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ABSTRACT

The unknown sharp changes of vehicle ac-
celeration rates, also called the unknown jerk
dynamics, may significantly affect the driving
performance of the leader vehicle in a platoon,
resulting in more drastic car-following move-
ments in platooning tracking control, which
could cause safety and traffic capacity con-
cerns. To address these issues, in this paper,
we investigate cooperative platooning tracking
control and intermittent optimization problems
for connected automated vehicles (CAVs) with
a nonlinear car-following model. We assume
that the external inputs of the leader CAV
contain unknown but bounded jerk parameters,
and the acceleration signals of the leader CAV
are known only to a few neighboring follower
CAVs in a free-design but directed commu-
nication network. To solve these problems, a
distributed observer law is developed to provide
a reference signal expressed as an estimated
unknown jerk dynamic of the leader CAV and
implemented by each follower CAV. Then, a
novel distributed platooning tracking control
protocol is proposed to construct the cooper-
ative tracking controllers under identical inter-
vehicle constraints, which can ensure a desired
safety distance among the CAVs and allow each
follower CAV to track their leader CAV by us-
ing only local information interaction. We also
present a novel intermittent sampling condition
and a robust intermittent optimization design
that can ensure optimally scheduled feedback
gains for the cooperative platooning tracking
controllers to minimize the control cost under
nonidentical inter-vehicle constraints and un-
known jerk dynamics. Simulation case studies
are carried out to illustrate the effectiveness of
the proposed approaches

Index Terms—Connected automated vehicles (CAVs); cooperative
platooning control; intermittent optimization; distributed observers;
car-following model; unknown dynamics; formation control.

I. Introduction

AS one key part of smart city, intelligent transportation
systems have attracted a lot of attention by virtue of the

advanced management and monitoring systems with smart sensors
and excellent information transformation based on Vehicle-to-X
(or V2X) technology [1]–[3]. Such emerging techniques provide
new means to reduce traffic congestion, fuel consumption, and en-
vironmental footprints and enhance safety. To optimize the energy
consumption of autonomous vehicles, a framework that integrates
optimal control and coordination for connected automated vehi-
cles(CAVs) at urban traffic intersections was studied in [4], where
a continuous flow of CAVs crossing two adjacent intersections
was considered. Subsequently, a decentralized control strategy,

aiming for smart junction crossing with minimum fuel consump-
tion in a traffic lightless network, was proposed in [5]. Notably,
coordination and interaction of CAVs are challenging issues
due to the complex vehicle dynamics and unpredictable traffic
conditions. Considering that unknown traffic disturbances, such as
the sudden appearance of pedestrians, may significantly affect the
dynamics of the CAVs, a safety distance among the moving CAVs
must be ensured in real-time. However, as pointed out in [6],
maintaining a small gap among the CAVs may require aggressive
throttling and braking, and may lead to suboptimal operation of
the powertrain when the velocity profile is variable. Specifically,
unknown jerk dynamics make the situation even worse, leading
to more challenging cooperative platooning tracking control and
optimization problems of CAVs. Therefore, this paper attempts
to solve these problems by developing a cooperative platooning
tracking strategy and distributed observer techniques, motivated
by the recent developments in the consensus community [7]–[10].

One key objective of platooning tracking control for the CAVs
is to develop different vehicle longitudinal control algorithms by
using limited inter-vehicle interaction information. One typical
strategy is Adaptive Cruise Control (ACC), which automatically
adapts the velocity of a vehicle to ensure a desired distance to
the preceding vehicle. However, ACC also amplifies disturbances
in upstream directions at small-time gaps [11], [12], causing,
e.g., string instability [13]. Cooperative Adaptive Cruise Control
(CACC) is an enhancement of ACC enabled by V2V commu-
nication, which employs wireless vehicle-to-vehicle communica-
tion and onboard measurements to achieve smaller inter-vehicle
distances [14]–[16]. However, it is noted that ACC and CACC
assume an ideal control topology, where the design of the con-
troller is based on a static and fixed communication pattern [17],
[18]. If the communication pattern is different from the designed
one, for example, due to network impairments or a change of
platooning control strategy, the performance of ACC and CACC
may degrade, and even become unable to safely control the
platoon. In response to the aforementioned insufficiency, the
consensus has been proposed as an effective tool to design control
algorithms able to handle space constraints [19]–[22]. In this
spirit, the vehicular fleet was modeled in [23] as a second-order
linear system that communicates over a wireless network with
arbitrary topology (instead of those introduced in the classical
CACC [24]). Besides, [6] treats the traffic cooperative control
problem as a distributed formation tracking control problem using
the multi-agent consensus schemes, which was also addressed
in [25]–[28] to maintain a specified queue form (e.g., constant
space distance).

