and modular approaches need observers
 The observer property is too strong!

• Interfaces are very difficult to design

Our Goal

- To define an abstraction κ over (nondeterministic) FSAs,
 - It has the following property similar to what an observer has, namely for any G and an S whose alphabet is the same as κ(G), G×S is nonblocking if (and only if) κ(G)×S is nonblocking
 - It has no special requirement on a target alphabet as an observer does

Outline

- Motivation
- Automaton Abstraction
- Relevant Properties
- Conclusions

Nondeterministic Finite-State Automaton

• A finite-state automaton $G=(X, \Sigma, \xi, x_0, X_m)$ is *nondeterministic* if

$$\xi: X \times \Sigma \to 2^X$$

- i.e a state may have more than one transition with the same event label

• From now on we assume all automata are nondeterministic

Automaton Product

- Let $G_i = (X_i, \Sigma_i, \xi_i, x_{0,i}, X_{m,i}) \in \phi(\Sigma_i)$ with i=1,2.
- The *product* of G_1 and G_2 , written as $G_1 \times G_2$, is an automaton

 $G_1 \times G_2 = (X_1 \times X_2, \Sigma_1 \cup \Sigma_2, \xi_1 \times \xi_2, (x_{0,1}, x_{0,2}), X_{m,1} \times X_{m,2})$

where $\xi_1 \times \xi_2: X_1 \times X_2 \times (\Sigma_1 \cup \Sigma_2) \rightarrow 2^{X1 \times X2}$ is defined as follows,

$$(\xi_1 \times \xi_2)((x_1, x_2), \sigma) \coloneqq \begin{cases} \xi_1(x_1, \sigma) \times \{x_2\} & \text{if } \sigma \in \Sigma_1 - \Sigma_2 \\ \{x_1\} \times \xi_2(x_2, \sigma) & \text{if } \sigma \in \Sigma_2 - \Sigma_1 \\ \xi_1(x_1, \sigma) \times \xi_2(x_2, \sigma) & \text{if } \sigma \in \Sigma_1 \cap \Sigma_2 \end{cases}$$

The Concept of Equivalence Relation

- Given a set X, let R be a *binary relation* on X, namely $R \subseteq X \times X$ - For any $(x,x) \in \mathbb{R}$, we write xRx.
- We say R is an *equivalence relation* on X, if
 - R is *reflexive*, i.e. $(\forall x \in X) xRx$
 - R is *symmetric*, i.e. $(\forall x, y \in X) xRy \Rightarrow yRx$
 - R is *transitive*, i.e. $(\forall x, y, z \in X) xRy \land yRz \Rightarrow xRz$
- Let E(X) be the collection of all equivalence relations on X
 E(X) is a complete lattice

The Concept of Marking Weak Bisimilarity

- Given $G=(X,\Sigma,\xi,x_0,X_m)$, let $\Sigma'\subseteq\Sigma$, $R\subseteq X \times X$ be an equivalence relation.
- R is a marking weak bisimulation relation over X with respect to Σ' if $-R \subseteq X_m \times X_m \cup (X - X_m) \times (X - X_m)$
 - For all $(x,x') \in \mathbb{R}$ and $s \in \Sigma^*$, if $\xi(x,s) \neq \emptyset$ then there exists $s' \in \Sigma^*$ such that

 $\xi(x',s') \neq \emptyset \land P(s) = P(s') \land (\forall y \in \xi(x,s)) (\exists y' \in \xi(x',s')) (y,y') \in \mathbb{R}$

where $P: \Sigma^* \to {\Sigma'}^*$ is the natural projection

 The largest marking weak bisimulation is *marking weak bisimilarity*, written as ≈_{Σ'}

Automaton Abstraction

- Let $G=(X,\Sigma,\xi,x_0,X_m)$ and $\Sigma'\subseteq\Sigma$
- For each $x \in X$ let $[x] := \{x' \in X \mid (x,x') \in \mathbb{Z}^{Y}\}$, and $X/\mathbb{Z}_{\Sigma'} := \{[x] \mid x \in X\}$.
- $G/\approx_{\Sigma'} = (X', \Sigma', \xi', x_0', X_m')$ is an *automaton abstraction* of G w.r.t. $\approx_{\Sigma'}$ if
 - $-X' = X/\approx_{\Sigma'} , X_m' = \{ [x] \in X' \mid [x] \cap X_m \neq \emptyset \} , x_0' = [x_0] \in X'$
 - $\xi': X' \times \Sigma' \rightarrow 2^{X'}$, where for any $[x] \in X'$ and $\sigma \in \Sigma'$,

 $\xi'([x],\sigma):=\{[x']\in X'| (\exists y\in [x], y'\in [x'])(\exists u, u'\in (\Sigma-\Sigma')^*) \ y'\in \xi(y, u\sigma u')\}$

Example

Outline

- Motivation
- Automaton Abstraction
- Relevant Properties
- Conclusions

Effect of Silence Paths

- Abstraction may create unwanted behaviours.
- To avoid this, we introduce the concept of standardized automata.

