Supervisory Control: Advanced Theory and Applications

Dr Rong Su S1-B1b-59, School of EEE Nanyang Technological University Tel: +65 6790-6042, Email: rsu@ntu.edu.sg

Introduction to Supervisory Control Theory

Outline

- Introduction to Supervisory Control
- Ramadge-Wonham Supervisory Control Theory
- Example A Pusher-Lift System
- Primary Goals of EE6226

The Concept of Discrete Event Systems (DES)

- A DES is a structure with 'states' having duration in time, 'events' happening *instantaneously* and *asynchronously*.
 - States: e.g. machine is idle, is operating, is broken down, is under repair
 - Events: e.g. machine starts work, breaks down, completes work or repair
- State space discrete in time and space.
- State transitions 'labeled' by events.

The Motivation of Developing Supervisory Control Theory (SCT) for DES (till 1980)

• Control problems *implicit* in the literature (enforcement of resource constraints, synchronization, ...)

But

- Emphasis on modeling, simulation, verification
- Little formalization of control synthesis
- Absence of control-theoretic ideas
- No standard model or approach to control

Related Areas

- Programming languages for modeling & simulation
- Queues, Markov chains
- Petri nets
- Boolean models
- Formal languages
- Process algebras (CSP, CCS)

"Great" Expectations for SCT

- System model
 - Discrete in time and (usually) space
 - Asynchronous (event-driven)
 - Nondeterministic
 - support transitional choices
- Amenable to formal control synthesis
 - exploit control concepts
- Applicable: manufacturing, traffic, logistic,...

Relationship with Systems Control Concepts

- State space framework well-established:
 - Controllability
 - Observability
 - Optimality (Quadratic, H_{∞})
- Use of geometric constructs and partial order
 - Controllability subspaces
 - Supremal subspaces!

Ramadge-Wonham SCT (1982)

- Automaton representation
 - state descriptions for concrete modeling and computation
- Language representation
 i/o descriptions for implementation-independent concept formulation
- Simple control "technology"

Outline

- Introduction to Supervisory Control
- Ramadge-Wonham Supervisory Control Theory
- Example A Pusher-Lift System
- Primary Goals of EE6226

RW paradigm is based on *languages*, but implemented on *finite-state automata*

Basic Concepts of Languages

- Given an alphabet Σ (e.g. $\Sigma = \{a, b, c, d\}$)
 - A string is a finite sequence of events from Σ , e.g. s = ababa
 - $-\Sigma^{+} := \{ \text{ all strings generated from } \Sigma \}, \Sigma^{*} := \Sigma^{+} \cup \{ \epsilon \}$
 - ε is called the *empty* string: $s\varepsilon = \varepsilon s = s$
 - Given $s_1, s_2 \in \Sigma^*$, s_1 is a *prefix* substring of s_2 , if $(\exists t \in \Sigma^*) s_1 t = s_2$
 - We use $s_1 \le s_2$ to denote that s_1 is a prefix substring of s_2
 - A language $W \subseteq \Sigma^*$: most time we require W to be *regular*
 - The *prefix closure* of a language W is : $\overline{W} := \{s \in \Sigma^* | (\exists s' \in W) | s \le s'\}$
 - W is *prefix closed* if W = W

Finite-State Automaton (FSA)

- A finite-state automaton is a 5-tuple $G = (X, \Sigma, \xi, x_0, X_m)$, where
 - -X : the state set
 - $-\Sigma$: the alphabet
 - x_0 : the initial state
 - X_m : the marker state set (or the final state set)
 - $-\xi: X \times \Sigma \rightarrow X$: the transition map
 - ξ is called a *partial* map, if it is not defined at some pair $(x,\sigma) \in X \times \Sigma$.
 - Otherwise, it is called a *total* map.
 - Extension of the transition map: $\xi : X \times \Sigma^* \to X : (x, s\sigma) \mapsto \xi(x, s\sigma) := \xi(\xi(x, s), \sigma)$

Connection between Language and FSA

- Give a FSA $G = (X, \Sigma, \xi, x_0, X_m)$,
 - *closed* behavior of G: $L(G) := \{s \in \Sigma^* | \xi(x_0, s) \text{ is defined} \}$

- marked behavior of G, i.e. the language recognized by G, $L_{m}(G) := \{s \in L(G) \mid \xi(x_{0},s) \in X_{m}\}$

- G is *nonblocking*, if $L_m(G) = L(G)$.
- A language is *regular*, if it is recognizable by a FSA.
 - We can use Arden's rule to derive a language from a FSA.

