State-Based Supervisory Control

Dr Rong Su S1-B1b-59, School of EEE Nanyang Technological University Tel: +65 6790-6042, Email: rsu@ntu.edu.sg

Outline

- Motivation
- Predicates and Predicate Transformers
- State Feedback Control
- Example
- Conclusions

The Main Challenge in Event-Based Feedback

- Control map V : $L(G) \rightarrow \Gamma = \{ \gamma \subseteq \Sigma \mid \Sigma_{uc} \subseteq \gamma \}$
- To encode V, the language L(S/G) needs to be stored.

As a consequence, a huge amount of memory is needed !

If Switch to State-Based Feedback

- Control map $f: X \to \Gamma = \{ \gamma \subseteq \Sigma \mid \Sigma_{uc} \subseteq \gamma \}$
- To encode f, only relevant states are needed.

We probably can't save synthesis time, but we can save memory!

Outline

- Motivation
- Predicates and Predicate Transformers
- State Feedback Control
- Example
- Conclusions

- Let $G = (Q, \Sigma, \delta, q_0, Q_m)$
- A *predicate* P over Q is a function $P : Q \rightarrow \{0,1\}$
- Let $Q_P := \{ q \in Q | P(q) = 1 \}$
- $q ? P \Leftrightarrow P(q) = 1 \Leftrightarrow q \in Q_P$
- Let Pred(Q) be the collection of all predicates on Q

Boolean Expressions over Predicates

- Given P, define $\neg P$, where $(\neg P)(q) = 1$ iff P(q) = 0
- Given P_1 and P_2 , define $P_1 \wedge P_2$ and $P_1 \vee P_2$, where

$$- (P_1 \land P_2)(q) = 1 \text{ iff } P_1(q) = 1 \land P_2(q) = 1$$

 $- (P_1 \vee P_2)(q) = 1 \text{ iff } P_1(q) = 1 \vee P_2(q) = 1$

• Recall the De Morgen rules

 $-\neg (\mathbf{P}_1 \wedge \mathbf{P}_2) = (\neg \mathbf{P}_1) \vee (\neg \mathbf{P}_2)$

 $\neg (\mathbf{P}_1 \vee \mathbf{P}_2) = (\neg \mathbf{P}_1) \land (\neg \mathbf{P}_2)$

- For any $P_1, P_2 \in Pred(Q)$, $P_1 ? P_2$ iff $P_1 \land P_2 = P_1$ iff $\neg P_1 \lor P_2$
- (Pred(Q), ?) is a complete lattice
- The top element of (Pred(Q), ?) is ?, where $Q_? = Q$?
 - ? can be interpreted as *true*
- The bottom element of (Pred(Q), ?) is \bot , where $Q_{\bot} = \emptyset$
 - $-\perp$ can be interpreted as *false*

The Reachability Predicate R(G,P)

- Given $P \in Pred(Q)$, we define a new predicate R(G,P) as follows
 - $-q_0$? $P \Rightarrow q_0$?R(G,P)
 - $q ? R(G,P) \land \sigma \in \Sigma \land \delta(q,\sigma)! \land \delta(q,\sigma) ? P \Rightarrow \delta(q,\sigma) ? R(G,P)$
 - No other states satisfy R(G,P)
- R(G,P) is the set of all states reachable from q_0 and satisfy P
- Clearly, R(G,P) ? P

Example

- $Q_P = \{0, 1, 2, 5\}$
- $Q_{R(G,P)} = \{0, 1, 2\}$
- $Q_{R(G,P)} \subseteq Q_P$ because R(G,P)?

The Weakest Liberal Precondition $M_{\sigma}(P)$

• For any $\sigma \in \Sigma$ and $P \in Pred(Q)$, let $M_{\sigma}(P)$ be a predicate such that

 $q ? M_{\sigma}(P) \text{ iff } \neg \delta(q,\sigma)! \vee \delta(q,\sigma)? P$

•
$$Q_P = \{2, 3, 5\}$$

• $Q_P = \{2, 3, 5\}$ (wh

•
$$Q_{Ma(P)} = \{2, 4, 5\} \text{ (why?)}$$

The Strongest Postcondition $N_{\sigma}(P)$

• For any $\sigma \in \Sigma$ and $P \in Pred(Q)$, let $N_{\sigma}(P)$ be a predicate such that

$q?N_{\sigma}(P) \text{ iff } (\exists q' \in Q) \delta(q', \sigma) = q \land q'?P$

•
$$Q_P = \{0, 1, 2, 4\}$$

•
$$Q_{Na(P)} = \{1, 3, 4, 5\}$$
 (why?)

