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Introduction to Supervisory Control Theory 
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Outline 

•  Introduction to Supervisory Control  

•  Ramadge-Wonham Supervisory Control Theory 

•  Example – A Pusher-Lift System 

•  Primary Goals of EE6226 
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The Concept of Discrete Event Systems (DES) 

•  A DES is a structure with ‘states’ having duration in time, 
‘events’ happening instantaneously and asynchronously. 
–  States: e.g. machine is idle, is operating, is broken down, is under repair 
–  Events: e.g. machine starts work, breaks down,  completes work or repair 

•  State space discrete in time and space. 

•  State transitions ‘labeled’ by events. 
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•  Control problems implicit in the literature (enforcement of 
resource constraints, synchronization, ...) 

 
But 
•   Emphasis on modeling, simulation, verification    
•   Little formalization of control synthesis 
•   Absence of control-theoretic ideas 
•   No standard model or approach to control 

The Motivation of Developing Supervisory 
Control Theory (SCT) for DES (till 1980) 
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Related Areas 

•  Programming languages for modeling & simulation 

•  Queues, Markov chains 

•  Petri nets 

•  Boolean models  

•  Formal languages 

•  Process algebras (CSP, CCS) 
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“Great” Expectations for SCT 

•  System model  
–  Discrete in time and (usually) space 
–  Asynchronous (event-driven) 
–  Nondeterministic  

•  support transitional choices 

•   Amenable to formal control synthesis  
–  exploit control concepts 

•   Applicable: manufacturing, traffic, logistic,... 
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Relationship with Systems Control Concepts 

•  State space framework well-established: 
–  Controllability 
–  Observability 
–  Optimality (Quadratic, H∞) 

•  Use of geometric constructs and partial order 
–  Controllability subspaces   

•  Supremal subspaces! 
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Ramadge-Wonham SCT (1982) 

•  Automaton representation 
–   state descriptions for concrete modeling and computation 

•   Language representation 
–  i/o descriptions for implementation-independent concept formulation 

•    Simple control “technology” 
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Outline 

•  Introduction to Supervisory Control  

•  Ramadge-Wonham Supervisory Control Theory 

•  Example – A Pusher-Lift System 

•  Primary Goals of EE6226 
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RW paradigm is based on languages, but implemented on finite-state automata 
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Basic Concepts of Languages 

•  Given an alphabet Σ (e.g. Σ = { a , b , c , d }) 

–  A string is a finite sequence of events from Σ, e.g. s = ababa 

–  Σ+ := { all strings generated from Σ }, Σ* := Σ+ ∪ {ε} 

•  ε is called the empty string:  sε = εs = s 

–  Given s1,s2∈Σ*, s1 is a prefix substring of s2, if (∃t∈Σ*) s1t=s2 

•  We use s1 ≤ s2 to denote that s1 is a prefix substring of s2 

–  A language W ⊆ Σ* : most time we require W to be regular 

–  The prefix closure of a language W is :  

•  W is prefix closed if W = W   

}sW)ss(|Σs{:W * ʹ≤∈ʹ∃∈=
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Finite-State Automaton (FSA) 

•  A finite-state automaton is a 5-tuple G = (X, Σ, ξ, x0, Xm), where 
–  X   : the state set 

–  Σ   : the alphabet  

–  x0  : the initial state 

–  Xm : the marker state set (or the final state set) 

–  ξ : X×Σ → X : the transition map 
•  ξ is called a partial map, if it is not defined at some pair (x,σ)∈X×Σ. 

•  Otherwise, it is called a total map.  

•  Extension of the transition map: ξ : X×Σ* → X : (x,sσ) → ξ(x,sσ) := ξ(ξ(x,s),σ) 
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The Famous “Small Machine” Model 

•  G = ( X , Σ , ξ , x0 , Xm ) 
–  X = { 0 , 1 , 2 } 
–  Σ = { a , b , c , d } 
–  x0 = 0 
–  Xm = { 0 } 

0 

1 2 

a 

c 

d b 

a : starts work 
b : finishes work 
c : machine fails 
d : machine is repaired   

Idle 

Work Failure 
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Connection between Language and FSA 

•  Give a FSA G = ( X , Σ , ξ , x0 , Xm ), 

–  closed behavior of G:  
                          L(G) := {s∈Σ*|ξ(x0,s) is defined} 

–  marked behavior of G, i.e. the language recognized by G,  
                          Lm(G) := {s∈L(G) | ξ(x0,s)∈Xm}  
 

•  G is nonblocking, if  Lm(G) = L(G). 