Natural Projection over Languages

• Given Σ and $\Sigma' \subseteq \Sigma$, $P: \Sigma^* \to {\Sigma'}^*$ is a *natural projection* if

•
$$P(\varepsilon) = \varepsilon$$

•
$$(\forall \sigma \in \Sigma) P(\sigma) = \begin{cases} \sigma & \text{if } \sigma \in \Sigma' \\ \varepsilon & \text{if } \sigma \notin \Sigma' \end{cases}$$

•
$$(\forall s \sigma \in \Sigma^*) P(s \sigma) = P(s)P(\sigma)$$

• The inverse image map of *P* is $P^{-1} : pwr(\Sigma'^*) \rightarrow pwr(\Sigma^*)$ with

$$(\forall A \subseteq \Sigma'^*) P^{-1}(A) := \{s \in \Sigma^* | P(s) \in A\}$$

$$abcaccd \xrightarrow{\Sigma = \{a, b, c, d\} \Sigma' = \{a, d\}} \longrightarrow a \qquad a \qquad d$$

Synchronous Product over Languages

• Builds a more complex automaton

• with more complex language $L_{m}(A_{1}) \parallel L_{m}(A_{2}) = P_{I}^{-1} (L_{m}(A_{1})) \cap P_{2}^{-1} (L_{m}(A_{2}))$ expressed by natural projections $P_{i}: (\Sigma_{1} \cup \Sigma_{2})^{*} \rightarrow \Sigma_{i}^{*} \quad (i = 1, 2)$

The synchronous product is *commutative* and *associative* !

Implement Synchronous Product by Automaton Operation

- Let $G_1 = (X_1, \Sigma_1, \xi_1, x_{0,1}, X_{m,1})$ and $G_2 = (X_2, \Sigma_2, \xi_2, x_{0,2}, X_{m,2})$,
- Let

$$G_{1} \times G_{2} = (X_{1} \times X_{2}, \Sigma_{1} \cup \Sigma_{2}, \xi_{1} \times \xi_{2}, (x_{0,1}, x_{0,2}), X_{m,1} \times X_{m,2})$$

where
$$\xi_{1} \times \xi_{2}((x_{1}, x_{2}), \sigma) \coloneqq \begin{cases} (\xi_{1}(x_{1}, \sigma), x_{2}) & \text{if } \sigma \in \Sigma_{1} - \Sigma_{2} \\ (x_{1}, \xi_{2}(x_{2}, \sigma)) & \text{if } \sigma \in \Sigma_{2} - \Sigma_{1} \\ (\xi_{1}(x_{1}, \sigma), \xi_{2}(x_{2}, \sigma)) & \text{if } \sigma \in \Sigma_{1} \cap \Sigma_{2} \end{cases}$$

- Result:
 - $L(G_1) || L(G_2) = L(G_1 \times G_2)$
 - $L_m(G_1) || L_m(G_2) = L_m(G_1 \times G_2)$

For Example

Automaton product implements synchronous product!

Properties of Projection and Synchronous Product

- [Chain Rule] Given Σ_1 , Σ_2 and Σ_3 , suppose $\Sigma_3 \subseteq \Sigma_2 \subseteq \Sigma_1$.
 - Let $P_{12}:\Sigma_1^* \to \Sigma_2^*$, $P_{23}:\Sigma_2^* \to \Sigma_3^*$ and $P_{13}:\Sigma_1^* \to \Sigma_3^*$ be natural projections
 - Then $P_{13} = P_{23}P_{12}$
- [Distribution Rule] Given $L_1 \subseteq \Sigma_1^*$ and $L_2 \subseteq \Sigma_2^*$, let $\Sigma' \subseteq \Sigma_1 \cup \Sigma_2$.
 - Let $P:(\Sigma_1 \cup \Sigma_2)^* \rightarrow {\Sigma'}^*$ be the natural projection. Then
 - $P(L_1 || L_2) \subseteq P(L_1) || P(L_2)$
 - $\Sigma_1 \cap \Sigma_2 \subseteq \Sigma' \Rightarrow P(L_1 \parallel L_2) = P(L_1) \parallel P(L_2)$

We now talk about control ...