The Standardized Automata

- Suppose $G = (X, \Sigma, \xi, x_0, X_m)$. Bring in a new event symbol τ .
 - $-\tau$ will be treated as uncontrollable and unobservable.
- An automaton $G = (X, \Sigma \cup \{\tau\}, \xi, x_0, X_m)$ is *standardized* if
 - $x_0 \notin X_m$
 - $(\forall x \in X) \xi(x, \tau) \neq \emptyset \Leftrightarrow x = x_0$
 - $(\forall \sigma \in \Sigma) \xi(\mathbf{x}_0, \sigma) = \emptyset$
 - $(\forall x \in X) (\forall \sigma \in \Sigma \cup \{\tau\}) x_0 \notin \xi(x, \sigma)$
- Let $\phi(\Sigma)$ be the collection of all standardized automata over Σ .

Example of a Standardized Automaton

G : before standardization

G : after standardization

• $G \in \phi(\Sigma)$ is marking aware with respect to $\Sigma' \subseteq \Sigma$, if $(\forall x \in X - X_m)(\forall s \in \Sigma^*) \ \xi(x,s) \cap X_m \neq \emptyset \Rightarrow P(s) \neq \varepsilon$ where $P: \Sigma^* \to {\Sigma'}^*$ is the natural projection.

Automaton Abstraction vs Natural Projection

- Let B(G) = {s \in \Sigma^* | (\exists x \in \xi(x_0,s))(\forall s' \in \Sigma^*) \xi(x,s') \cap X_m = \emptyset}.
- Let $N_G(x) = \{s \in \Sigma^* \mid \xi(x,s') \cap X_m \neq \emptyset\}$. In particular, $N(G) := N_G(x_0)$.
- Proposition 1

Let $G \in \phi(\Sigma)$, $\Sigma' \subseteq \Sigma$, and $P: \Sigma^* \to {\Sigma'}^*$ be the natural projection. Then

- $P(B(G)) \subseteq B(G/\approx_{\Sigma'})$ and $P(N(G))=N(G/\approx_{\Sigma'})$

i.e. automaton abstraction may potentially create more blocking behaviours

- If G is marking aware with respect to Σ' , then $P(B(G)) = B(G/\approx_{\Sigma'})$

When G is marking aware with respect to Σ'

Nonblocking Preservation and Equivalence

- Let $G_1, G_2 \in \phi(\Sigma)$.
- G_1 is *nonblocking preserving* w.r.t. G_2 , denoted as $G_1 \sqsubseteq G_2$, if
 - $B(G_1)\subseteq B(G_2)$ and $N(G_1)=N(G_2)$
 - For any $s \in \overline{N(G_1)}$, and $x_1 \in \xi_1(x_{1,0},s)$, there exists $x_2 \in \xi_2(x_{2,0},s)$ such that
 - $N_{G2}(x_2) \subseteq N_{G1}(x_1)$
 - $x_1 \in X_{1,m} \Leftrightarrow x_2 \in X_{2,m}$
- G_1 is *nonblocking equivalent* to G_2 , denoted as $G_1 \cong G_2$, if
 - $\mathbf{G}_1 \sqsubseteq \mathbf{G}_2$ and $\mathbf{G}_2 \sqsubseteq \mathbf{G}_1$

- Proposition 2 (Nonblocking Invariance under product)
 For any Σ'⊆Σ, G₁,G₂∈φ(Σ) and G₃∈φ(Σ'),
 - if $G_1 \sqsubseteq G_2$ then $G_1 \times G_3 \sqsubseteq G_2 \times G_3$
 - if $G_1 \cong G_2$ then $G_1 \times G_3 \cong G_2 \times G_3$

- Proposition 3 (Nonblocking Invariance under abstraction)
 For any Σ'⊆Σ and G₁,G₂∈φ(Σ),
 - if $G_1 \sqsubseteq G_2$ then $G_1 / \approx_{\Sigma'} \sqsubseteq G_2 / \approx_{\Sigma'}$
 - if $G_1 \cong G_2$ then $G_1 / \approx_{\Sigma'} \cong G_2 / \approx_{\Sigma'}$

• Proposition 4 (Chain Rule of Automaton Abstraction) Suppose $\Sigma'' \subseteq \Sigma' \subseteq \Sigma$ and $G \in \phi(\Sigma)$. Then $(G/\approx_{\Sigma'})/\approx_{\Sigma''} \cong G/\approx_{\Sigma''}$.

