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The Standardized Automata 

•  Suppose G = (X,Σ,ξ,x0,Xm). Bring in a new event symbol τ. 

–  τ will be treated as uncontrollable and unobservable. 

•   An automaton G = (X,Σ∪{τ},ξ,x0,Xm) is standardized if  

–  x0 ∉Xm 

–  (∀x∈X) ξ(x,τ) ≠ ∅ ⇔ x = x0 

–  (∀σ∈Σ) ξ(x0,σ) = ∅ 

–  (∀x∈X)(∀σ∈Σ∪{τ}) x0∉ξ(x,σ) 

•  Let  φ(Σ) be the collection of all standardized automata over Σ. 
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Marking Awareness 

•  G∈φ(Σ) is marking aware with respect to Σʹ⊆Σ, if 

               (∀x∈X-Xm)(∀s∈Σ*) ξ(x,s)∩Xm≠∅ ⇒ P(s)≠ ε 
 

    where P:Σ* → Σʹ* is the natural projection. 
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Main Result 

•  Theorem: Given Σ and Σʹ⊆Σ, let G∈φ(Σ) and S∈φ(Σʹ). Then 

–  B((G/≈Σʹ)×S)= ∅ ⇒ B(G×S)=∅ 

–  G is marking aware w.r.t. Σʹ ⇒ [B((G/≈Σʹ)×S)= ∅ ⇔ B(G×S)=∅] 
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Basic Concepts 

•  Given a nondeterministic automaton G = (X, Σ, ξ, x0, Xm), let 

–  L(G) := {s ∈Σ*|ξ(x0,s) ≠ ∅}  : the closed behavior  

–  N(G) := {s∈Σ*|ξ(x0,s) ∩ Xm ≠ ∅}  : the nonblocking set 

–  B(G) := {s∈Σ*|(∃x∈ξ(x0,s))(∀sʹ∈Σ*) ξ(x,sʹ)∩Xm=∅}  : the blocking set 

–  (∀x∈X) EG(x) := {σ∈Σ | ξ(x,σ) ≠ ∅}  : the enabling set 
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State Controllability 

•  Definition 1 

    Given G = (X,Σ,ξ,x0,Xm) and Σʹ⊆Σ, let A = (Y,Σ',η,y0,Ym) and P:Σ*→Σ'* be 
the natural projection. A is called state-controllable with respect to G, if 

 

         (∀s∈L(G×A))(∀x∈ξ(x0,s))(∀y∈η(y0,P(s))) EG(x)∩Σuc∩Σʹ⊆ EA(y) 

s s s P(s) P(s) 

σ σ∈Σuc∩Σʹ 
x y 

G A 
x0 y0 
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State Observability 

•  Definition 2  

    Given G = (X,Σ,ξ,x0,Xm) and Σʹ⊆Σ, let A = (Y,Σ',η,y0,Ym).  We say A is state-
observable with respect to (G, Po) if for any s,s'∈L(G×A) with Po(s)=Po(s'),  

 

 (∀(x,y)∈ξ×η((x0,y0),s))(∀(x',y')∈ξ×η((x0,y0),s')) EG×A(x,y)∩EG(x')∩Σʹ⊆EA(y') 

s s sʹ P(s) P(sʹ) 

σ σ∈Σʹ 
x yʹ 

G A 
x0 y0 

σ 
xʹ 

σ 
y 

Po(s) = Po(sʹ) 
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State Normality 

•  Definition 3 

    Given G = (X,Σ,ξ,x0,Xm) and Σʹ⊆Σ, let A=(Y,Σ',η,y0,Ym) and P:Σ*→Σ'* be 
the natural projection. We say A is state-normal with respect to (G, P0) if for 
any s∈L(G×A) and s'∈Po

-1(Po(s)),  
 

   (∀(x,y)∈ξ×η((x0,y0),s'))(∀s''∈Σ*) Po(s's'')=Po(s)∧ξ(x,s'')≠∅⇒η(y,P(s''))≠∅ 

sʹ 
s P(sʹ) P(s) 

s ʺ 
x 

G A 
x0 y0 

P(sʺ) 
y 

Po(sʹsʺ) = Po(s) 
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Nonblocking Supervisor 

•  Definition 4 

    Given G∈φ(Σ) and H∈φ(Δ) with Δ⊆Σʹ⊆Σ, an automaton S∈φ(Σʹ) is a 
nonblocking supervisor of G under H, if S is deterministic and the following 
conditions hold: 