The Control Architecture

• Given a plant G and a requirement SPEC, compute a supervisor S

- $L_{m}(S/G) := L_{m}(S) ||L_{m}(G) \subseteq L_{m}(G)||L_{m}(SPEC)$
- S should not disable the occurrence of any uncontrollable event
- S should make a move only based on observable outputs of G
- S/G is nonblocking

Q1 : Is there a control that enforces both **safety**, and **liveness** (nonblocking), and which is maximally permissive ?

Q2 : If so, can its design be **automated** ?

Q3 : If so, with acceptable computing effort ?

Solution to Question 1

- Fundamental definition
 - A sublanguage $K \subseteq L_m(G)$ is *controllable* (w.r.t. G) if $\overline{K}\Sigma_{uc} \cap L(G) \subseteq \overline{K}$ – "Once in \overline{K} , you can't skid out on an uncontrollable event."

Supremal Controllable Sublanguage

- Given a plant G and a specification SPEC (both over Σ), let
 C(G,SPEC):={K⊆L_m(G)∩L_m(SPEC)|K is controllable w.r.t. G}
- *C*(G,SPEC) is a poset under set inclusion and closed under arbitrary union
 - The largest element is called the *supremal* controllable sublanguage,

Fundamental Result

- There exists a (unique) *supremal* controllable sublanguage
 K_{sup} ⊆ L_m(G) ∩ L_m(SPEC)
 SPEC is an automaton model of a specification
- Furthermore K_{sup} can be effectively computed.

Lattice View of Solution to Question 1

EE6226, Discrete Event Systems

Solution to Question 2

• Given G and SPEC, compute K_{sup}

$$K_{sup} = L_{m}(SUPER)$$

SUPER = Supcon (G, SPEC)

• Given SUPER, implement K_{sup}

Supervisor Reduction

SUPER and SIMSUP is *control equivalent* if

- $L(G)) \cap L(SUPER) = L(G)) \cap L(SIMSUP)$
- $L_m(G)) \cap L_m(SUPER) = L_m(G)) \cap L_m(SIMSUP)$

Supervisor Reduction

• Controlled behavior has *state size*

 $\|L_m(SUPER)\| \le \|L_m(G)\| \times \|L_m(SPEC)\|$

• Compute *reduced*, *control- equivalent* SIMSUP, often with

 $||L_m(SIMSUP)|| \iff ||L_m(SUPER)||$

- In TCT:
 - CONSUPER = Condat(G,SUPER)
 - SIMSUP = Supreduce(G,SUPER,CONSUPER)

A solution to Question 3 is *modular/distributed/hierarchical* control

Outline

- Introduction to Supervisory Control
- Ramadge-Wonham Supervisory Control Theory
- Example A Pusher-Lift System
- Primary Goals of EE6226

A Pusher-Lift System

EE6226, Discrete Event Systems

Lift Model G_{lift}

Pusher Model G_{pu}

Product Model G_{pro}

Specifications

Monolithic Method – Supervisor Synthesis

- Plant: $G = G_{lift,lo} \times G_{pu} \times G_{pro}$
- Specification:
 - $E = E_1 \times E_2 \times E_3 \times E_4 \tag{64,288}$
 - $E = Selfloop(E_1 \times E_2 \times E_3 \times E_4, \Sigma (\Sigma_1 \cup \Sigma_2 \cup \Sigma_3 \cup \Sigma_4))$
- SUPER = Supcon(G, E) (636, 1369)
- SUPER = Condat(G, SUPER) : controllable
- SIMSUPER = Supreduce(G,SUPER,SUPER) (99,476; slb=51)

(use Sync in TCT (240, 956))

Some Remarks

- Advantages of RW SCT
 - It is conceptually simple
 - Many real systems can be modeled in this framework
- Disadvantages of RW SCT
 - The computational complexity is very high for large systems
 - The implementation issues are not explicitly addressed
 - A procedure of signals-events (supervisory control)-signals is needed.
 - Performance issues are not well addressed
 - "Bad" behaviors are forbidden, but no specific "good" behavior is enforced.

