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The Standardized Automata

* Suppose G = (X,2,5,X,,X,,,). Bring in a new event symbol t.

— 1 will be treated as uncontrollable and unobservable.
* An automaton G = (X,ZU{t},E,Xx,,X,,) 1s standardized if

- Xy X,

— (VxEX) E(x,1) = D = x =X,

— (Vo&2) §(x,,0) =

— (VxeX)(VoeZU{t}) X,ZE(X,0)

* Let ¢(X) be the collection of all standardized automata over X.

EE6226 Discrete Event Systems



Marking Awareness

« GEY(2) is marking aware with respect to 2'C3, if
(VxeX-X )VsEE") E(x,8)NX, = = P(s)= ¢

where P:2" — X'" is the natural projection.
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Main Result

* Theorem: Given X and 2'CZX, let GE®(Z) and SEG(Z"). Then
— B((G/=4)xS)= & = B(GxS)=0J
— G is marking aware w.r.t. ' = [B((G/=y)xS)= & <> B(GxS)=C]
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Basic Concepts

 Given a nondeterministic automaton G = (X, 2, &, X, X,,), let
— L(G) = {s EZ7[E(X,,5) = T} : the closed behavior
— N(G) = {s&€X"|E(x,,8) N X = T} : the nonblocking set
— B(G) := {s&€X7|(AXEE(Xx,,9))(Vs'EZ™) E(x,8")NX =T} : the blocking set
— (Vx€X) E5(x) := {0€X | E(x,0) = I} : the enabling set
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State Controllability

* Definition 1

Given G = (X,2,E,x,,X,) and £'CX, let A= (Y,2'm,y,,Y ) and P:Z*—3" be
the natural projection. A 1s called state-controllable with respect to G, 1f

(VSEL(GxA)(VXEE(X,8)(VyEN(Yo.L(5))) Eg(x)NZ,NZ'C E4(y)

oEs, N3’ o
X y
G S\% s P(s)\ /P(s) A

X0 Yo
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State Observability

* Definition 2

Given G = (X,2,5,X,,X,,) and 2'CX let A = (Y,2',M,y,,Y,,). We say A is state-
observable with respect to (G, P,) if for any s,s'€L(GxA) with P (s)=P (s'),

(VX Y)EEXN((X,Y0) -V (X, VEEXN((X,Y0)8") Egea () NEG(X)NZ'CE \(y')

P(s) =P(s')
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State Normality

* Definition 3

Given G = (X,Z,§,x,,X,,) and X'CX, let A=(Y,2'm,y,,Y,,) and P:Z*—3" be
the natural projection. We say A is state-normal with respect to (G, P,) if for
any s€L(GxA) and s'€P_ (P (s)),

(V(XY)EEXN((X0,Y )8 N(VS"EXY) Po(s's")=P,(8)AE(X,8")=T=n(y,P(s")) =L

XO Po(S’S”) — Po(s)
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Nonblocking Supervisor

e Definition 4

Given GEQ(X) and HEP(A) with ACX'CE, an automaton SEGX’) is a
nonblocking supervisor of G under H, if S 1s deterministic and the following
conditions hold:

— N(GxS) € N(GxH)
— B(GxS)=©
— S 1s state-controllable with respect to G

— S 1s state-observable with respect to G and P,
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Supremal Nonblocking State-Normal Supervisor

L- Let
CMG,H):={S&p(X)|S is a NSN supervisor of G w.r.t. H A L(S)CL(G) }
where NSN denotes “Nonblocking State-Normal”
« We can show that ¢MG,H) contains a unique element S such that
(VSECMG,H)) N(S) C N(SY)
We call S™ the supremal NSN supervisor of G under H

» S” is computable with the complexity of O(||G||x|[H]||e/lSIIIH
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Main Results

—

* Let GE()(X) and a deterministic specification HE@G(A) with ACE'CS,

Theorem 1
SEp(Z") 1s a nonblocking supervisor of G/=y with respect to H

=

S 1s a nonblocking supervisor of G with respect to H
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Main Results (cont.)

—

* Let GE()(X) and a deterministic specification HE@G(A) with ACE'CS,
* Suppose G is marking aware w.r.t. £ and X C X'
Theorem 2

SEP(Z") 1s a nonblocking supervisor of G/=y with respect to H

<=

S 1s a nonblocking supervisor of G with respect to H
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Concept of Distributed System

* A distributed system with respect to given alphabets {Z.1E1} 1s
a collection of nondeterministic finite-state automata

g::{Giz(Xia Zia 1° Xi,O: Xi,m)e¢(2i)|i61}
where 2, =2, U2 =2 UZX . The compositional behavior

1,uc

of G is specified by x..,G..