 

–  N(G×S) ⊆ N(G×H) 

–  B(G×S) = ∅ 

–  S is state-controllable with respect to G 

–  S is state-observable with respect to G and Po 
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Supremal Nonblocking State-Normal Supervisor 

•  Let  
 

  CN(G,H):={S∈φ(Σ)|S is a NSN supervisor of G w.r.t. H ∧ L(S)⊆L(G) } 
 

    where NSN denotes “Nonblocking State-Normal”  
 

•  We can show that CN(G,H) contains a unique element S* such that  

                                (∀S∈CN(G,H)) N(S) ⊆ N(S*)  
 

    We call S* the supremal NSN supervisor of G under H 
 

•  S* is computable with the complexity of O(||G||×||H||e||G||×||H||) 
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Main Results  

•  Let G∈φ(Σ) and a deterministic specification H∈φ(Δ) with Δ⊆Σʹ⊆Σ.  

Theorem 1 
 

S∈φ(Σʹ) is a nonblocking supervisor of  G/≈Σʹ with respect to H  

                                                              ⇒      

               S is a nonblocking supervisor of G with respect to H 



EE6226 Discrete Event Systems 14 

Main Results (cont.) 

•  Let G∈φ(Σ) and a deterministic specification H∈φ(Δ) with Δ⊆Σʹ⊆Σ.  
•  Suppose G is marking aware w.r.t. Σʹ and Σo ⊆ Σʹ. 

Theorem 2 
 

S∈φ(Σʹ) is a nonblocking supervisor of  G/≈Σʹ with respect to H  

                                                               ⇔      

              S is a nonblocking supervisor of G with respect to H 
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Concept of Distributed System 

•  A distributed system with respect to given alphabets {Σi|i∈I} is 
a collection of nondeterministic finite-state automata 

               G:={Gi=(Xi, Σi, ξi, xi,0, Xi,m)∈φ(Σi)|i∈I}  
   where Σi = Σi,c ∪ Σi,uc = Σi,o ∪ Σi,uo. The compositional behavior 

of G is specified by ×i∈IGi. 
 
•  We assume that, (∀i,j∈I) i≠j ⇒ Σi,c ∩Σj,uc = ∅ ∧ Σi,o ∩Σj,uo = ∅ 
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Nonblocking Distributed Supervisor 
 

     Given a distributed system G = {Gi∈φ(Σi)|i∈I} and deterministic 
specifications H = {Hi∈φ(Δj)|j∈J}|Δj⊆∪i∈I Σi ∧ j∈J}, synthesize a set of 
deterministic automata S = {Sk∈φ(Γk)| Γk⊆∪i∈I Σi ∧ k∈K} such that the 
following conditions hold, 

 

–  N((×i∈I Gi)×(×k∈K Sk)) ⊆ N((×i∈I Gi)×(×j∈J Hj))  
–  B((×i∈I Gi)×(×k∈K Sk)) = ∅ 
–  ×k∈K Sk is state-controllable w.r.t. ×i∈I Gi  
–  ×k∈K Sk is state-observable w.r.t. ×i∈I Gi and Po:(∪i∈I Σi)*→ (∪i∈I Σi,o)* 
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An Aggregative Synthesis Approach (ASP) 

•  Inputs: standardized G={Gi∈φ(Σi)|i∈I}, H={Hi∈φ(Δj)|j∈J}|Δj⊆∪i∈IΣi ∧ j∈J} 
•  Initially set W1:=G1, J1:={j∈J|Δj⊆Σ1}, Q1:=J1 and T1:=Σ1 
•  For k=1,…,n, 

•  If Jk≠∅, let Vk:=×j∈JkHj. Otherwise, set Vk as a recognizer of Σi
*. 

•  Synthesize the supremal NSN supervisor Sk of Wk under Vk. 
•  Terminate when Sk is empty or k=n. Otherwise, do the following.  
•  Set Ik+1:={i∈I|k+1≤ i≤n}, ΣIk+1:=∪i∈Ik+1Σi and Θk+1:=∪j∈J-QkΔj. 
•  Choose ΣAk⊆Tk with (ΣIk+1∪ Θk+1)∩Tk ⊆ΣAk. Let Ak:=(Wk× Sk)/≈ΣAk. 
•  Wk+1:=Ak × Gk+1, Qk+1 :={j∈J|Δj⊆ ∪i=1

k+1Σi}. 
•  Jk+1:=Qk+1- Qk, Tk+1:= ΣAk ∪Σk+1. 

