
EE6226 Discrete Event Systems 1

Using Automaton Abstraction in Synthesis of
Distributed Supervisors

Dr Rong Su
S1-B1b-59, School of EEE

Nanyang Technological University
Tel: +65 6790-6042, Email:

rsu@ntu.edu.sg

EE6226 Discrete Event Systems 2

Outline

•  Review of Automaton Abstraction

•  Concepts of Supervisors and Relevant Properties

•  Synthesis of Distributed Supervisors

•  Example

•  Conclusions

EE6226 Discrete Event Systems 3

The Standardized Automata

•  Suppose G = (X,Σ,ξ,x0,Xm). Bring in a new event symbol τ.

–  τ will be treated as uncontrollable and unobservable.

•  An automaton G = (X,Σ∪{τ},ξ,x0,Xm) is standardized if

–  x0 ∉Xm

–  (∀x∈X) ξ(x,τ) ≠ ∅ ⇔ x = x0

–  (∀σ∈Σ) ξ(x0,σ) = ∅

–  (∀x∈X)(∀σ∈Σ∪{τ}) x0∉ξ(x,σ)

•  Let φ(Σ) be the collection of all standardized automata over Σ.

EE6226 Discrete Event Systems 4

Marking Awareness

•  G∈φ(Σ) is marking aware with respect to Σʹ⊆Σ, if

 (∀x∈X-Xm)(∀s∈Σ*) ξ(x,s)∩Xm≠∅ ⇒ P(s)≠ ε

 where P:Σ* → Σʹ* is the natural projection.

EE6226 Discrete Event Systems 5

Main Result

•  Theorem: Given Σ and Σʹ⊆Σ, let G∈φ(Σ) and S∈φ(Σʹ). Then

–  B((G/≈Σʹ)×S)= ∅ ⇒ B(G×S)=∅

–  G is marking aware w.r.t. Σʹ ⇒ [B((G/≈Σʹ)×S)= ∅ ⇔ B(G×S)=∅]

EE6226 Discrete Event Systems 6

Outline

•  Review of Automaton Abstraction

•  Concepts of Supervisors and Relevant Properties

•  Synthesis of Distributed Supervisors

•  Example

•  Conclusions

EE6226 Discrete Event Systems 7

Basic Concepts

•  Given a nondeterministic automaton G = (X, Σ, ξ, x0, Xm), let

–  L(G) := {s ∈Σ*|ξ(x0,s) ≠ ∅} : the closed behavior

–  N(G) := {s∈Σ*|ξ(x0,s) ∩ Xm ≠ ∅} : the nonblocking set

–  B(G) := {s∈Σ*|(∃x∈ξ(x0,s))(∀sʹ∈Σ*) ξ(x,sʹ)∩Xm=∅} : the blocking set

–  (∀x∈X) EG(x) := {σ∈Σ | ξ(x,σ) ≠ ∅} : the enabling set

EE6226 Discrete Event Systems 8

State Controllability

•  Definition 1

 Given G = (X,Σ,ξ,x0,Xm) and Σʹ⊆Σ, let A = (Y,Σ',η,y0,Ym) and P:Σ*→Σ'* be
the natural projection. A is called state-controllable with respect to G, if

 (∀s∈L(G×A))(∀x∈ξ(x0,s))(∀y∈η(y0,P(s))) EG(x)∩Σuc∩Σʹ⊆ EA(y)

s s s P(s) P(s)

σ σ∈Σuc∩Σʹ
x y

G A
x0 y0

EE6226 Discrete Event Systems 9

State Observability

•  Definition 2

 Given G = (X,Σ,ξ,x0,Xm) and Σʹ⊆Σ, let A = (Y,Σ',η,y0,Ym). We say A is state-
observable with respect to (G, Po) if for any s,s'∈L(G×A) with Po(s)=Po(s'),

 (∀(x,y)∈ξ×η((x0,y0),s))(∀(x',y')∈ξ×η((x0,y0),s')) EG×A(x,y)∩EG(x')∩Σʹ⊆EA(y')

s s sʹ P(s) P(sʹ)

σ σ∈Σʹ
x yʹ

G A
x0 y0

σ
xʹ

σ
y

Po(s) = Po(sʹ)

EE6226 Discrete Event Systems 10

State Normality

•  Definition 3

 Given G = (X,Σ,ξ,x0,Xm) and Σʹ⊆Σ, let A=(Y,Σ',η,y0,Ym) and P:Σ*→Σ'* be
the natural projection. We say A is state-normal with respect to (G, P0) if for
any s∈L(G×A) and s'∈Po

