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The Main Challenge in Event-Based Feedback 

•  Control map V : L(G) → Γ = { γ ⊆ Σ | Σuc ⊆ γ } 

•  To encode V, the language L(S/G) needs to be stored.   

          As a consequence, a huge amount of memory is needed !      
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Σ = Σc ∪ Σuc 
Σ = Σo ∪ Σuo 
Σc:=controllable alphabet 
Σo:=observable alphabet  events from G 
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If Switch to State-Based Feedback 

•  Control map f : X → Γ = { γ ⊆ Σ | Σuc ⊆ γ } 

•  To encode f, only relevant states are needed.   

 We probably can’t save synthesis time, but we can save memory!      
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enable/disable 
events in Σc 

Σ = Σc ∪ Σuc 
Σ = Σo ∪ Σuo 
Σc:=controllable alphabet 
Σo:=observable alphabet  current state of G 
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The Concept of Predicates 

•  Let G = (Q, Σ, δ, q0, Qm) 

•  A predicate P over Q is a function P : Q → {0,1} 

•  Let QP := { q∈Q | P(q) = 1} 

•  q�P  ⇔ P(q) = 1 ⇔ q∈QP   

•  Let Pred(Q) be the collection of all predicates on Q 



EE6226 Discrete Event Systems 7 

Boolean Expressions over Predicates 

•  Given P, define ¬P, where (¬P)(q) = 1 iff P(q) = 0 

•  Given P1 and P2, define P1∧P2 and P1∨P2, where 

–  (P1∧P2)(q) = 1 iff P1(q) = 1 ∧ P2(q) = 1 
–  (P1∨P2)(q) = 1 iff P1(q) = 1 ∨ P2(q) = 1 

•  Recall the De Morgen rules 
–  ¬(P1∧P2) = (¬P1) ∨ (¬P2) 
–  ¬(P1∨P2) = (¬P1) ∧ (¬P2)  
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•  For any P1,P2∈Pred(Q), P1�P2 iff P1∧P2 = P1 iff ¬P1 ∨ P2 

•  (Pred(Q), �) is a complete lattice 

•  The top element of (Pred(Q), �) is �, where Q� = Q 
– � can be interpreted as true 

•  The bottom element of (Pred(Q), �) is ⊥, where Q⊥ =  ∅ 
–  ⊥ can be interpreted as false  
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The Reachability Predicate R(G,P) 

•  Given P∈Pred(Q), we define a new predicate R(G,P) as follows 
–  q0�P  ⇒ q0�R(G,P) 

–  q�R(G,P) ∧ σ∈Σ ∧ δ(q,σ)! ∧ δ(q,σ)�P ⇒ δ(q,σ)�R(G,P) 

–  No other states satisfy R(G,P)  

•  R(G,P) is the set of all states reachable from q0 and satisfy P 

•  Clearly, R(G,P) � P 
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Example 
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•  QP = {0, 1, 2, 5} 
•  QR(G,P) = {0, 1, 2} 
•  QR(G,P) ⊆ QP because 

R(G,P)�P 
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The Weakest Liberal Precondition Mσ(P)  

•  For any σ∈Σ and P∈Pred(Q), let Mσ(P) be a predicate such that 

                         q�Mσ(P) iff ¬δ(q,σ)! ∨ δ(q,σ)�P  
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•  QP = {2, 3, 5} 
•  QMa(P) = {2, 4, 5} (why?) 
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The Strongest Postcondition Nσ(P) 

•  For any σ∈Σ and P∈Pred(Q), let Nσ(P) be a predicate such that 

                         q�Nσ(P) iff (∃q'∈Q) δ(q',σ)=q ∧ q'�P  
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•  QP = {0, 1, 2, 4} 
•  QNa(P) = {1, 3, 4, 5} (why?) 
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State Feedback 

•  Let f : Q→Γ={γ ⊆ Σ|Σuc ⊆ γ } be a state feedback control (SFBC) 