•  A language is regular, if it is recognizable by a FSA. 
–  We can use Arden’s rule to derive a language from a FSA. 

0 

1 2 

a 

c 

d b 

Idle 

Work Failure 
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Natural Projection over Languages 

•  Given Σ and Σʹ⊆Σ, P:Σ* → Σʹ* is a natural projection if   
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•  The inverse image map of P is P-1 : pwr(Σʹ*)→pwr(Σ*) with 

                                                  (∀A⊆Σʹ*)   P-1(A) :={s∈Σ*| P(s)∈A}                   

a b c a c c d Σ = {a, b, c, d} Σʹ = {a, d} 

P 
a a d 
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Synchronous Product over Languages 

•  Builds a more complex automaton 

•     with more complex language 

β 

γ 

α 

γ 
shared 

         Lm(A1) || Lm(A2)  =  P1
-1

 (Lm(A1))  ∩  P2
-1 (Lm(A2))  

         expressed by natural projections 
 

                 Pi: (Σ1
 ∪ Σ2) 

* →  Σi
*     (i = 1,2)      

 

A1 A2 
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The synchronous product is commutative and associative ! 
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Implement Synchronous Product by Automaton Operation 

•  Let G1 = (X1, Σ1, ξ1, x0,1, Xm,1) and G2 = (X2, Σ2, ξ2, x0,2, Xm,2), 
•  Let  
           G1×G2 = (X1×X2, Σ1∪Σ2, ξ1×ξ2, (x0,1,x0,2), Xm,1×Xm,2)  
     where  
 
 
•  Result:  

–  L(G1)||L(G2)=L(G1×G2)  
–  Lm(G1)||Lm(G2)=Lm(G1×G2)  
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For Example 

β 

γ 

α 

γ 
shared 

A1 A2 

β 

α 

α 

β 
 γ 

A1×A2 

0 1 0 1 (0,0) (1,1) 

(1,0) 

(0,1) 

Automaton product implements synchronous product!  
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Properties of Projection and Synchronous Product 

•  [Chain Rule] Given Σ1, Σ2 and Σ3, suppose Σ3 ⊆ Σ2 ⊆ Σ1.  

–  Let P12:Σ1
* →Σ2

* , P23:Σ2
*→Σ3

* and P13:Σ1
*→Σ3

* be natural projections 

–  Then P13 = P23P12 

•  [Distribution Rule] Given L1 ⊆ Σ1
* and L2 ⊆ Σ2

*, let Σʹ ⊆ Σ1∪Σ2. 

–  Let P:(Σ1∪Σ2)* →Σʹ* be the natural projection. Then 

•   P(L1 || L2) ⊆ P(L1) || P(L2) 

•  Σ1∩Σ2 ⊆ Σʹ ⇒ P(L1 || L2) = P(L1) || P(L2) 
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We now talk about control … 



EE6226, Discrete Event Systems 23 

The Control Architecture 

•  Given a plant G and a requirement SPEC, compute a supervisor S 
–  Lm(S/G) := Lm(S)||Lm(G) ⊆ Lm(G)||Lm(SPEC) 
–  S should not disable the occurrence of any uncontrollable event 
–  S should make a move only based on observable outputs of G 
–  S/G is nonblocking 

G 

S 

S/G 
enable/disable 
events in Σc 

Σ = Σc ∪ Σuc 
Σ = Σo ∪ Σuo 
Σc:=controllable alphabet 
Σo:=observable alphabet  
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General Control Issues 

Q1 : Is there a control  that enforces both safety, and  liveness 
(nonblocking), and which is maximally permissive ? 

Q2 : If so, can its design be automated ? 

Q3 : If so, with acceptable computing effort ? 
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Solution to Question 1 

•  Fundamental definition 
    A  sublanguage  K  ⊆  Lm(G)  is  controllable (w.r.t. G) if                                                    
                                          

–  “Once in    ,  you can’t skid out on an uncontrollable event.” 

