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Three Main Concepts in Control 

•  Controllability 
–  allows you to improve the dynamics of a system by feedback 
–  e.g. controllability in the RW supervisory control theory 

•  Observability 
–  allows you to deploy such feedback by using the system's output 

•  Optimality 
–  gives rise to formal methods of control synthesis 
–  e.g. supremality in the RW supervisory control theory  
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Example 
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Example (cont.) 
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Some Intuitions 

•  Supervisor can only act upon receiving observable events 

•  Partial observation forces a supervisor to be conservative 

•  We can enable or disable an unobservable event 
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Observability  

•  Given G∈φ(Σ), let Σo⊆Σ and P:Σ*→Σo
* be the natural projection. 

•   A language K⊆L(G) is (G,P)-observable, if 

                               

               (∀s∈K)(∀σ∈Σ) sσ∈L(G)–K ⇒ P-1P(s)σ∩K=∅ 
 

      

a b a 
c 

b c 
Σo = {b} 
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Or equivalently … 

•  K⊆L(G) is (G,P)-observable, if for any s∈K, sʹ∈Σ* and σ∈Σ,  
 

           sσ∈L(G)–K ∧ sʹσ∈L(G) ∧ P(s)=P(sʹ) ⇒ sʹσ∈ L(G)–K  
 

     or equivalently,  
 

                 sσ∈K ∧ sʹσ∈L(G) ∧ P(s)=P(sʹ) ⇒ sʹσ∈ K  
 
                       (Think about why they are equivalent) 
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Example 1 

•  Σ = {a,b,c,d} 
•  Σo= {c} 
•  K ={ac, bc} 
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Question: is K (G,P)-observable? yes 
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Example 2 

•  Σ = {a,b,c,d} 
•  Σo= {c} 
•  K ={ac, bc} 
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K 

Question: is K (G,P)-observable? no 



EE6226 Discrete Event Dynamic Systems 12 

Example 3 

•  Σ = {a,b,c,d} 
•  Σo= {a,c} 
•  K ={ac, bc} 

a 
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d 

d 

K 

Question: is K (G,P)-observable? yes 
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(G,P)-observability is decidable. But how?  
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Procedure of Checking Observability : Step 1 

•  Let G = (X,Σ,ξ,x0,Xm) 
•  Suppose K is recognized by A = (Y,Σ,η,y0,Ym), i.e. K=Lm(A) 
•  Let A' = G×A = (X×Y,Σ,ξ×η,(x0,y0),Xm×Ym) 

–  Since K=L(A)⊆L(G), we have L(G×A)=L(A) 
•  A state (x,y)∈X×Y is a boundary state of A' w.r.t. G, if 

–  (∃s∈L(A')) ξ×η((x0,y0),s)=(x,y), i.e. (x,y) is reachable from (x0,y0) 
–  (∃σ∈Σ) ξ(x,σ)! ∧¬η(y,σ)!, where “!” denotes “is defined” 

•  Let B be the collection of all boundary states of A' w.r.t. G 
–  B is a finite set. (Why?)   
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Procedure of Checking Observability : Step 2 

•  For each boundary state (x,y)∈B, we define two sets 
 

–  T(x,y) := {s∈L(A')|ξ×η((x0,y0),s)=(x,y)}  (T(x,y) is regular, why?) 
 

–  Σ(x,y) := {σ∈Σ|ξ(x,σ)! ∧¬η(y,σ)!} 
 

•  Theorem 
 

–  K is observable w.r.t. G and P, iff for any boundary state (x,y)∈B, 
 

                          P-1P(T(x,y))Σ(x,y) ∩ K =  ∅ 
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Example 
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Example – Step 1 

•  B={(1,1) , (2,2)} 

a 

b 

c 

a 

d 

A'=G×A 
c 

•  Σ = {a,b,c,d} 
•  Σo= {c} 
•  K ={ac, bc} 

(0,0) 

(1,1) 

(2,2) 

(3,3) 
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Example – Step 2 

•  For the boundary state (1,1) we have 
–  T(1,1) = {b} 
–  Σ(1,1) = {c} 
–  P-1P(T(1,1))Σ(1,1) ∩ K =  {bc,ac}∩{ac,ba} = {ac} ≠ ∅ 