Notice that ACC or CACC only assists vehicle driving, instead
of taking it over. Thus, specific car-following models are needed,
when applying ACC or CACC. A car-following model describes
how one driver follows immediately the preceding cars. In this
framework, the following behaviors of individual vehicles and
the perception mechanism of drivers are two important factors
in describing traffic models. For example, an optimal velocity
model was introduced in [29], to describe the characteristics of
real traffic flow, such as traffic jams or stop-and-go traffic waves.
A new car-following model incorporating the effects of the lateral
gap and roadside device communication was proposed in [30], to
capture the characteristics of electric vehicle traffic streams in
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transportation-cyber-physical systems. A general framework for
the car-following model has been proposed in [31] which aims to
facilitate the easier implementation of stability analysis in traffic
flow. Although these studies are very helpful in achieving the
cooperative platooning tracking control of CAVs, the dynamics
of the leader CAV are usually assumed to be either a constant
speed or a known acceleration profile, which is hard to be
implemented in the actual traffic network owing to the complex
traffic conditions and the unpredictable driving behaviors.

This paper addresses the cooperative platooning tracking control
and intermittent optimization problems for the CAVs with a
specific car-following model and unknown jerk dynamics by
developing a distributed observer protocol under a free-design
but directed communication topology, where the leader CAV will
be affected by the unknown traffic network conditions, e.g., stop-
and-go, or sudden acceleration caused by unpredicted traffic con-
gestion. We first formulate a distributed cooperative platooning
tracking control framework for CAVs whose protocol relies on a
novel distributed observer of the unknown jerk dynamics of the
leader CAV that utilizes only the neighboring information under a
free-design but directed communication network. Different from
the existing works [17], [25], [26], [28], [32]–[35], some realistic
inter-vehicle constraints and unknown jerk signals are explicitly
considered in the current framework, which may not be easily
handled in those mentioned existing works. To achieve this result,
we need to assume the boundedness of the unknown jerk signals.
When compared with the existing ACC [11], [12] and CACC [14],
[15] strategies that assume a static control topology, which means
that the design of the controller is based on a fixed communication
paradigm [17], [18], we can solve the problem of cooperative
platooning tracking control for CAVs based on a reconfigurable
(not fixed) controller at design-time to match the network and the
platoon characteristics. We secondly present a novel car-following
model, which, in contrast to the existing analysis frameworks
that mainly involve linear dynamics [15], [17], [28], [35], takes
the nonlinear modeling of drivers’ perception mechanism and
unknown jerk dynamics into account to provide an optimal
velocity model for each CAV. Unlike the assumption imposed
in string stability that the perturbation strictly attenuates for
each leader-follower pair as it propagates away from the first
leader [13], [36], the driver in this new car-following model can
easily recover from small disturbances in real traffic and return
to a steady car-following model state over time by exploring
the cooperative perception. We finally present a novel feedback
gain scheduling approach by developing a robust intermittent
optimization algorithm, which is different from the previous
works [25]–[28] that require a fixed feedback gain, and permits
a design of optimal feedback gains intermittently, making our
cooperative tracking control strategy different from existing works
and more powerful for the vehicle control.