-1(Po(s)),

 (∀(x,y)∈ξ×η((x0,y0),s'))(∀s''∈Σ*) Po(s's'')=Po(s)∧ξ(x,s'')≠∅⇒η(y,P(s''))≠∅

sʹ
s P(sʹ) P(s)

s ʺ
x

G A
x0 y0

P(sʺ)
y

Po(sʹsʺ) = Po(s)

EE6226 Discrete Event Systems 11

Nonblocking Supervisor

•  Definition 4

 Given G∈φ(Σ) and H∈φ(Δ) with Δ⊆Σʹ⊆Σ, an automaton S∈φ(Σʹ) is a
nonblocking supervisor of G under H, if S is deterministic and the following
conditions hold:

–  N(G×S) ⊆ N(G×H)

–  B(G×S) = ∅

–  S is state-controllable with respect to G

–  S is state-observable with respect to G and Po

EE6226 Discrete Event Systems 12

Supremal Nonblocking State-Normal Supervisor

•  Let

 CN(G,H):={S∈φ(Σ)|S is a NSN supervisor of G w.r.t. H ∧ L(S)⊆L(G) }

 where NSN denotes “Nonblocking State-Normal”

•  We can show that CN(G,H) contains a unique element S* such that

 (∀S∈CN(G,H)) N(S) ⊆ N(S*)

 We call S* the supremal NSN supervisor of G under H

•  S* is computable with the complexity of O(||G||×||H||e||G||×||H||)

EE6226 Discrete Event Systems 13

Main Results

•  Let G∈φ(Σ) and a deterministic specification H∈φ(Δ) with Δ⊆Σʹ⊆Σ.

Theorem 1

S∈φ(Σʹ) is a nonblocking supervisor of G/≈Σʹ with respect to H

 ⇒

 S is a nonblocking supervisor of G with respect to H

EE6226 Discrete Event Systems 14

Main Results (cont.)

•  Let G∈φ(Σ) and a deterministic specification H∈φ(Δ) with Δ⊆Σʹ⊆Σ.
•  Suppose G is marking aware w.r.t. Σʹ and Σo ⊆ Σʹ.

Theorem 2

S∈φ(Σʹ) is a nonblocking supervisor of G/≈Σʹ with respect to H

 ⇔

 S is a nonblocking supervisor of G with respect to H

EE6226 Discrete Event Systems 15

Outline

•  Review of Automaton Abstraction

•  Concepts of Supervisors and Relevent Properties

•  Synthesis of Distributed Supervisors

•  Example

•  Conclusions

Concept of Distributed System

•  A distributed system with respect to given alphabets {Σi|i∈I} is
a collection of nondeterministic finite-state automata

 G:={Gi=(Xi, Σi, ξi, xi,0, Xi,m)∈φ(Σi)|i∈I}
 where Σi = Σi,c ∪ Σi,uc = Σi,o ∪ Σi,uo. The compositional behavior

of G is specified by ×i∈IGi.

•  We assume that, (∀i,j∈I) i≠j ⇒ Σi,c ∩Σj,uc = ∅ ∧ Σi,o ∩Σj,uo = ∅

EE6226 Discrete Event Systems 16

EE6226 Discrete Event Systems 17

Nonblocking Distributed Supervisor

 Given a distributed system G = {Gi∈φ(Σi)|i∈I} and deterministic
specifications H = {Hi∈φ(Δj)|j∈J}|Δj⊆∪i∈I Σi ∧ j∈J}, synthesize a set of
deterministic automata S = {Sk∈φ(Γk)| Γk⊆∪i∈I Σi ∧ k∈K} such that the
following conditions hold,

–  N((×i∈I Gi)×(×k∈K Sk)) ⊆ N((×i∈I Gi)×(×j∈J Hj))
–  B((×i∈I Gi)×(×k∈K Sk)) = ∅
–  ×k∈K Sk is state-controllable w.r.t. ×i∈I Gi
–  ×k∈K Sk is state-observable w.r.t. ×i∈I Gi and Po:(∪i∈I Σi)*→ (∪i∈I Σi,o)*

EE6226 Discrete Event Systems 18

An Aggregative Synthesis Approach (ASP)

•  Inputs: standardized G={Gi∈φ(Σi)|i∈I}, H={Hi∈φ(Δj)|j∈J}|Δj⊆∪i∈IΣi ∧ j∈J}
•  Initially set W1:=G1, J1:={j∈J|Δj⊆Σ1}, Q1:=J1 and T1:=Σ1
•  For k=1,…,n,

•  If Jk≠∅, let Vk:=×j∈JkHj. Otherwise, set Vk as a recognizer of Σi
*.