•  When terminate upon k, output S={S1,S2,…,Sk}. 
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Gk-1 Gk Gk+1 •  … … 

I(k) = {k, … , n} 

V(k) S1×…×Sk-1 

G1 

A(k-1) 

Gn 

Sk 

synthesis abstraction 

to be processed has been processed 

Aggregative Synthesis 
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•  Theorem  

    The ASP always terminates, and if every Sk (k=1,2,…,n) is 
nonempty, then {Sk | k=1,2,…,n} a nonblocking distributed 
supervisor of G under H. 
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Main Difficulty for Aggregative Synthesis 

•  How to order components so that it yields a solution? 
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Parallel Synthesis – Coordinated Distributed Control 

abstraction 

G1 S1 G2 S2 

A1 = (S1/G1)/≈Σ1∩Σʹ A2 = (S2/G2)/≈Σ2∩Σʹ 

abstraction 

G = A1 × A2  

C : C/G is nonblocking 
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Multi-Level Coordinators  

abstraction 

G1 S1 G2 S2 

A1 A2 
abstraction 

G12 

C12 

abstraction 

G3 S3 G4 S4 

A3 A4 
abstraction 

G34 

C34 

G = A12 × A34 

C 

G1×G2 
S1∧S2∧C12 

G3×G4 
S3∧S4∧C34 

G1×G2×G3×G4 
S1∧S2∧S3∧S4∧C12∧C34∧C 

abstraction abstraction 

•  Σ'' ⊆ Σ1∪Σ2∪Σ3∪Σ4 
•  (Σ1∪Σ2)∩(Σ3∪Σ4) ⊆ Σ'' 
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Main Difficulty for Coordinated Control 

•  How to define those coordinator alphabets? 
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Cluster Tools 
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Proc_11 

Proc_12 

B1 

Proc_21 

Proc_22 

B3 

Proc_41 

Proc_43 

Proc_42 

 
Loading 

 

Exit     R1    R2    R4 
B2 

Proc_31 

Proc_32 

   R3 



Component Models – Load and Exit Locks 
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R1-pick-Lin R1-drop-Lout 

Entering Load Lock Lin Exit Load Lock Lout 
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Component Models – Chambers 

Ri-pick-Cij 

Ri-drop-Cij Processij 

Ri-pick-Cij Ri-drop-Cij 

Ri-drop-Cij 
Ri-pick-Cij 

Cij 
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Component Models – Buffers 

Ri-drop-Bi 

Ri+1-pick-Bi 

Ri+1-drop-Bi 

Ri-pick-Bi 

Ri+1-drop-Bi Ri-drop-Bi 

Ri-pick-Bi 

Ri+1-pick-Bi 

Bi 
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Component Models – Robots 