» We assume that, (Vi,j€l) i=j =%, NZ, =D A NZ (=
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Nonblocking Distributed Supervisor

Given a distributed system G = {G.EP(Z))1I€]I} and deterministic
specifications # = {HEP(A)JEIHACU,o 2 A JEJ}, synthesize a set of
deterministic automata § = {S,&¢(I')| I'CU. o Z A k€K} such that the
following conditions hold,

— N((xie; Gp)x(Xex Si)) & N((xigg Gi)X(XjEJ HJ))
— B((Xig Gp)x(xex Sy)) =9
— Xex Sy 18 state-controllable w.r.t. x.o; G,

— Xyex Sy 1s state-observable w.r.t. x,o; Gy and P (Ui Z)"— (Uig Z; )
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An Aggregative Synthesis Approach (ASP)

» Inputs: standardized G={G,Ep(Z)[i€l}, H={H,EQ(A)[ET}HACUZ; A JET}
* Initially set W,:=G, J;:={jJ&J|ALCE,}, Q;:=); and T|:=%,
 Fork=l1,...n,

o If ), =D, let Vi:=x,; H:. Otherwise, set V, as a recognizer of Z;.
* Synthesize the supremal NSN supervisor S, of W, under V,.
» Terminate when S, 1s empty or k=n. Otherwise, do the following.
* Set I, ={i€lk+l=1=n}, 2, :=Uicy, 12 and Oy, :=Uig) o4,
* Choose X,,CT, with (Z,,,,U 0, )NT, CX,,. Let A, :=(W,x S, )/=s ;.
© Wi =A X Gy, Quyy ={EJAC UL ME S
* DT Qe Qe T = 20 Uy
*  When terminate upon k, output S={S,,S,,...,S, }.
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Aggregative Synthesis

hﬂas been processed | ! I(k)=1{k, ..., n} to be pz‘ocessed

—————————————————————————————————

Gt | | G

n
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e Theorem

The ASP always terminates, and if every S, (k=1,2,...,n) 1s
nonempty, then {S, | k=1,2,...,n} a nonblocking distributed
supervisor of G under .
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Main Difficulty for Aggregative Synthesis

* How to order components so that it yields a solution?
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Parallel Synthesis — Coordinated Distributed Control

C : C/G is nonblocking

A

G=A,xA,

A= (SI/GI)/’N"ZIOZ’ A, = (Sz/Gz)/zzsz'
abstraction abstraction
Sl Gl SZ G2

_________________________________________________

_________________________________________________
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Multi-Level Coordinators

. 3"C3,US,US,US, ‘ c
. (2,US,)N(Z,US,) C 3 A

G,xG,xG;xG,
SIAS,AS;ASAC HACAC

G =Ajy X Ay

abstraction T T abstraction
G i
1XG, H - G3xGy Ca,
G, G,y
1 1
| | L | |
Al Az A3 A 4
I abstraction Iab stractlon I abstraction Iab stractlon
S, G, S, G, S, G, S, G,

______________________________________________________________

_____________

_________________________

__________________________________________________________________________________________________________________________________
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Main Difficulty for Coordinated Control

* How to define those coordinator alphabets?
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Cluster Tools

[ ] ] m— —m m— —am me—_ —m
] ] | ] ] ] ] u ) u ] u
Y \/ \J \/ \/ \/ Y \/ Y \J \/ \j
M H X H X H X X Xl H H
u u u n ] u = u u u | -

T T —— T T—— e —am T —

[Loading

Exit

Proc 11

Proc 21

Bl

Proc 12

Proc 22

Proc 31

B2

Proc 41

B3

Proc 32

Proc 42

Proc 43

EE6226 Discrete Event Systems

26




Component Models — Load and Exit Locks

H@ Rl_piCk_Lin @ Rl_drop_Lout

Entering Load Lock L. Exit Load Lock L,
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Component Models — Chambers

R-pick-C;;
() .
J g\, g\
R~drop-C; Process;;
_ R;-drop-C;,
R.-pick-C i R -pick- Cij R-drop-C i
o e
()
C
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Component Models — Bufters