•  Synthesize the supremal NSN supervisor Sk of Wk under Vk.
•  Terminate when Sk is empty or k=n. Otherwise, do the following.
•  Set Ik+1:={i∈I|k+1≤ i≤n}, ΣIk+1:=∪i∈Ik+1Σi and Θk+1:=∪j∈J-QkΔj.
•  Choose ΣAk⊆Tk with (ΣIk+1∪ Θk+1)∩Tk ⊆ΣAk. Let Ak:=(Wk× Sk)/≈ΣAk.
•  Wk+1:=Ak × Gk+1, Qk+1 :={j∈J|Δj⊆ ∪i=1

k+1Σi}.
•  Jk+1:=Qk+1- Qk, Tk+1:= ΣAk ∪Σk+1.

•  When terminate upon k, output S={S1,S2,…,Sk}.

EE6226 Discrete Event Systems 19

Gk-1 Gk Gk+1 •  … …

I(k) = {k, … , n}

V(k) S1×…×Sk-1

G1

A(k-1)

Gn

Sk

synthesis abstraction

to be processed has been processed

Aggregative Synthesis

EE6226 Discrete Event Systems 20

•  Theorem

 The ASP always terminates, and if every Sk (k=1,2,…,n) is
nonempty, then {Sk | k=1,2,…,n} a nonblocking distributed
supervisor of G under H.

EE6226 Discrete Event Systems 21

Main Difficulty for Aggregative Synthesis

•  How to order components so that it yields a solution?

EE6226 Discrete Event Systems 22

Parallel Synthesis – Coordinated Distributed Control

abstraction

G1 S1 G2 S2

A1 = (S1/G1)/≈Σ1∩Σʹ A2 = (S2/G2)/≈Σ2∩Σʹ

abstraction

G = A1 × A2

C : C/G is nonblocking

EE6226 Discrete Event Systems 23

Multi-Level Coordinators

abstraction

G1 S1 G2 S2

A1 A2
abstraction

G12

C12

abstraction

G3 S3 G4 S4

A3 A4
abstraction

G34

C34

G = A12 × A34

C

G1×G2
S1∧S2∧C12

G3×G4
S3∧S4∧C34

G1×G2×G3×G4
S1∧S2∧S3∧S4∧C12∧C34∧C

abstraction abstraction

•  Σ'' ⊆ Σ1∪Σ2∪Σ3∪Σ4
•  (Σ1∪Σ2)∩(Σ3∪Σ4) ⊆ Σ''

EE6226 Discrete Event Systems 24

Main Difficulty for Coordinated Control

•  How to define those coordinator alphabets?