•  For the boundary state (2,2) we have 
–  T(2,2) = {a} 
–  Σ(2,2) = {d} 
–  P-1P(T(2,2))Σ(2,2) ∩ K =  {ad}∩{ac,ba} = ∅ 

                         K is not observable w.r.t. G and P 
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(0,0) 

(1,1) 

(2,2) 

(3,3) 
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Properties of Observable Languages 

•  Suppose K1 and K2 are closed, observable w.r.t. G and P. Then 
 

–  K1∩K2 is observable w.r.t. G and P 
 

–  K1∪K2 may not be observable w.r.t. G and P 
 

•  Given a plant G, let 
 

          O(G):={K⊆L(G)|K is closed and observable w.r.t. G and P} 
 

•  The partially ordered set (poset) (O(G),⊆) is a meet-semi-lattice 
 

–  The greatest element may not exist (i.e. no supremal observable sublanguage) 
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Example 

•  K1∩K2 is observable, but K1∪K2 is not. (Why?) 
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Main Existence Result  

•  Theorem 1 
 

–  Let K⊆Lm(G) and K≠∅. There exists a proper supervisor iff 
 

•  K is controllable with respect to G 
 

•  K is observable with respect to G and P 
 

•  K is Lm(G)-closed, i.e. K = K∩Lm(G) 
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Supervision under Partial Observation 

•  Suppose K is controllable, observable and Lm(G)-closed. 
•  Let A=(Y,Σo,η,y0,Ym) be the canonical recognizer of P(K).  
•  We construct a new automaton S=(Y,Σ,λ,y0,Ym) as follow: 

–  For any y∈Y, an event σ∈Σ–Σo is control-relevant w.r.t. y and K, if 

                                    (∃s∈K) η(y0,P(s))=y∧sσ∈K  
–  Let Σ(y) be the collection of all events in Σ–Σo control-relevant w.r.t. y, 

K 
–  We define the transition map λ:Y×Σ→Y as follows: 

•  λ is the same as η over Y×Σo 
•  For any y∈Y and σ∈Σ(y), define λ(y,σ):=y (i.e. selfloop all events of Σ(y) at y)  
•  For all other (y,σ) pairs, λ(y,σ) is undefined 

•  S is a proper supervisor of G under PO such that Lm(S/G)=K  
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Example 

•  Σ = {a,b,c,d} 
•  Σo= {c} 
•  K ={ac, bc} 
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Difficulty of Synthesis 

•  Given a plant G and a specification SPEC, let 
 

O(G,SPEC):={K⊆Lm(G)∩Lm(SPEC)|K is controllable and observable} 
 

•  Unfortunately, there is no supremal element in O(G,SPEC). 
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Solution 1: A New Supervisory Control Problem 

•  Given G, suppose we have A ⊆ E ⊆ L(G) and Σ=Σo∪Σc. 
 

•  To synthesize a supervisor S under partial observation such that 
 

                                     A ⊆ L(S/G) ⊆ E                                      (*) 
 

•  Let O(A) := {K ⊆ A| K is closed and observable w.r.t. G and P} 
 

•  Let C(E) := {K ⊆ E| K is closed and controllable w.r.t. G} 
 

•  Theorem (Feng Lin) 
 

–  Assume A≠∅. The (*) problem has a solution S iff  inf O(A)⊆sup C(E) 
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Solution 2 : The Concept of Normality 

•  Given N ⊆ M ⊆ Σ*, we say N is (M,P)-normal if 
                                  N = M ∩ P-1P(N) 

–  In particular, take N=M∩P-1(K) for any K⊆Σo
*. Then N is (M,P)-normal. 

M 

•  (∀s1,s2∈M) (s1,s2)∈ker P ⇔ P(s1)=P(s2) 
•  N/ker P ⊆ M/ker P 
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Properties of Normality 

•  Let N(E ; M) := {N ⊆ E | N is (M,P)-normal} for some E ⊆ Σ* 
 

–  The poset (N(E ; M),⊆) is a complete lattice 
 

•  The union of (M,P)-normal sublanguages is normal (intuitive explanation ?)  
 

•  The intersection of (M,P)-normal sublanguages is normal (intuitive explanation ?) 
 

