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The Main Challenge in Event-Based Feedback

enable/disable
events in 2

S —

> S/G sz =3 Us
=2 UZ
2 :=controllable alphabet
2 :=observable alphabet

events from G

« ControlmapV:L(G) =T'={yCX |2 . Cy}

* To encode V, the language L(S/G) needs to be stored.

As a consequence, a huge amount of memory 1s needed !
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If Switch to State-Based Feedback

enable/disable
events in 2

> S/G y -3 uUs
=2 UZ
2 :=controllable alphabet

— 2 :=observable alphabet
current state of G

Controlmapf: X —-=T'={yCXZ |2 Cvy}

To encode f, only relevant states are needed.

We probably can’t save synthesis time, but we can save memory!
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The Concept of Predicates

Let G = (Qa Za 69 qu Qm)
A predicate P over Q 1s a function P : Q — {0,1}

Let Qp == { q€Q | P(q) = 1}

qL?

Let Pred(Q) be the collection of all predicates on Q

P < P(q)=1 < q€Qp
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Boolean Expressions over Predicates

* Given P, define =P, where (-P)(q) =1 1ff P(q) =0
* Given P, and P,, define P,AP, and P,vP,, where

~ (P,AP))(q) = LiffP,(q) =1 A Py(q) = 1
~ (P,vP))(q) = 1iffP,(q) =1 v Py(q) = 1

* Recall the De Morgen rules
— =(P\AP,)) =(=P)) v (=P,)
— =(P,vPy)) =(=P) A (=P,)
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For any P,,P,&Pred(Q), P,[2JP, ift P, AP, =P, 1ff =P, v P,

(Pred(Q), [?)) 1s a complete lattice

The top element of (Pred(Q), [?]) is (2], where Q7 = Q

— (2] can be interpreted as true

The bottom element of (Pred(Q), [?]) 1s L, where Q, = &

— 1 can be interpreted as false
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The Reachability Predicate R(G,P)

* Given PEPred(Q), we define a new predicate R(G,P) as follows

— Qo2

P =q,

?

?]JR(G,P)

R(G,P) A 0€Z A 0(q,0)! A 0(q,0)

— No other states satisty R(G,P)

2|P = 0(q,0)

7]R(G,P)

* R(G,P) 1s the set of all states reachable from q, and satisfy P

* Clearly, R(G,P)

?2]P
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Example

@
¢ QP: {09 19 29 5}
* Qrap =10, 1,2}
® ¢ QR(G,P) C QP because
R(G.P)[Z)P
@

EE6226 Discrete Event Systems

10



The Weakest Liberal Precondition M_(P)

* For any o€ and PEPred(Q), let M _(P) be a predicate such that

q@FIM.(P) iff =8(q,0)! v 8(q,0)[F)P

— 0
d b ° QP — {29 39 5}

VG W B * Qmapy = 12,4, 5} (Why?)
b a
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The Strongest Postcondition N _(P)

» For any 0&€X and PEPred(Q), let N (P) be a predicate such that

q[2IN,(P) iff (Aq'€Q) 8(q',0)=q A q'(2]P

—F—0@
a b y QP:{Oa 19294}

_,('05 a (D) ° QNa(P) - {19 39 49 5} (Why?)
b a
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State Feedback

» Letf: Q—=I'={y C Z|Z . C vy} be a state feedback control (SFBC)

— We say 0€2 1s enabled at q, if 6E1(q), and 1s disabled otherwise

* For each o€, introduce a predicate { &EPred(Q) such that

f(q) = 1 1if oE&1(q)

* The closed-loop transition map induced by f is defined as

0!(q,0) =q'iff 8(q,0) =q' A f,(q) =1
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« Write G'=(Q, Z, d', q,, Q,,) for the closed-loop system by (G,f)

¢ Clearly, for any PEPred(Q), we have R(G!,P) [2] R(G,P)
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The Concept of Controllability

* P&EPred(Q) 1s controllable with respect to G, 1f

P[?2]R(G,P) A (VoEZ ) P[2]M_(P)

— 0
d b ¢ Zc — {a}
—’C‘OB d »(1) ’ QP - {09 19 49 5}
bA * Is P controllable? Why?
d
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* Theorem 1

Let PEPred(Q) and P=false. Then P is controllable with respect
to G if and only if there exists a SFBC f such that R(G!,true) = P.
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The Supremal Controllable Predicate

* For each PEPred(Q), let

CAP) .= {KEPred(Q) | K[?JP A K 1s controllable}

— Since false€ CAP), we know that CAP)= O.

* Proposition 1
— CAP) 1s closed under arbitrary disjunctions.

— In particular, the supremal controllable predicate sup CAP) exists in CAP).
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Compute The Supremal Controllable Predicate

* Given PEPred(Q), define a new predicate <P> as follows:

q?

<P>iff (VweEZ ") 0(q,w)! = 0(q,w)[2

* Proposition 2

* Corollary 1

supCAP) = false iff R(G,<P>) = false iff q,

supCAP) = R(G,<P>)

?