 

KLK uc ⊆∩Σ )G(
K

a b c 

a 

b 

d 

Σ   ={a,b,c,d} 
Σc  ={a,c,d} 
Σuc ={b} 



EE6226, Discrete Event Systems 26 

Supremal Controllable Sublanguage 

•  Given a plant G and a specification SPEC (both over Σ), let 
 

      C(G,SPEC):={K⊆Lm(G)∩Lm(SPEC)|K is controllable w.r.t. G} 
 

•  C(G,SPEC) is a poset under set inclusion and closed under arbitrary union 
 

–  The largest element is called the supremal controllable sublanguage,   
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Fundamental Result 

 
 

•  There exists a (unique) supremal controllable sublanguage 
                     Ksup  ⊆  Lm(G)  ∩  Lm(SPEC) 

– SPEC is an automaton model of a specification 

•  Furthermore  Ksup  can be effectively computed. 
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Lattice View of Solution to Question 1 

Lm(G)  ∩  Lm(SPEC) 

Σ*  (all strings) 

Lm(SPEC) Lm(G) 

synthesis 
Ksup (optimal) 

K"  (suboptimal) K' 

∅  (no strings) 
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Solution to Question 2  

•  Given G and SPEC, compute Ksup 

                          Ksup  =  Lm(SUPER) 
                            SUPER  =  Supcon (G , SPEC) 
 
•  Given SUPER, implement  Ksup 

 
G 

SUPER 

Ksup enable/disable 
events in Σc 
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Supervisor Reduction 

G 

SUPER 

Ksup G 

SIMSUP 

Ksup 

reduction 

SUPER and SIMSUP is control equivalent if 
•  L(G))∩L(SUPER) = L(G))∩L(SIMSUP) 
•  Lm(G))∩Lm(SUPER) = Lm(G))∩Lm(SIMSUP)   



EE6226, Discrete Event Systems 31 

Supervisor Reduction 
 

•  Controlled behavior has state size 
 

                        ||Lm(SUPER)|| ≤ ||Lm(G)|| × ||Lm(SPEC)|| 
 

•   Compute reduced, control- equivalent SIMSUP, often with 
  

                            ||Lm(SIMSUP)||  <<  ||Lm(SUPER)|| 
 

•  In TCT:  
–  CONSUPER = Condat(G,SUPER) 
–  SIMSUP = Supreduce(G,SUPER,CONSUPER) 
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A solution to Question 3 is modular/distributed/hierarchical control       
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Outline 

•  Introduction to Supervisory Control  

•  Ramadge-Wonham Supervisory Control Theory 

•  Example – A Pusher-Lift System 

•  Primary Goals of EE6226 
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A Pusher-Lift System 

extend (push = 1) retract (push=0) 

ascend 

descend 

Lift Pusher place=1,0 

(up,down)∈{0,1}×{0,1} 
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Lift Model Glift 

descended up=1 down=0 ascended 

up=1 down=0,1 

down=0 up=1 

up=0 
up=0 down=0,1 

down=1 up=0,1 

descended 

down=0 up=0,1 

down=1 

up=0 

down=0 

down=1 

: controllable 
: uncontrollable 
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Pusher Model Gpu 

push=1 extended 

push=0 extended push=1 

push=0 retracted 

retracted 
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place=1 

placed 

Product Model Gpro 
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Specifications  

placed 

down=0 up=1 

up=1 down=0 

retracted 

down=1 up=0 

up=0 down=1 

ascended 

push=1 

descended 

place=1 

E1 

E2 

E3 

E4 
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Monolithic Method – Supervisor Synthesis  

•  Plant: G = Glift,lo × Gpu × Gpro                      (use Sync in TCT (240 , 956)) 
 

•  Specification:  
–  E = E1 × E2 × E3 × E4                                                                (64 , 288) 
–  E = Selfloop(E1×E2×E3×E4, Σ–(Σ1∪Σ2∪Σ3∪Σ4))  

 

•  SUPER = Supcon(G , E)                                              (636 , 1369) 
 

•  SUPER = Condat(G , SUPER)  : controllable 
 

•  SIMSUPER = Supreduce(G,SUPER,SUPER)    (99 , 476 ; slb=51)  
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Some Remarks 

•  Advantages of RW SCT 
–  It is conceptually simple 
–  Many real systems can be modeled in this framework 

•  Disadvantages of RW SCT 
–  The computational complexity is very high for large systems 
–  The implementation issues are not explicitly addressed 

•  A procedure of signals→events (supervisory control)→signals is needed. 