The paper is organized as follows: Section II introduces the
problem formulation and necessary preliminaries. Section III
provides the main results on the design of cooperative platooning
tracking control for the platoon CAVs with a nonlinear car-
following model under a directed communication topology. Sec-
tion IV presents an intermittent optimization design to calculate
the optimal feedback gains of the cooperative platooning tracking
controller. Section V illustrates the effectiveness of the proposed

approaches with simulations and conclusions are drawn in Section
VI.

II. Preliminaries and problem formulation

A. Notations

The following notations are introduced throughout this paper:
M ≥ 0 (M ≤ 0) means that the matrix M is positive semi-
definite (negative semi-definite). The sets of nonnegative integers
and real numbers are denoted by N and R, respectively. Let
0 be a zero vector with an appropriate dimension, which is
clear from the context. Similar notations are adopted for 1
and I for one vector and identity matrix. For a vector x =

[x1, x2, . . . , xp]>, let ||x||q = (
∑p

i=1 |xi|
q
)

1
q with q > 0 being

the q-normal. sgn(x) = [sgn(x1), sgn(x2), . . . , sgn(xp)]> and
(sgn(x))

1
2 = [|x1|

1
2 sgn(x1), |x2|

1
2 sgn(x2),. . ., |xp|

1
2 sgn(xp)]>,

where sgn(·) is the signum function. The Kronecker product,
denoted by ⊗, facilitates the manipulation of matrices by the
following properties: (1) (A ⊗ B)(C ⊗ D) = AC ⊗ BD; (2)
(A⊗B)>=A> ⊗B>; (3) A⊗ (B +C)=A⊗B +A⊗C; and
(4) (A ⊗ B)−1 =A−1 ⊗ B−1, for any given invertible matrices
A and B.

B. Preliminaries

We hereby recall the graph theory to describe the connected links
among the CAVs [10], [28], [37]. A communication topology
consisting of (N + 1) CAVs can be defined as a directed graph
G = (V, E , A), where V = {v1,· · ·, vN+1} denotes the vehicles
in the group, the edge set E ∈ V × V denotes the neighbor-
ing relations among the vehicles, and the adjacency matrix is
A = [aij ]N+1×N+1 with non-negative elements aij . A directed
path generated from vi to vj is a finite ordered sequence of edges
(vi, vk1

),· · ·, (vkg , vj), with distinct nodes vkm0
, m0 = 1,· · ·, ~.

Define the Laplacian matrix L = [lij ]N+1×N+1 of graph G
satisfying lij = −aij , i 6= j; otherwise

∑N+1
k=1,k6=i aik, i = j. A

fixed directed graph G is said to contain a directed spanning
tree if there exists a node that can reach any other node via a
directed path. Without loss of generality, the following definition
and lemmas are introduced.

Lemma 1: [37] For a fixed directed graph G, the Laplacian
matrix L of G has a simple zero eigenvalue and all the other
eigenvalues have positive real parts if and only if the graph G
contains a directed spanning tree.

Definition 1: [28], [37] A square matrix A = [aij ] is a non-
singular M -matrix, if all the leading principal minors of A are
positive and satisfy aij ≤ 0 for all i 6= j.

Lemma 2: [28], [37] There exists a matrix A = [aij ] ∈ Rn×n

satisfying aij ≤ 0 for any i 6= j. Then, we have the following
equivalent statements: i) A is a nonsingular M -matrix; ii) All
eigenvalues of A have positive real parts; and iii) There exists a
positive definite matrix Θ ∈ Rn×n such that A>Θ + ΘA > 0.
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Lemma 3: [38] Given a symmetric matrix S =

[
s11 s12

s>12 s22

]
, the

following conditions are equivalent: i) S < 0; ii) s11 < 0, s22−
s>12s

−1
11 S12 < 0; iii s22 < 0, s11 − s12s

−1s22s
>
12 < 0.

Lemma 4: [39] Let Q∈RN×N be a symmetric matrix and W ∈
Rn×n be a symmetric positive semi-definite matrix. Then, for any
x∈RnN , the inequality λmin(Q)x>(IN⊗W )x ≤ x>(Q⊗W )x ≤
λmax(Q)x>(IN ⊗W )x holds, where λmin(Q), λmax(Q) are the
minimal and maximum eigenvalues of Q.