–  We say σ∈Σ is enabled at q, if σ∈f(q), and is disabled otherwise 

•  For each σ∈Σ, introduce a predicate fσ∈Pred(Q) such that 

                                     fσ(q) = 1 iff σ∈f(q)  
 

•  The closed-loop transition map induced by f is defined as 

                           δf(q,σ) = q' iff δ(q,σ) = q' ∧ fσ(q) = 1  
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•  Write Gf = (Q, Σ, δf, q0, Qm) for the closed-loop system by (G,f) 

•  Clearly, for any P∈Pred(Q), we have R(Gf,P) � R(G,P) 
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The Concept of Controllability 

•  P∈Pred(Q) is controllable with respect to G, if 

                         P�R(G,P) ∧ (∀σ∈Σuc) P�Mσ(P) 
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•  Σc = {a} 
•  QP = {0, 1, 4, 5} 
•  Is P controllable? Why? 
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•  Theorem 1 

    Let P∈Pred(Q) and P≠false. Then P is controllable with respect 
to G if and only if there exists a SFBC f such that R(Gf,true) = P. 
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The Supremal Controllable Predicate  

•  For each P∈Pred(Q), let 

              CP(P) := {K∈Pred(Q) | K�P ∧ K is controllable} 
 

–  Since false∈CP(P), we know that CP(P)≠ ∅. 

•  Proposition 1 

– CP(P) is closed under arbitrary disjunctions. 

–  In particular, the supremal controllable predicate supCP(P) exists in CP(P). 
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Compute The Supremal Controllable Predicate 

•  Given P∈Pred(Q), define a new predicate <P> as follows: 

                   q�<P> iff (∀w∈Σuc
*) δ(q,w)! ⇒ δ(q,w)�P 

 
•  Proposition 2 

                                  supCP(P) = R(G,<P>) 
 
•  Corollary 1 

               supCP(P) ≠ false iff  R(G,<P>) ≠ false iff q0�<P> 
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Example 
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•  Σc = {a} 
•  QP = {0, 1, 4, 5} 
•  P is not controllable. (Why?) 
•  Q<P> = {0, 4, 5} 
•  QR(G,<P>) = {0}  



EE6226 Discrete Event Systems 21 

Improving Permissiveness in SFBC 
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•  Σc = {a} 

•  QP = {0, 1, 2, 4} 

•  QR(G,<P>) = {0, 1, 2, 4} 

•  f1|Q-{1} = f2|Q-{1} 

•  f1(1) = {b} and f2(1) = {a,b} 

•  R(Gf1,true) = R(Gf2,true) = <P>  

      We call that f2 is balanced. 
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Formally Speaking 

•  An SFBC f : Q → Γ is balanced, if 

        (∀q,q'∈Q)(∀σ∈Σ) q,q'�R(Gf,true) ∧ δ(q,σ)=q' ⇒ fσ(q)=1 
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Modular SFBC 

•  Suppose we have a collection of predicates {Pi|i∈I={1,…,n}} 

–  Each Pi can be interpreted as a local requirement 

•  Let P := ∧i∈IPi 

•  For each i∈I, let fi : Q → Γ be an optimal SFBC for Pi, namely 

                                  R(Gfi,true) = supCP(Pi) 
 

•  Let f : Q → Γ such that f(q) :=  ∩i∈Ifi(q) 

–  Or symbolically, for each σ∈Σ, fσ := ∧i∈Ifi,σ  
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•  Theorem 2 

    Assume that, for each i∈I, fi is balanced. Then f is balanced and 
 

                                    R(Gf,true) = supCP(P) 
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Dynamic State Feedback Control 

•  Given P∈Pred(Q), let  

             L(G,P) := {s∈Σ* | δ(q0,s)! ∧ (∀s'�s) δ(q0,s')�P}  

•  Let E be a requirement, and H a memory, whose state set is Y. 

•  Let P∈Pred(Q×Y). We call (E,P) is compatible with G×H, if 

                         L(G×H,P) = L(E)∩L(G) = L(G×E) 
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Dynamic State Feedback Control (cont.) 