P

<P>
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Example

2, = {aj

Qp,=10,1,4,5}

P 1s not controllable. (Why?)
Q- =10, 4, 5}

QR(G,<P>): 10}
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Improving Permissiveness in SFBC

© 2 = {a}
@4 d G y QP — {09 19 29 4}
b b a ¢ QR(G<P>) {Oa 19 2 4}
—(©) a__ * filo. = lo- (1
b 2 * (1) = {b} and ,(1) = {a,b}
® B0, « R(G'",true) = R(G?,true) = <pP>

We call that 1t 1s balanced.
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Formally Speaking

« An SFBC f:Q —I'1s balanced, 1f

(Vq,9'€Q)(VoEL) q.4

?]R(Gl,true) A 6(q,0)=q' = f(q)=1
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Modular SFBC

Suppose we have a collection of predicates {P iI€]={1,...,n}}

— Each P, can be interpreted as a local requirement

Let P := AP,

For each 1€l let f. : Q — I be an optimal SFBC for P, namely
R(G",true) = supCAP,)

Let f: Q — I' such that f(q) := N.41.(q)

— Or symbolically, for each 6€Z, f, := A f
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* Theorem 2

Assume that, for each 1€, 1. 1s balanced. Then {1 1s balanced and

R(G!,true) = supCAP)
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Dynamic State Feedback Control

* Given PEPred(Q), let

L(G,P) := {s€X" | 8(qy,5)! A (Vs'[2]s) &(q,,s"[2]P}
* Let E be a requirement, and H a memory, whose state set1s Y.
* Let PEPred(QxY). We call (E,P) 1s compatible with GxH, 1f
L(GxH,P) = L(E)NL(G) = L(GxE)
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Dynamic State Feedback Control (cont.)

* Let (%P5, 4(P) be the set of all controllable subpredicates (on QxY) of P
* Let C5(L(GxE)) be the set of all controllable sublanguages of L(GxE)

e Theorem 3

If (E,P) 1s compatible with GxE, then

L(GxH, sup(Zg,u(P)) = sup C(L(GXE))
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Dynamic State Feedback Control (cont.)

Let {E. |1€l={1,...,n}} be a set of requirements and E = M. E.

(q9YI9 s ayn) ?

P ift (q,y;) 2

?

Let H. (1€I) a memory for G, whose state set1s Y, and H= N..;H.
Let P.€Pred(QxY.) such that (E,P.) 1s compatible with GxH.
Define PEPred(QxY ,x...xY ) such that

P. for each 1€l
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Dynamic State Feedback Cobtrol (cont.)

» Let f. be a balanced SFBC for GxH. such that
L(G",true) = sup C5(L(GxE)))
* Define f: QxY,x...xY_ — I such that
o€f(q,yy,- - -,¥y) 1 0ENLi(q,y))

* Theorem 4
— (E,P) 1s compatible with GxH
— f1s a balanced SFBC for GxH
— L(GxH,sup (P, 4(P)) = supC(L(GxE))
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A Plant Model

/17 /17 /17

V2=2 '@ \ v2=2

{3y, a5, by, by}

o {alﬂ az}
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Requirements

* Requirement 1

P, := the value of V1 should be no more than 1

* Requirement 2

P, := the value of V2 should be no more than 1
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State Feedback Control for Requirement 1

* We can check that P, is controllable with respect to G (why?)

» The corresponding state feedback control f; : Q — I 1s:
~ £,(VI=1,V2=0) = f,(VI=1,V2=1) = f,(V1=1,V2=2) = {a,, b,, b,}

— For the rest of states q, set f;(q) =2
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The Closed-loop System G'!

,— 9 ,—
V1=0 1 ‘ @

V2=2 \ v2=2
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State Feedback Control for Requirement 2

* We can check that P, is controllable with respect to G (why?)

» The corresponding state feedback control £, : Q — I 1s:
— 1,(V1=0,V2=1) =1, (V1=1,V2=1) =1 (V1=2,V2=1) = {a,, b, b,}

— For the rest of states g, set £,(q) =2
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The Closed-loop System G
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The Closed-Loop System G2

« Let f:=1, A f, such that o&f(q) iff o&f,(q)N1,(q)
— f(V1=1,V2=0) = {a,, b,, b,}
— f(V1=0,V2=1) = {a,, b,, b,}

~ f(V1=1,V2=1) = {b,, b,}
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Encode State Feedback Control Maps

f; .1(q@) = 0 1f VI=1; otherwise, f; ,;(q) = 1

fl,a2 - 1,b1(q) — fl’bz(q) =1
f, 2(q) = 0 1f V2=1; otherwise, 1, ,,(q) = 1

f2,211 — 2,b1(q) = fz,bz(q) =1

If 1n terms of event disablement, we have the following rules
V1 =1 = a, 1s disabled

V2 =1 = a, 1s disabled
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Compare with Event-Based Feedback Control

* To encode the event-based feedback control map f: L(G) = I

b,
) ' A~
b, d) b, d)
LN al LN
b,

EBFC needs more memory than SFBC does
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Conclusions

» Advantages of state feedback control
— No memory for previous executions is required

— The control map can be effectively encoded

* Disadvantage

— It 1s applicable only when states are observable
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