–  Performance issues are not well addressed 
•  “Bad” behaviors are forbidden, but no specific “good” behavior is enforced.   
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Outline 

•  Introduction to Supervisory Control  

•  Ramadge-Wonham Supervisory Control Theory 

•  Example – A Pusher-Lift System 

•  Primary Goals of EE6226 
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Goals of EE6226 

•  To introduce several techniques that are aimed to handle the 
complexity issue involved in supervisor synthesis. 
–  Modular control 
–  Distributed control 
–  Hierarchical control  
–  State-feedback control 

•  To deal with supervisory control under partial observations. 

•  To address a certain type of performance.  
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Basic Functions of Supervisor Synthesis Package 
 

Developed by R. Su 
Nanyang Technological University  
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Create Automata 

Automaton: B1.cfg 
 
[automaton] 
states = 0, 1, 2, 3, 4 
alphabet = tau, R1-drop-B1, R1-pick-B1, R2-drop-B1, R2-pick-B1 
controllable =  R1-drop-B1, R1-pick-B1, R2-drop-B1, R2-pick-B1   
observable =  R1-drop-B1, R1-pick-B1, R2-drop-B1, R2-pick-B1 
transitions = (0, 1, tau), (1, 2, R1-drop-B1), (2, 1, R2-pick-B1),  
                     (1, 3, R2-drop-B1), (3, 1, R1-pick-B1), (1, 4, R2-pick-B1),  
                     (1, 4, R1-pick-B1), (2, 4, R1-drop-B1), (3, 4, R2-drop-B1) 
marker-states = 1 
initial-state = 0 
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Check Size of Automaton 

make_get_size.py 
 
[user@host ~] $ make_get_size 
Please input model (.cfg): B1.cfg 
Number of states: 5 
Number of transitions: 9 
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Automaton Product 

make_product.py 
 
 
[user@host ~]$ make_product 
Please input list of your input automata (comma-seperated list of automata): B1.cfg, B2.cfg 
Please input product automaton (.cfg): B1-B2.cfg 
Mon Mar 16 10:33:51 2009: Must do 1 product computations.         (memory=9052160 bytes) 
Mon Mar 16 10:33:51 2009: Product #1 done: 17 states, 65 transitions       (memory=9052160 bytes) 
Mon Mar 16 10:33:51 2009: Computed product                                         (memory=9052160 bytes) 
                          Number of states: 17 
                          Number of transitions: 65 
Mon Mar 16 10:33:51 2009: Product is saved in B1-B2.cfg                        (memory=9076736 bytes) 
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Automaton Abstraction 

make_abstraction.py 
 
[user@host ~]$ make_abstraction 
Please input source automaton (.cfg): B1-B2.cfg 
Please input list of preserved events (comma-seperated list of event names): tau, R1-drop-B1 
Please input name of the abstraction (.cfg): B1-B2-abstraction.cfg 
Mon Mar 16 10:40:54 2009: Computed abstraction  (memory=8364032 bytes) 
                          Number of states: 5 
                          Number of transitions: 14 
Mon Mar 16 10:40:54 2009: Abstraction is saved in B1-B2-abstraction.cfg

 (memory=8409088 bytes) 
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Sequential Automaton Abstraction 

make_sequential_abstraction.py 
 
[user@host ~]$ make_sequnetial_abstraction 
Please input list of your input automata (comma-seperated list of automata): B1.cfg, B2.cfg 
Please input list of preserved events (comma-seperated list of event names): tau, R1-drop-B1 
Please input abstraction (.cfg): B1-B2-sequential-abstraction.cfg 
Mon Mar 16 13:01:23 2009: Started  (memory=8249344 bytes) 
Mon Mar 16 13:01:23 2009: #states after adding 1 automata: 5  (memory=8257536 bytes) 
Mon Mar 16 13:01:23 2009: #states and #transitions after abstraction: 4, 9(memory=8265728 bytes) 
Mon Mar 16 13:01:23 2009: #states of 2 automata: 5; #states and #transitions of product: 13 51

 (memory=8278016 bytes) 
Mon Mar 16 13:01:23 2009: #states and #transitions after abstraction: 5, 14(memory=8294400 bytes) 
Mon Mar 16 13:01:23 2009: Abstraction is saved in B1-B2-sequential-abstraction.cfg