R1-pick-Lin 
R1-pick-C11 
R1-pick-C12 
R1-pick-B1 

R1-drop-Lout 
R1-drop-C11 
R1-drop-C12 
R1-drop-B1 

R1 

R2-pick-B1 

R2-pick-C21 
R2-pick-C22 
R2-pick-B2 

R2-drop-B1 

R2-drop-C21 
R2-drop-C22 
R2-drop-B2 

R2 

R3-pick-B2 

R3-pick-C31 
R3-pick-C32 
R3-pick-B3 

R3-drop-B2 

R3-drop-C31 
R3-drop-C32 
R3-drop-B3 

R3 

R4-pick-B3 

R4-pick-C41 
R4-pick-C42 
R4-pick-C43 

R4-drop-B3 

R4-drop-C41 
R4-drop-C42 
R4-drop-C43 

R4 



Specifications 

EE6226 Discrete Event Systems 31 

R1-drop-C11 

R1-pick-Lin 

H11 

R1-drop-B1 

R1-pick-C11 

H12 

R1-drop-C12 

R1-pick-B1 

H13 

R1-drop-Lout 

R1-pick-C12 

H14 

R2-drop-C21 

R2-pick-B1 

H21 

R2-drop-B2 

R2-pick-C21 

H22 

R2-drop-C22 

R2-pick-B2 

H23 

R2-drop-B1 

R2-pick-C22 

H24 

R3-drop-C31 

R3-pick-B2 

H31 

R3-drop-B3 

R3-pick-C31 

H32 

R3-drop-C32 

R3-pick-B3 

H33 

R3-drop-B2 

R3-pick-C32 

H34 

R4-drop-C41 

R4-pick-B3 

H41 

R4-drop-C42 

R4-pick-C41 

H42 

R4-drop-C43 

R4-pick-C42 

H43 

R4-drop-B3 

R4-pick-C43 

H44 



Create Standardized Automata 
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•  Let 
–  G1 :=  µ(C41) × µ(C42) × µ(C43) × µ(R4) × µ(B3) 
–  G2 :=  µ(C31) × µ(C32) × µ(R3) × µ(B2) 
–  G3 :=  µ(C21) × µ(C22) × µ(R2) × µ(B1) 
–  G4 :=  µ(C11) × µ(C12) × µ(R1) × µ(Lin) × µ(Lout) 

    and 
–  H1 :=  µ(H41) × µ(H42) × µ(H43) × µ(H44)  
–  H2 :=  µ(H31) × µ(H32) × µ(H33) × µ(H34)  
–  H3 :=  µ(H21) × µ(H22) × µ(H23) × µ(H24)  
–  H4 :=  µ(H11) × µ(H12) × µ(H13) × µ(H14)  



Aggregative Synthesis 

•  Synthesize the supremal nonblocking state-normal supervisor 
S1 of G1 under H1. 
–  Use make_supervisor(`G1.cfg’, `H1.cfg’, `S1.cfg’)  ::  S1 (112, 222) 

•  Perform abstraction 
–  Use make_sequential_abstraction(`G1.cfg, S1.cfg’, `R3-pick-B3, R3-

drop-B3, R3-pick-B3, R4-drop-B3’, `A1.cfg’)   ::   A1 (15, 24)   
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Aggregative Synthesis (cont.) 

•  Form a new plant model 
–  Use make_product(`G2.cfg, A1.cfg’, `W2.cfg’)   ::   W2 (985, 4053) 

•  Synthesize the supremal nonblocking state-normal supervisor 
S2 of W2 under H2. 
–  Use make_supervisor(`W2.cfg’, `H2.cfg’, `S2.cfg’)  ::  S1 (140, 288) 

•  Perform abstraction 
–  Use make_sequential_abstraction(`W2.cfg, S2.cfg’, `R2-pick-B2, R2-

drop-B2, R3-pick-B2, R3-drop-B2’, `A2.cfg’)   ::   A2 (15, 24)   
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Aggregative Synthesis (cont.) 

•  Form a new plant model 
–  Use make_product(`G3.cfg, A2.cfg’, `W3.cfg’)   ::   W3 (985, 4053) 

•  Synthesize the supremal nonblocking state-normal supervisor 
S3 of W3 under H3. 
–  Use make_supervisor(`W3.cfg’, `H3.cfg’, `S3.cfg’)  ::  S1 (140, 288) 

•  Perform abstraction 
–  Use make_sequential_abstraction(`W3.cfg, S3.cfg’, `R1-pick-B1, R1-

drop-B1, R2-pick-B1, R2-drop-B1’, `A3.cfg’)   ::   A3 (15, 24)   
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Aggregative Synthesis (cont.) 

•  Form a new plant model 
–  Use make_product(`G4.cfg, A3.cfg’, `W4.cfg’)   ::   W4 (253, 913) 

•  Synthesize the supremal nonblocking state-normal supervisor 
S4 of W4 under H4. 
–  Use make_supervisor(`W4.cfg’, `H4.cfg’, `S4.cfg’)  ::  S4 (68, 126) 

•  Perform nonconflict check 
–  Use make_nonconflicting_check(`G1.cfg, G2.cfg, G3.cfg, G4.cfg, 

S1.cfg, S2.cfg, S3.cfg, S4.cfg’)   ::   ok   



Homework 

•  Compute a coordinated distributed supervisor. 
–  You can decide the number and the locations of your coordinators. 

EE6226 Discrete Event Systems 37 



Conclusions 
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•  Advantages  

–  The abstraction technique is less restrictive than using observers   
–  It can reduce space complexity as long as a system is loosely coupled 
–  The synthesis approach has a limited degree of reusability when a 

system’s architecture is changed 

•  Disadvantages 
–  The abstraction technique may bring in extra restriction on supervisors 
–  The aggregative approach requires a “good” ordering of components 
–  The coordinated control needs good choices of coordinator alphabets 