C. Problem formulation

This paper considers the cooperative platooning tracking control
and intermittent optimization problem for CAVs, cruising in a
specified traffic-signal-free lane with continuous-time second-
order integral dynamics. Suppose that there are N follower
CAVs and one leader CAV. Let F = {1, · · · , N} be the set of
the follower CAVs, where the dynamics of the follower i are
described as follows:

ṡi(t) = vi(t),

v̇i(t) = ai(t), i ∈ F ,
(1)

where si(t) ∈ R, vi(t) ∈ R, ai(t) ∈ R are the position,
velocity, and acceleration of the i-th CAV, respectively. The
system (1) is widely used for system-level CAV control [32], [33];
see [34] and [40] for more general discrete-time models and more
complex heterogeneous multi-agent models with different vehicle
parameters, respectively.

We define the label of the leader CAV as 0, whose dynamics are
described as follows:

ṡ0(t) = v0(t),

v̇0(t) = a0(t),

ȧ0(t) = a0(t) + ρ(t),

(2)

where s0(t) ∈ R, v0(t) ∈ R, a0(t) ∈ R are the position, velocity,
and acceleration of the leader CAV respectively. Equation ȧ0(t) =
a0(t) + ρ(t) represents the unknown jerk dynamics of the leader
CAV where ρ(t) is an unknown piecewise continuous but bounded
external signal, whose upper bound ρ̄, i.e., ||ρ(t)|| ≤ ρ̄, is known.
This setup can capture many acceleration profiles used in the
literature and vehicle simulation software [41].

Remark 1: It is noted that the jerk dynamics can be formulated
by a piecewise function to describe the different acceleration
scenarios for the leader CAV, which does not affect the continuous
signals of position, velocity, and acceleration of platoon CAVs
because the unknown jerk dynamics of the leader CAV can be
regarded as the external factors from the complex traffic environ-
ment. For different traffic conditions, the variable driver intentions
will show impassable vehicle dynamics. In order to propose an
effective vehicle control solution, we here consider a piecewise
function to describe common driving behaviors of drivers to
actually capture the situations of constant velocity, constant
acceleration, or sharp acceleration adjustment. The details design
will be described in the simulation case studies of this paper.
In general, the jerk dynamics are also used to check the safety
requirement [42] and detect safety-critical events [43]. It has been
shown that, although a minimum gap maximizes the road through-

put [44]–[46], and possibly reduces the vehicle air drag [47],
[48], maintaining a small gap may require aggressive throttling
and braking, leading to suboptimal operations of the powertrain
when the velocity profile is variable [6]. Thus, unknown jerk
dynamics will cause great impacts on platoon performance and
vehicle safety. In this paper, we consider the influence of the
leader CAV’s sudden acceleration on the cooperative platooning
tracking control by proposing a specific way of estimating the
jerk dynamics to ensure safety and improve traffic capacity.

Remark 2: In fact, the leader in the platoon may be a real or
a virtual CAV that aims to provide a reference state that is
tracked by the follower CAVs. Specifically, it is easy to verify that
whether the platoon behaviors can be solved by our cooperative
platooning tracking control protocols (which will be given later)
has nothing to do with the labels of the CAVs. For the convenience
of analysis, it is assumed that the index 0 represents the leader
CAV.

Remark 3: The considered system dynamics of the leader vehicle
are very practical, which can cover the general linear system with
unknown but bounded inputs, as shown below

ẋ = Ax+Bρ

where A =

0, 1, 0

0, 0, 1,

0, 0, 1

, B =

0

0

1

 x = [s0, v0, a0]>. However,

different from the control technologies developed in the consensus
theory for linear systems with unknown but bounded inputs as
made in [40], we here consider a more realistic system model, in
which the leader, affected by the external complex traffic environ-
ment, will show an uncertain dynamic adjustment of an unknown
jerk, and all the follower vehicles will use the optimal model
to perceive such changes and design the efficient cooperative
platoon control strategy. There is no relevant research on this
issue at present, so our research is novel and challenging. Our
goal is to propose a new mechanism to model this process, and
to better respond to complex traffic environments with human-like
driving behaviors, i.e., emergencies, and improve driving safety
and comfort.