 (memory=8327168 bytes) 
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Natural Projection 

make_natural_projection.py 
 
[user@host ~]$ make_natural_projection 
Please input source automaton (.cfg): B1-B2.cfg 
Please input list of preserved events (comma-seperated list of event names): tau, R1-drop-B1 
Please input name of the abstraction (.cfg): B1-B2-natural-projection.cfg 
Mon Mar 16 10:46:04 2009: Computed projection  (memory=8376320 bytes) 
                          Number of states: 3 
                          Number of transitions: 3 
Mon Mar 16 10:46:04 2009: Projected automaton is saved in B1-B2-natural-projection.cfg

 (memory=8417280 bytes) 
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Check Language Equivalence 

Make_language_equivalence_test.py 
 
[user@host ~]$ make_language_equivalence_test 
Please input first model (.cfg): B1-B2-abstraction.cfg 
Please input second model (.cfg): B1-B2-natural-projection.cfg 
Language equivalence HOLDS 
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Supervisor Synthesis 

make_supervisor.py 
 
[user@host ~]$ make_supervisor 
Please input plant model (.cfg): plant.cfg 
Please input specification model (.cfg): spec.cfg 
Please input supervisor (.cfg): supervisor.cfg 
Mon Mar 16 12:49:59 2009: Computed supervisor  (memory=14548992 bytes) 
                          Number of states: 140 
                          Number of transitions: 288 
Mon Mar 16 12:49:59 2009: Supervisor saved in supervisor.cfg    (memory=14536704 bytes) 
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Nonconflict Check 

make_nonconflicting_check.py 
 
 
[user@host ~]$ make_nonconflicting_check 
Please input list of your input automata (comma-seperated list of automata): plant.cfg, supervisor.cfg 
Mon Mar 16 12:56:21 2009: Started  (memory=14954496 bytes) 
Mon Mar 16 12:56:21 2009: #states after adding 1 automata: 926  (memory=14954496 bytes) 
Mon Mar 16 12:56:24 2009: #states and #transitions after abstraction: 926, 3919

 (memory=15073280 bytes) 
Mon Mar 16 12:56:24 2009: #states of 2 automata: 139; #states and #transitions of product: 166 380

 (memory=15073280 bytes) 
Mon Mar 16 12:56:24 2009: #states and #transitions after abstraction: 3, 6(memory=15036416 bytes) 
ok 
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Check Controllability 

make_controllability_check.py 
 
[user@host ~]$ make_controllability_check 
Please input plant model (.cfg): plant.cfg 
Please input supervisor model (.cfg): supervisor.cfg 
States with disabled controllable events: 
    (1, 1): {R2-pick-B2, R3-pick-B2} 
    (4, 2): {R2-drop-B2} 
    (5, 3): {R3-drop-B2, R2-pick-B2, R3-drop-P33, R3-drop-B3} 
    (10, 4): {R3-drop-B3, R2-drop-B2, R3-drop-P33} 
    ………… 
    (799, 121): {R2-pick-B2, R3-pick-B2} 
 
Supervisor is correct (no disabled uncontrollable events) 
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Compute Feasible Supervisor 

make_feasible_supervisor.py 
 
 
[user@host ~]$ make_feasible_supervisor 
Please input plant model (.cfg): plant.cfg 
Please input supervisor model (.cfg): supervisor.cfg 
Please input feasible supervisor filename (.cfg): feasible_supervisor.cfg 
Mon Mar 16 13:09:43 2009: Computed supervisor  (memory=10522624 bytes) 
                          Number of states: 82 
                          Number of transitions: 196 
Mon Mar 16 13:09:43 2009: Supervisor saved in feasible_supervisor.cfg 

(memory=10547200 bytes) 
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Batch Operation 

Batch_Operation.py 
 
******************************************************************************* 
#!/usr/bin/env python 
from automata import frontend 
 
#Compute product 
frontend.make_product('B1.cfg, B2.cfg', 'B1-B2.cfg') 
 
#Compute automaton abstraction 
frontend.make_abstraction('B1-B2.cfg', 'tau,R1-drop-B1', 'B1-B2-abstraction.cfg') 
 
#Compute supervisor 
frontend.make_supervisor('plant.cfg', 'spec.cfg', 'supervisor.cfg') 
 
#Check controllability 
frontend.make_controllability_check('plant.cfg', 'supervisor.cfg') 