Outline

- Introduction to Supervisory Control
- Ramadge-Wonham Supervisory Control Theory
- Example A Pusher-Lift System
- Primary Goals of EE6226

Goals of EE6226

- To introduce several techniques that are aimed to handle the complexity issue involved in supervisor synthesis.
 - Modular control
 - Distributed control
 - Hierarchical control
 - State-feedback control
- To deal with supervisory control under partial observations.
- To address a certain type of performance.

Basic Functions of Supervisor Synthesis Package

Developed by R. Su Nanyang Technological University

Automaton: B1.cfg

```
[automaton]
states = 0, 1, 2, 3, 4
alphabet = tau, R1-drop-B1, R1-pick-B1, R2-drop-B1, R2-pick-B1
controllable = R1-drop-B1, R1-pick-B1, R2-drop-B1, R2-pick-B1
observable = R1-drop-B1, R1-pick-B1, R2-drop-B1, R2-pick-B1
transitions = (0, 1, tau), (1, 2, R1-drop-B1), (2, 1, R2-pick-B1),
            (1, 3, R2-drop-B1), (3, 1, R1-pick-B1), (1, 4, R2-pick-B1),
            (1, 4, R1-pick-B1), (2, 4, R1-drop-B1), (3, 4, R2-drop-B1)
marker-states = 1
initial-state = 0
```

Check Size of Automaton

make_get_size.py

[user@host ~] \$ make_get_size
Please input model (.cfg): B1.cfg
Number of states: 5
Number of transitions: 9

Automaton Product

make_product.py

[user@host ~]\$ make_product Please input list of your input automata (comma-seperated list of automata): B1.cfg, B2.cfg Please input product automaton (.cfg): B1-B2.cfg Mon Mar 16 10:33:51 2009: Must do 1 product computations. (memory=9052160 bytes) Mon Mar 16 10:33:51 2009: Product #1 done: 17 states, 65 transitions (memory=9052160 bytes) Mon Mar 16 10:33:51 2009: Computed product (memory=9052160 bytes) Number of states: 17 Number of transitions: 65 Mon Mar 16 10:33:51 2009: Product is saved in B1-B2.cfg (memory=9076736 bytes)

Automaton Abstraction

make_abstraction.py

[user@host ~]\$ make_abstraction Please input source automaton (.cfg): B1-B2.cfg Please input list of preserved events (comma-seperated list of event names): tau, R1-drop-B1 Please input name of the abstraction (.cfg): B1-B2-abstraction.cfg Mon Mar 16 10:40:54 2009: Computed abstraction (memory=8364032 bytes) Number of states: 5 Number of transitions: 14 Mon Mar 16 10:40:54 2009: Abstraction is saved in B1-B2-abstraction.cfg

(memory=8409088 bytes)

make_sequential_abstraction.py

- [user@host~]\$ make_sequnetial_abstraction
- Please input list of your input automata (comma-seperated list of automata): B1.cfg, B2.cfg
- Please input list of preserved events (comma-seperated list of event names): tau, R1-drop-B1
- Please input abstraction (.cfg): B1-B2-sequential-abstraction.cfg
- Mon Mar 16 13:01:23 2009: Started (memory=8249344 bytes)
- Mon Mar 16 13:01:23 2009: #states after adding 1 automata: 5 (memory=8257536 bytes)
- Mon Mar 16 13:01:23 2009: #states and #transitions after abstraction: 4, 9(memory=8265728 bytes)
- Mon Mar 16 13:01:23 2009: #states of 2 automata: 5; #states and #transitions of product: 13 51 (memory=8278016 bytes)
- Mon Mar 16 13:01:23 2009: #states and #transitions after abstraction: 5, 14(memory=8294400 bytes)
- Mon Mar 16 13:01:23 2009: Abstraction is saved in B1-B2-sequential-abstraction.cfg (memory=8327168 bytes)