To describe how one driver follows immediately the preceding
CAVs with their perception information, we further extend a
specific car-following model, also called the“optimal velocity
model” (OVM), referred to [29], [49], [50]. Based on this, the
dynamics of the follower CAV i can be redescribed as follows

ṡi(t) = vi(t),

v̇i(t) = Yi(vi(t)) + ui(t),

ui(t) = ζi(t) + ûi(t), i ∈ F ,
(3)

where Yi(vi(t)) represents how the CAV i responds to a stimulus
from other CAVs which will be designed later, ui(t) represents
the cooperative tracking control input, which can integrate the
acceleration estimate ζi(t), i ∈ F , for the leader CAV 0 and the
regulation tracking information ûi(t) for the follower CAV i that
will be introduced shortly.

To ensure that the velocity and acceleration input of each CAV are
within a given admissible range, the following vehicle constraints

4



A PREPRINT - SEPTEMBER 1, 2022

are imposed

vmin ≤ v0(t) ≤ vmax,

amin ≤ a0(t) ≤ amax,

vmin ≤ vi(t) ≤ vmax,

amin ≤ ζi(t) ≤ amax, i ∈ F ,

(4)

where vmin and vmax are the minimum and maximum speed
limits, and amin and amax are the minimum and maximum
acceleration for all the CAVs, respectively. Similar to [34], the
acceleration/deceleration bounds for each CAV are assumed to be
pre-specified and known. It is noted that as the basic framework,
the bounds of the constraints are first considered to be identical
according to the recommended speed. The nonidentical case will
be considered in the next section.

To analyze the equilibrium dynamics of the platoon system,
we would like to introduce a new system variable ξi(t) =
[si(t), vi(t)]

>, i = 0, . . . , N , and two system weight matrices
T1 = [1, 0]> and T2 = [0, 1]>. Then, the cooperative tracking
dynamics of the CAVs (3) can be rewritten as

ξ̇i(t) = T1T
>
2 ξi(t) + T2ui(t) + T2Yi(vi(t)), i = 0, . . . , N, (5)

where u0(t) = a0(t) and Y0(v0(t)) = 0 due to the fact that the
leader CAV has no incoming information from neighbors.

Furthermore, we define the platoon variable for the follower CAVs
as h = [h>1 , . . . , h

>
N ]>, where hi = [his, hiv]> is the platoon

vector, i.e., desired platoon state (distance and speed) relative to
the leader CAV for the follower i, i ∈ F . By convention, we
have h0s = 0, h0v = 0. Therefore, the control objective here
is to design an effective cooperative platooning tracking control
algorithm such that all the follower CAVs asymptotically reach
the desired platoon distance with respect to the leader CAV with
unknown jerk dynamics, which can be defined as follows:

Definition 2: The CAVs (2) and (3) are said to achieve the co-
operative platooning tracking control if the designed cooperative
tracking control input ui(t) with proper feedback gains and local
information interaction can guarantee that the states of all the
follower CAVs converge to the state of the leader CAV with the
desired platoon distance his, that is

lim
t→∞

‖ξi(t)− hi − ξ0(t)‖ = 0,∀i ∈ F , (6)

It is clear that the rear-end collision problem will arise if the
platoon distance his is not sufficient for the minimum safe
cruising distance dc. To prevent any rear-end collision, we define
the specific safety cruising constraint his satisfying

lim
t→∞

‖si(t)− s0(t)‖ = his ≥ dc. (7)

which is a safety cruising constraint for the objective (6).