Outline

- Motivation
- Predicates and Predicate Transformers
- State Feedback Control
- Example
- Conclusions

State Feedback

• Let $f: Q \rightarrow \Gamma = \{\gamma \subseteq \Sigma | \Sigma_{uc} \subseteq \gamma \}$ be a state feedback control (SFBC)

- We say $\sigma \in \Sigma$ is *enabled* at q, if $\sigma \in f(q)$, and is *disabled* otherwise

- For each $\sigma \in \Sigma$, introduce a predicate $f_{\sigma} \in Pred(Q)$ such that $f_{\sigma}(q) = 1$ iff $\sigma \in f(q)$
- The closed-loop transition map induced by f is defined as

$$\delta^{f}(q,\sigma) = q' \text{ iff } \delta(q,\sigma) = q' \wedge f_{\sigma}(q) = 1$$

- Write $G^{f} = (Q, \Sigma, \delta^{f}, q_{0}, Q_{m})$ for the closed-loop system by (G,f)
- Clearly, for any $P \in Pred(Q)$, we have $R(G^{f}, P)$? R(G, P)

The Concept of Controllability

• P∈Pred(Q) is *controllable* with respect to G, if

```
P?R(G,P) \land (\forall \sigma \in \Sigma_{uc}) P?M_{\sigma}(P)
```


• $\Sigma_c = \{a\}$

•
$$Q_P = \{0, 1, 4, 5\}$$

• Is P controllable? Why?

• Theorem 1

Let $P \in Pred(Q)$ and $P \neq false$. Then P is controllable with respect to G if and only if there exists a SFBC f such that $R(G^{f}, true) = P$.

The Supremal Controllable Predicate

• For each $P \in Pred(Q)$, let

 $CP(P) := \{K \in Pred(Q) \mid K ? P \land K \text{ is controllable}\}$

- Since *false*∈*CP*(P), we know that *CP*(P) ≠ \emptyset .

- Proposition 1
 - -CP(P) is closed under arbitrary disjunctions.
 - In particular, the supremal controllable predicate $\sup CP(P)$ exists in CP(P).

Compute The Supremal Controllable Predicate

• Given P∈Pred(Q), define a new predicate <P> as follows:

$$q \geq \inf (\forall w \in \Sigma_{uc}^*) \, \delta(q, w)! \Rightarrow \delta(q, w) \geq P$$

• Proposition 2

(

 $\sup CP(P) = R(G, \leq P)$

• Corollary 1

$$\sup CP(P) \neq false \text{ iff } R(G, \leq P \geq) \neq false \text{ iff } q_0 ? < P \geq$$

Example

- $\Sigma_c = \{a\}$
- $Q_P = \{0, 1, 4, 5\}$
- P is not controllable. (Why?)

•
$$Q_{} = \{0, 4, 5\}$$

•
$$Q_{R(G,)} = \{0\}$$

Improving Permissiveness in SFBC

• $\Sigma_c = \{a\}$

•
$$Q_P = \{0, 1, 2, 4\}$$

•
$$Q_{R(G, \le P \ge)} = \{0, 1, 2, 4\}$$

•
$$\mathbf{f}_1|_{\mathbf{Q}-\{1\}} = \mathbf{f}_2|_{\mathbf{Q}-\{1\}}$$

•
$$f_1(1) = \{b\}$$
 and $f_2(1) = \{a,b\}$

•
$$R(G^{f1}, true) = R(G^{f2}, true) = \langle P \rangle$$

We call that f_2 is *balanced*.

• An SFBC $f: Q \rightarrow \Gamma$ is balanced, if

$(\forall q,q' \in Q)(\forall \sigma \in \Sigma) \ q,q' \ref{eq:relation} R(G^{\mathrm{f}}, true) \land \delta(q,\sigma) = q' \Rightarrow f_{\sigma}(q) = 1$

Modular SFBC

- Suppose we have a collection of predicates $\{P_i | i \in I = \{1, ..., n\}\}$
 - Each P_i can be interpreted as a local requirement
- Let $P := \wedge_{i \in I} P_i$
- For each $i \in I$, let $f_i : Q \rightarrow \Gamma$ be an optimal SFBC for P_i , namely

 $R(G^{fi},true) = \sup CP(P_i)$

• Let $f: Q \to \Gamma$ such that $f(q) := \bigcap_{i \in I} f_i(q)$

- Or symbolically, for each $\sigma \in \Sigma$, $f_{\sigma} := \wedge_{i \in I} f_{i,\sigma}$

• Theorem 2

Assume that, for each i \in I, f_i is balanced. Then f is balanced and R(G^f,*true*) = sup*CP*(P)

• Given $P \in Pred(Q)$, let

 $L(G,P) := \{s \in \Sigma^* \mid \delta(q_0,s)! \land (\forall s' ?s) \ \delta(q_0,s') ?P\}$

- Let E be a requirement, and H a memory, whose state set is Y.
- Let $P \in Pred(Q \times Y)$. We call (E,P) is *compatible* with G×H, if

 $L(G \times H, P) = L(E) \cap L(G) = L(G \times E)$

Dynamic State Feedback Control (cont.)