•  Let CPG×H(P) be the set of all controllable subpredicates (on Q×Y) of P 
•  Let CG(L(G×E)) be the set of all controllable sublanguages of L(G×E) 

•  Theorem 3 

     If (E,P) is compatible with G×E, then  
 

                             L(G×H, supCPG×H(P)) = supCG(L(G×E)) 



EE6226 Discrete Event Systems 27 

Dynamic State Feedback Control (cont.) 

•  Let {Ei | i∈I={1,…,n}} be a set of requirements and E = ∩i∈IEi 

•  Let Hi (i∈I) a memory for G, whose state set is Yi and H = ∩i∈IHi 

•  Let Pi∈Pred(Q×Yi) such that (Ei,Pi) is compatible with G×Hi 

•  Define P∈Pred(Q×Y1×…×Yn) such that 

                        (q,y1,…,yn)�P iff (q,yi)�Pi for each i∈I 
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Dynamic State Feedback Cobtrol (cont.) 

•  Let fi be a balanced SFBC for G×Hi such that 

                           L(Gfi,true) = supCG(L(G×Ei)) 
 

•  Define f : Q×Y1×…×Yn → Γ such that 

                         σ∈f(q,y1,…,yn) iff σ∈∩i∈Ifi(q,yi)  
 

•  Theorem 4 

–  (E,P) is compatible with G×H 

–  f is a balanced SFBC for G×H 

–  L(G×H,supCPG×H(P)) = supCG(L(G×E)) 
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A Plant Model 

•  Σ = {a1, a2, b1, b2} 

•  Σc = {a1, a2} 
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Requirements 

•  Requirement 1 

                  P1 := the value of V1 should be no more than 1 
 
•  Requirement 2 

                  P2 := the value of V2 should be no more than 1                  
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State Feedback Control for Requirement 1 

•  We can check that P1 is controllable with respect to G (why?) 

•  The corresponding state feedback control f1 : Q → Γ is: 

–  f1(V1=1,V2=0) = f1(V1=1,V2=1) = f1(V1=1,V2=2) = {a2, b1, b2} 

–  For the rest of states q, set f1(q) = Σ         
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The Closed-loop System Gf1 
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State Feedback Control for Requirement 2 

•  We can check that P2 is controllable with respect to G (why?) 

•  The corresponding state feedback control f2 : Q → Γ is: 

–  f2(V1=0,V2=1) = f1(V1=1,V2=1) = f1(V1=2,V2=1) = {a1, b1, b2} 

–  For the rest of states q, set f2(q) = Σ         
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The Closed-loop System Gf2 
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The Closed-Loop System Gf1∧f2 

•  Let f := f1 ∧ f2 such that σ∈f(q) iff σ∈f1(q)∩f2(q)  

–  f(V1=1,V2=0) = {a2, b1, b2} 

–  f(V1=0,V2=1) = {a1, b1, b2} 

–  f(V1=1,V2=1) = {b1, b2} 
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Encode State Feedback Control Maps 

•  f1,a1(q) = 0 if V1=1; otherwise, f1,a1(q) = 1  

•  f1,a2 = f1,b1(q) = f1,b2(q) = 1   

•  f2,a2(q) = 0 if V2=1; otherwise, f2,a2(q) = 1 

•  f2,a1 = f2,b1(q) = f2,b2(q) = 1 
 

    If in terms of event disablement, we have the following rules 
                                   V1 = 1 ⇒ a1 is disabled    
 

                                   V2 = 1 ⇒ a2 is disabled 
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Compare with Event-Based Feedback Control  

•  To encode the event-based feedback control map f : L(G) → Γ  
b1 
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b2 a2 b2 a2 

EBFC needs more memory than SFBC does 
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Conclusions 

•  Advantages of state feedback control 

–  No memory for previous executions is required 

–  The control map can be effectively encoded 

 

•  Disadvantage 

–  It is applicable only when states are observable 
 