–  Lin-Brandt formula : sup N(E ; M) = E – P-1P(M – E)   
 

•  In TCT : N = Supnorm(E,M,Null/Image) 
 

•  Let E⊆Lm(G), and N(E ; L(G)):={N ⊆ E|N is (L(G),P)-normal} 
 

– N(E ; M) is closed under arbitrary unions, but not under intersections  
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Relationship between Normality and Observability 

•  Let K⊆Lm(G). Then 
 
           K is (L(G), P)-normal ⇒ K is observable w.r.t. G and P   
 
•  Let Σ(K) := {σ∈Σ | ( ∃s∈K) sσ∈L(G) – K}   

–   Σ(K) is the collection of all boundary events of K w.r.t. G 

 
    K is observable w.r.t. G, P ∧ Σ(K)⊆Σo ⇒ K is (L(G),P)-normal 
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Supervisory Control under Normality 

•  Given a plant G and a specification E, let 
 

– C(G,E) := {K ⊆ Lm(G)∩Lm(E)| K is controllable w.r.t. G} 
 

•  We define a new set 
 

    S(G,E) := {K⊆Σ*|K∈C(G,E) ∧ N(Lm(E),L(G)) ∧ Lm(G)-closed} 
 

–   S(G,E) is nonempty and closed under arbitrary unions. sup S(G,E) exists 
 

•  Supervisory Control and Observation Problem (SCOP) 
 

–  to compute a proper supervisor S under partial observation such that 
 

                                     Lm(S/G) = sup S(G,E) 
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The TCT Procedure for SCOP 

•  Given a plant G and a specification E, let  
 

                               A = Supscop(E,G,Null/Image)  
 

–  Lm(A) = sup S(G,E)  
 

–  Based on A, we construct a proper supervisor S under partial observation 
 

•  Why can we do that? Because sup S(G,E) is controllable and observable                          
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Warehouse Collision Control 

Receiving Dock Dispatching Dock 

Traffic Light 

Sensor 

Car 1 

Car 2 
Track 1 Track 2 Track 3 Track 4 
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Plant Model 

0 1 2 3 4 

C1 

C2 

11 

21 

12 

22 

13 

23 

15 

25 

Enter Track 1 Enter Track 2 Enter Track 3 Enter Track 4 

•  Σ1 = {11, 12, 13, 15}, Σ1,c = {11, 13, 15}, Σ1,o = {11, 15} 
•  Σ2 = {21, 22, 23, 25}, Σ2,c = {21, 23, 25}, Σ2,o = {21, 25} 
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Specification 

•  To avoid collision, C1 and C2 can’t reach the same state together 
 

–  States (1,1), (2,2), (3,3) should be avoided in C1 ×C2 
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Synthesis Procedure in TCT 

•  Create the plant  
                G = Sync(C1,C2)     (25 ; 40) 
 

•  Create the specification 
 

                E = mutex(C1,C2,[(1,1),(2,2),(3,3)])    (20 ; 24) 
 

•  Supervisor Synthesis 
 

                K = Supscop(E,G,[12,13,22,23])    (16 ; 16) 
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Transition Structure of K 
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A Proper Supervisor S under Partial Observation 
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K = Lm(S/G) 
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Some Fact 

•  Perform the following TCT operation 
 

                               W = Condat(G,K) 
–  Only events 11 and 21 are required to be disabled. 
 

–  Therefore, we only need one traffic light at Track 1. 
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A Slight Modification 

Receiving Dock Dispatching Dock 

Traffic Light 

Sensor 

Car 1 

Car 2 
Track 1 Track 2 Track 3 Track 4 

•  Σ1,o = {11, 15} 
•  Σ2,o = {21, 25} 

•  Σ1,o = {11, 13} 
•  Σ2,o = {21, 23} 
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Synthesis Result 

•  Create the plant  
 

                     G = Sync(C1,C2)     (25 ; 40) 
 

•  Create the specification 
 

                     E = Mutex(C1,C2,[(1,1),(2,2),(3,3)])    (20 ; 24) 

•  Supervisor Synthesis 
 

                     K = Supscop(E,G,[12,15,22,25])    (empty) 
 

–  Explain intuitively why this can happen (homework) 
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Conclusions 

•  Partial observation is important for implementation. 
 

–  A supervisor can make a move only based on observations. 
 

•  The current observability is not closed under set union. 
 

–  Thus, there is no supremal observable sublanguage (unfortunately).  
 

•  Normality is closed under set union. 
 

–  Thus, the supremal normal sublanguage exists. 
 

–  But the concept of normality is too conservative.  