- Let $CP_{G \times H}(P)$ be the set of all controllable subpredicates (on Q×Y) of P
- Let $C_G(L(G \times E))$ be the set of all controllable sublanguages of $L(G \times E)$
- Theorem 3

If (E,P) is compatible with G×E, then

 $L(G \times H, \sup CP_{G \times H}(P)) = \sup C_G(L(G \times E))$

- Let $\{E_i | i \in I = \{1, ..., n\}\}$ be a set of requirements and $E = \bigcap_{i \in I} E_i$
- Let H_i (i \in I) a memory for G, whose state set is Y_i and $H = \bigcap_{i \in I} H_i$
- Let $P_i \in Pred(Q \times Y_i)$ such that (E_i, P_i) is *compatible* with $G \times H_i$
- Define $P \in Pred(Q \times Y_1 \times ... \times Y_n)$ such that

 $(q,y_1,...,y_n)$? P iff (q,y_i) ? P_i for each i \in I

Dynamic State Feedback Cobtrol (cont.)

• Let f_i be a balanced SFBC for $G \times H_i$ such that

 $L(G^{fi}, true) = \sup C_G(L(G \times E_i))$

• Define $f: Q \times Y_1 \times \ldots \times Y_n \rightarrow \Gamma$ such that

 $\sigma \in f(q, y_1, \dots, y_n) \text{ iff } \sigma \in \cap_{i \in I} f_i(q, y_i)$

- Theorem 4
 - (E,P) is compatible with G×H
 - f is a balanced SFBC for G×H
 - $L(G \times H, \sup C\mathcal{P}_{G \times H}(P)) = \sup C_G(L(G \times E))$

Outline

- Motivation
- Predicates and Predicate Transformers
- State Feedback Control
- Example
- Conclusions

A Plant Model

Requirements

• Requirement 1

P_1 := the value of V1 should be no more than 1

• Requirement 2

 P_2 := the value of V2 should be no more than 1

- We can check that P_1 is controllable with respect to G (why?)
- The corresponding state feedback control $f_1 : Q \rightarrow \Gamma$ is:

 $- f_1(V1=1,V2=0) = f_1(V1=1,V2=1) = f_1(V1=1,V2=2) = \{a_2, b_1, b_2\}$

– For the rest of states q, set $f_1(q) = \Sigma$

The Closed-loop System G^{f1}

- We can check that P_2 is controllable with respect to G (why?)
- The corresponding state feedback control $f_2 : Q \rightarrow \Gamma$ is:

- $f_2(V1=0,V2=1) = f_1(V1=1,V2=1) = f_1(V1=2,V2=1) = \{a_1, b_1, b_2\}$

– For the rest of states q, set $f_2(q) = \Sigma$

• Let $f := f_1 \land f_2$ such that $\sigma \in f(q)$ iff $\sigma \in f_1(q) \cap f_2(q)$

$$- f(V1=1,V2=0) = \{a_2, b_1, b_2\}$$

- $f(V1=0,V2=1) = \{a_1, b_1, b_2\}$
- $f(V1=1,V2=1) = \{b_1, b_2\}$

Encode State Feedback Control Maps

- $f_{1,a1}(q) = 0$ if V1=1; otherwise, $f_{1,a1}(q) = 1$
- $f_{1,a2} = f_{1,b1}(q) = f_{1,b2}(q) = 1$
- $f_{2,a2}(q) = 0$ if V2=1; otherwise, $f_{2,a2}(q) = 1$

•
$$f_{2,a1} = f_{2,b1}(q) = f_{2,b2}(q) = 1$$

If in terms of event disablement, we have the following rules $V1 = 1 \Rightarrow a_1$ is disabled $V2 = 1 \Rightarrow a_2$ is disabled

$$\sqrt{2} = 1 \Rightarrow a_2$$
 is disabled

Compare with Event-Based Feedback Control

• To encode the event-based feedback control map $f: L(G) \rightarrow \Gamma$

EBFC needs more memory than SFBC does

Conclusions

- Advantages of state feedback control
 - No memory for previous executions is required
 - The control map can be effectively encoded

- Disadvantage
 - It is applicable only when states are observable