Natural Projection

make_natural_projection.py

- [user@host ~]\$ make_natural_projection
- Please input source automaton (.cfg): B1-B2.cfg
- Please input list of preserved events (comma-seperated list of event names): tau, R1-drop-B1
- Please input name of the abstraction (.cfg): B1-B2-natural-projection.cfg
- Mon Mar 16 10:46:04 2009: Computed projection (memory=8376320 bytes)

Number of states: 3

Number of transitions: 3

Mon Mar 16 10:46:04 2009: Projected automaton is saved in B1-B2-natural-projection.cfg (memory=8417280 bytes)

Check Language Equivalence

Make_language_equivalence_test.py

[user@host ~]\$ make_language_equivalence_test Please input first model (.cfg): B1-B2-abstraction.cfg Please input second model (.cfg): B1-B2-natural-projection.cfg Language equivalence HOLDS

Supervisor Synthesis

make supervisor.py

[user@host ~]\$ make supervisor Please input plant model (.cfg): plant.cfg Please input specification model (.cfg): spec.cfg Please input supervisor (.cfg): supervisor.cfg Mon Mar 16 12:49:59 2009: Computed supervisor (memory=14548992 bytes) Number of states: 140 Number of transitions: 288

Mon Mar 16 12:49:59 2009: Supervisor saved in supervisor.cfg (memory=14536704 bytes)

Nonconflict Check

make_nonconflicting_check.py

- [user@host ~]\$ make_nonconflicting_check
- Please input list of your input automata (comma-seperated list of automata): plant.cfg, supervisor.cfg Mon Mar 16 12:56:21 2009: Started (memory=14954496 bytes)
- Mon Mar 16 12:56:21 2009: #states after adding 1 automata: 926 (memory=14954496 bytes)
- Mon Mar 16 12:56:24 2009: #states and #transitions after abstraction: 926, 3919 (memory=15073280 bytes)
- Mon Mar 16 12:56:24 2009: #states of 2 automata: 139; #states and #transitions of product: 166 380 (memory=15073280 bytes)
- Mon Mar 16 12:56:24 2009: #states and #transitions after abstraction: 3, 6(memory=15036416 bytes) ok

Check Controllability

make_controllability_check.py

```
[user@host ~]$ make_controllability_check
Please input plant model (.cfg): plant.cfg
Please input supervisor model (.cfg): supervisor.cfg
States with disabled controllable events:
```

- (1, 1): {R2-pick-B2, R3-pick-B2}
- (4, 2): {R2-drop-B2}

```
(5, 3): {R3-drop-B2, R2-pick-B2, R3-drop-P33, R3-drop-B3}
```

```
(10, 4): {R3-drop-B3, R2-drop-B2, R3-drop-P33}
```

```
(799, 121): {R2-pick-B2, R3-pick-B2}
```

Supervisor is correct (no disabled uncontrollable events)

Compute Feasible Supervisor

make_feasible_supervisor.py

[user@host ~]\$ make_feasible_supervisor Please input plant model (.cfg): plant.cfg Please input supervisor model (.cfg): supervisor.cfg Please input feasible supervisor filename (.cfg): feasible_supervisor.cfg Mon Mar 16 13:09:43 2009: Computed supervisor (memory=10522624 bytes) Number of states: 82 Number of transitions: 196 Mon Mar 16 13:09:43 2009: Supervisor saved in feasible_supervisor.cfg (memory=10547200 bytes)

Batch Operation

Batch_Operation.py

#!/usr/bin/env python
from automata import frontend

```
#Compute product
frontend.make_product('B1.cfg, B2.cfg', 'B1-B2.cfg')
```

#Compute automaton abstraction frontend.make_abstraction('B1-B2.cfg', 'tau,R1-drop-B1', 'B1-B2-abstraction.cfg')

#Compute supervisor frontend.make_supervisor('plant.cfg', 'spec.cfg', 'supervisor.cfg')

#Check controllability
frontend.make_controllability_check('plant.cfg', 'supervisor.cfg')