• **Proposition 5 (Distribution of Abstraction over Product)**

Let $G_i \in \phi(\Sigma_i)$, where i=1,2, and $\Sigma' \subseteq \Sigma_1 \cup \Sigma_2$.

- If $\Sigma_1 \cap \Sigma_2 \subseteq \Sigma'$, then $(G_1 \times G_2) \approx_{\Sigma'} \subseteq (G_1 \approx_{\Sigma 1 \cap \Sigma'}) \times (G_2 \approx_{\Sigma 2 \cap \Sigma'})$.
- If $\Sigma_1 \cap \Sigma_2 \subseteq \Sigma'$ and G_i (i=1,2) is marking aware w.r.t. $\Sigma_i \cap \Sigma'$, then

 $(G_1 \times G_2) / \thickapprox_{\Sigma'} \cong (G_1 / \thickapprox_{\Sigma 1 \cap \Sigma'}) \times (G_2 / \thickapprox_{\Sigma 2 \cap \Sigma'})$

Example 1

Example 1 (cont.)

- Clearly, $(G_1 \times G_2) \approx_{\Sigma'} \cong (G_1 \approx_{\Sigma 1 \cap \Sigma'}) \times (G_2 \approx_{\Sigma 2 \cap \Sigma'})$
- Thus, the condition of marking awareness is only sufficient.

Example 2

Example 2 (cont.)

Example 2 (cont.)

• Clearly, $(G_1 \times G_2) / \approx_{\Sigma'} \cong (G_1 / \approx_{\Sigma 1 \cap \Sigma'}) \times (G_2 / \approx_{\Sigma 2 \cap \Sigma'})$

Example 3

Example 3 (cont.)

 $G_1 \times G_2$

 $(G_1 \times G_2) / \approx_{\Sigma'}$

Example 3 (cont.)

- Clearly, $(G_1 \times G_2) \approx_{\Sigma'} \subseteq (G_1 \approx_{\Sigma 1 \cap \Sigma'}) \times (G_2 \approx_{\Sigma 2 \cap \Sigma'})$
- But, it is not true that $(G_1 \times G_2) / \approx_{\Sigma'} \cong (G_1 / \approx_{\Sigma 1 \cap \Sigma'}) \times (G_2 / \approx_{\Sigma 2 \cap \Sigma'})$

Example 3 (revisit)

Example 3 (cont.)

 $G_1 \times G_2$

 $(G_1 \times G_2) / \approx_{\Sigma'}$

Example 3 (cont.)

• We can check that, $(G_1 \times G_2) / \approx_{\Sigma'} \cong (G_1 / \approx_{\Sigma 1 \cap \Sigma'}) \times (G_2 / \approx_{\Sigma 2 \cap \Sigma'})$

Main Result

- **Theorem:** Given Σ and $\Sigma' \subseteq \Sigma$, let $G \in \phi(\Sigma)$ and $S \in \phi(\Sigma')$. Then
 - $B((G/\approx_{\Sigma'})\times S) = \emptyset \Longrightarrow B(G\times S) = \emptyset$
 - G is marking aware w.r.t. $\Sigma' \Rightarrow [B((G \bowtie_{\Sigma'}) \times S) = \emptyset \Leftrightarrow B(G \times S) = \emptyset]$

- Let $\{\Sigma_i | i \in I = \{1, 2, ..., n\}$ be a collection of local alphabets.
- For any J \subseteq I, let $\Sigma_J := \bigcup_{j \in J} \Sigma_j$.
- Let $G_i \in \phi(\Sigma_i)$ for each $i \in I$, and $\Sigma' \subseteq \Sigma_I$.
- We want to compute $(\times_{i \in I} G_i) / \approx_{\Sigma'}$ efficiently.

Sequential Abstraction over Product (SAP)

- For k=1,2,...,n,
 - J(k) := {1,2,...,k} and T(k) := $\Sigma_{Jk} \cap (\Sigma_{I-Jk} \cup \Sigma')$
 - If k=1 then $W_1:=G_1/\approx_{T(1)}$
 - If k>1 then $W_k:=(W_{k-1}\times G_k)/\approx_{T(k)}$
- **Proposition 6**

Suppose W_n is computed by SAP. Then $(\times_{i \in I} G_i) / \approx_{\Sigma'} \subseteq W_n$.

Conclusions

- Advantages of this approach
 - It possesses the good aspects of an observer
 - It does not have the bad aspects of an observer

- Potential disadvantages of this approach
 - Abstraction creates more transitions, which might complicate synthesis
 - The marking awareness condition is sufficient but not necessary