EE6226 Discrete Event Systems 25

Outline

•  Review of Automaton Abstraction

•  Concepts of Supervisors and Relevent Properties

•  Synthesis of Distributed Supervisors

•  Example

•  Conclusions

Cluster Tools

EE6226 Discrete Event Systems 26

Proc_11

Proc_12

B1

Proc_21

Proc_22

B3

Proc_41

Proc_43

Proc_42

Loading

Exit R1 R2 R4
B2

Proc_31

Proc_32

 R3

Component Models – Load and Exit Locks

EE6226 Discrete Event Systems 27

R1-pick-Lin R1-drop-Lout

Entering Load Lock Lin Exit Load Lock Lout

EE6226 Discrete Event Systems 28

Component Models – Chambers

Ri-pick-Cij

Ri-drop-Cij Processij

Ri-pick-Cij Ri-drop-Cij

Ri-drop-Cij
Ri-pick-Cij

Cij

EE6226 Discrete Event Systems 29

Component Models – Buffers

Ri-drop-Bi

Ri+1-pick-Bi

Ri+1-drop-Bi

Ri-pick-Bi

Ri+1-drop-Bi Ri-drop-Bi

Ri-pick-Bi

Ri+1-pick-Bi

Bi

EE6226 Discrete Event Systems 30

Component Models – Robots

R1-pick-Lin
R1-pick-C11
R1-pick-C12
R1-pick-B1

R1-drop-Lout
R1-drop-C11
R1-drop-C12
R1-drop-B1

R1

R2-pick-B1

R2-pick-C21
R2-pick-C22
R2-pick-B2

R2-drop-B1

R2-drop-C21
R2-drop-C22
R2-drop-B2

R2

R3-pick-B2

R3-pick-C31
R3-pick-C32
R3-pick-B3

R3-drop-B2

R3-drop-C31
R3-drop-C32
R3-drop-B3

R3

R4-pick-B3

R4-pick-C41
R4-pick-C42
R4-pick-C43

R4-drop-B3

R4-drop-C41
R4-drop-C42
R4-drop-C43

R4

Specifications

EE6226 Discrete Event Systems 31

R1-drop-C11

R1-pick-Lin

H11

R1-drop-B1

R1-pick-C11

H12

R1-drop-C12

R1-pick-B1

H13

R1-drop-Lout

R1-pick-C12

H14

R2-drop-C21

R2-pick-B1

H21

R2-drop-B2

R2-pick-C21

H22

R2-drop-C22

R2-pick-B2

H23

R2-drop-B1

R2-pick-C22

H24

R3-drop-C31

R3-pick-B2

H31

R3-drop-B3

R3-pick-C31

H32

R3-drop-C32

R3-pick-B3

H33

R3-drop-B2

R3-pick-C32

H34

R4-drop-C41

R4-pick-B3

H41

R4-drop-C42

R4-pick-C41

H42

R4-drop-C43

R4-pick-C42

H43

R4-drop-B3

R4-pick-C43

H44

Create Standardized Automata

EE6226 Discrete Event Systems 32

•  Let
–  G1 := µ(C41) × µ(C42) × µ(C43) × µ(R4) × µ(B3)
–  G2 := µ(C31) × µ(C32) × µ(R3) × µ(B2)
–  G3 := µ(C21) × µ(C22) × µ(R2) × µ(B1)
–  G4 := µ(C11) × µ(C12) × µ(R1) × µ(Lin) × µ(Lout)

 and
–  H1 := µ(H41) × µ(H42) × µ(H43) × µ(H44)
–  H2 := µ(H31) × µ(H32) × µ(H33) × µ(H34)
–  H3 := µ(H21) × µ(H22) × µ(H23) × µ(H24)
–  H4 := µ(H11) × µ(H12) × µ(H13) × µ(H14)

Aggregative Synthesis

•  Synthesize the supremal nonblocking state-normal supervisor
S1 of G1 under H1.
–  Use make_supervisor(`G1.cfg’, `H1.cfg’, `S1.cfg’) :: S1 (112, 222)

•  Perform abstraction
–  Use make_sequential_abstraction(`G1.cfg, S1.cfg’, `R3-pick-B3, R3-

drop-B3, R3-pick-B3, R4-drop-B3’, `A1.cfg’) :: A1 (15, 24)

EE6226 Discrete Event Systems 33

EE6226 Discrete Event Systems 34

Aggregative Synthesis (cont.)

•  Form a new plant model
–  Use make_product(`G2.cfg, A1.cfg’, `W2.cfg’) :: W2 (985, 4053)

•  Synthesize the supremal nonblocking state-normal supervisor
S2 of W2 under H2.
–  Use make_supervisor(`W2.cfg’, `H2.cfg’, `S2.cfg’) :: S1 (140, 288)

•  Perform abstraction
–  Use make_sequential_abstraction(`W2.cfg, S2.cfg’, `R2-pick-B2, R2-

drop-B2, R3-pick-B2, R3-drop-B2’, `A2.cfg’) :: A2 (15, 24)

EE6226 Discrete Event Systems 35

Aggregative Synthesis (cont.)

•  Form a new plant model
–  Use make_product(`G3.cfg, A2.cfg’, `W3.cfg’) :: W3 (985, 4053)

•  Synthesize the supremal nonblocking state-normal supervisor
S3 of W3 under H3.
–  Use make_supervisor(`W3.cfg’, `H3.cfg’, `S3.cfg’) :: S1 (140, 288)

•  Perform abstraction
–  Use make_sequential_abstraction(`W3.cfg, S3.cfg’, `R1-pick-B1, R1-

drop-B1, R2-pick-B1, R2-drop-B1’, `A3.cfg’) :: A3 (15, 24)

EE6226 Discrete Event Systems 36

Aggregative Synthesis (cont.)

•  Form a new plant model
–  Use make_product(`G4.cfg, A3.cfg’, `W4.cfg’) :: W4 (253, 913)

•  Synthesize the supremal nonblocking state-normal supervisor
S4 of W4 under H4.
–  Use make_supervisor(`W4.cfg’, `H4.cfg’, `S4.cfg’) :: S4 (68, 126)

•  Perform nonconflict check
–  Use make_nonconflicting_check(`G1.cfg, G2.cfg, G3.cfg, G4.cfg,

S1.cfg, S2.cfg, S3.cfg, S4.cfg’) :: ok

Homework

•  Compute a coordinated distributed supervisor.
–  You can decide the number and the locations of your coordinators.

EE6226 Discrete Event Systems 37

Conclusions

EE6226 Discrete Event Systems 38

•  Advantages

–  The abstraction technique is less restrictive than using observers
–  It can reduce space complexity as long as a system is loosely coupled
–  The synthesis approach has a limited degree of reusability when a

system’s architecture is changed

•  Disadvantages
–  The abstraction technique may bring in extra restriction on supervisors
–  The aggregative approach requires a “good” ordering of components
–  The coordinated control needs good choices of coordinator alphabets