R.-pick-B, R, ,-pick-B,

l
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Component Models — Robots

R,-pick-L, R,-pick-B, R;-pick-B, Ry-pick-B,
R,-pick-B, R,-pick-B, R;-pick-B, R,-pick-Cy;3
R,-drop-L_,, R,-drop-B, R;-drop-B, R,-drop-B,
R,-drop-B, R,-drop-B, R;-drop-B, R,-drop-C,;
R, R, R, R,
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Specifications

R,-drop-Cy;

3

R -ple-L

R,-drop-B,

3

R,-pick- C T

R,-drop-C,

3

R -ple-B

R,-drop-L,,

j

R,-pick- C, 1

H21

H22

H23

Hy,

R,-drop-C,, R;-drop-Cj,
m Hy, “’m
R,-pick-B, R;-pick-B,
R,-drop-B, R;-drop-B,
m Hy, ‘m
R,-pick-C,, Ry-pick-Cy,
R,-drop-C,, R4-drop-C;,
‘m H; ‘m
R,-pick-B, R;-pick-B,
R,-drop-B, R;-drop-B,
“’m Hy, ‘m
R,-pick-C,, R4-pick-C;,
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Create Standardized Automata

W(Cyp) X UCyy) x W(Cy3) x WRy) x W(B5)
w(Csp) x W(Csy) x WR3) x W(B,)
w(C,p) x W(Cypy) x W(R,) x w(B))
w(Cip) x W(Cpp) x WR)) x w(Ly,) x w(L,,,)

w(Hy,) x u(Hy,) x w(Hyz) x w(Hyy)
w(Hs,) x w(Hs,) x w(H;3) x w(H;y)
w(H,;) x u(Hy,) x w(H,3) x w(H,y4)
w(H, ;) x u(H,,) x w(H;3) x uw(H,4)
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Aggregative Synthesis

* Synthesize the supremal nonblocking state-normal supervisor
S, of G, under H,.

— Use make supervisor('Gl.cfg’, "Hl.cfg’, ‘Sl.cfg’) :: S1 (112, 222)

 Perform abstraction

— Use make sequential abstraction("Gl.cfg, S1.cfg’, "R3-pick-B3, R3-
drop-B3, R3-pick-B3, R4-drop-B3’, "Al.cfg’) :: Al (15, 24)
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Aggregative Synthesis (cont.)

 Form a new plant model
— Use make product('G2.cfg, Al.cfg’, " W2.cfg’) :: W2 (985, 4053)

* Synthesize the supremal nonblocking state-normal supervisor
S, of W, under H,.

— Use make supervisor( W2.cfg’, "H2.cfg’, "S2.cfg’) :: S1 (140, 288)

* Perform abstraction

— Use make sequential abstraction(" W2.cfg, S2.cfg’, 'R2-pick-B2, R2-
drop-B2, R3-pick-B2, R3-drop-B2’, "A2.cfg’) :: A2 (15, 24)
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Aggregative Synthesis (cont.)

 Form a new plant model
— Use make product('G3.cfg, A2.cfg’, "W3.cfg’) :: W3 (985,4053)

* Synthesize the supremal nonblocking state-normal supervisor
S; of W; under H,.

— Use make supervisor(' W3.cfg’, 'H3.cfg’, 'S3.cfg’) :: SI (140, 288)

* Perform abstraction

— Use make sequential abstraction(" W3.cfg, S3.cfg’, 'R1-pick-B1, R1-
drop-B1, R2-pick-B1, R2-drop-B1’°, "A3.cfg’) :: A3 (15, 24)
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Aggregative Synthesis (cont.)

 Form a new plant model
— Use make product('G4.cfg, A3.cfg’, 'W4d.cfg’) :: W4 (253,913)

* Synthesize the supremal nonblocking state-normal supervisor
S,of W, under H,.

— Use make supervisor( W4.cfg’, "H4.ctfg’, "S4.cfg’) :: S4 (68, 126)

 Perform nonconflict check

— Use make nonconflicting check('Gl.cfg, G2.cfg, G3.cfg, G4.cfg,
S1.cfg, S2.cfg, S3.cfg, S4.cfg’) :: ok
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Homework

« Compute a coordinated distributed supervisor.

— You can decide the number and the locations of your coordinators.
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Conclusions

* Advantages

— The abstraction technique 1s less restrictive than using observers
— It can reduce space complexity as long as a system is loosely coupled

— The synthesis approach has a limited degree of reusability when a
system’s architecture 1s changed

» Disadvantages
— The abstraction technique may bring in extra restriction on supervisors
— The aggregative approach requires a “good” ordering of components

— The coordinated control needs good choices of coordinator alphabets
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