Remark 4: Notably, the rear-end safety constraints are usually
presented in terms of an allowable headway since it assumes
that the CAVs travel on the lane with a safety distance from
the beginning. In fact, there are two major spacing policies for
platoon CAVs: the constant distance policy and the constant time
headway policy. The constant distance policy can provide a simple
and easy way to implement the platoon formulation and lead to

a very high traffic capacity because the desired distance between
two consecutive CAVs is independent of their velocities [51]–
[53]. For the constant time headway policy, the desired inter-
vehicle range varies with the CAVs’ velocities, which accords
with driver behaviors to some extent but limits the achievable
traffic capacity [54], especially for aging drivers. In fact, even
for experienced drivers, it is difficult for them to keep a steady
speed under complex road conditions. Especially in the face of
sudden accidents or congestion, stop-and-go situations will lead
to a frequent adjustment of driving speed, thus leading to frequent
switching of desired vehicle spacing, which may further increase
the risk of accidents. Therefore, the desired platoon distance his in
this paper is considered as a fixed safe spacing which implies that
all the follower CAVs are controlled to move in a rigid formation
following a leader CAV to achieve a high traffic capacity and a
more smooth car-following environment.

To achieve the control objective (6), this paper proposes the
following cooperative platooning tracking control protocols by
employing a distributed observer design under a directed com-
munication topology

ui(t) =ζi(t) + ûi(t) , (8)

ûi(t) =cK1

 N∑
j=0

aij((sj(t)−hjs)−(si(t)−his))

 (9)

+ cK2

 N∑
j=0

aij((vj(t)− hjv)− (vi(t)− hiv))

 ,

(10)

ζ̇i(t) =ζi(t) + cF

 N∑
j=0

aij(ζj(t)− ζi(t))

 (11)

+ c0sgn

F
 N∑

j=0

aij(ζj(t)− ζi(t))

 , i ∈ F ,

(12)

where ζi(t) ∈ R is defined as the state of the distributed
observer of the leader’s acceleration by the i-th follower CAV
and ζ0(t) = a0(t), c and c0 are the coupling gains, K1,K2 ∈
R1 are the control gains, F ∈ R is the observer gain, and
A = [aij ](N+1)×(N+1) is the adjacency matrix of graph G,
and sgn is the signum function defined component-wise, and
his − h0s = (i − 0)dc and his − hjs = (i − j)dc represents the
desired distances between the CAVs i and 0 and the CAVs i and
j, respectively. Here, G describes the communication topology
among the (N+1) CAVs at time t ≥ 0 to specify the information
flow topology. Specifically, the protocol (8) represents the control
inputs, the condition (10) is the regulation information from
the neighbors’ position and speed, and the condition (12) is
the distributed observer dynamics of the leader CAV and the
compensation input of distributed estimation of the unknown jerk
dynamics to provide a larger amount of acceleration compensation
for the preceding CAVs.

Remark 5: The cooperative platooning tracking control protocols
in this paper are also said to have structure G [54], where
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uninstructed control protocols have a structure corresponding to
the complete graph which requires communication between any
part of CAVs, see [34] for examples. In this paper, we are
only interested in the distributed control protocols using local
information interaction under the directed structure G. Similar
to [54], a direct communication link exists, which means that it
is perfect in the sense of ignoring the effects on quantization, data
dropouts, and time delays for simplicity.

Remark 6: Note that the employed distributed observer is very
easy to implement when the position and velocity of neighbors
can be received, which aims to propagate the information of the
leader vehicle’s acceleration rather than the general construction
of states from measurements. Moreover, compared with the fol-
lowers, the leader vehicle is disturbed by unknown jerk dynamics,
so the distributed observer (12) will be invalid with i = 0
which implies that the leader CAV’ dynamics will not be affected
by the follower CAVs. In addition, since only a few follower
CAVs can receive the information from the leader CAV, thus,
tracking errors from neighboring vehicles are needed to construct
the cooperative protocol. Notably, to capture the influence of
unknown jerk dynamics on the leader CAV, the signum function
is also used in the distributed observer (12).

It is noted that the traditional car-following model, as presented in
[29], [49], [50], only considers how a driver responds to a single
stimulus from other vehicles in some specific fashion. With the
V2X infrastructure, we can collect the rich vehicle information
to construct the cooperative perception which implies that we can
able to use the cooperative information to respond to the multiple
stimuli from other neighboring vehicles. Therefore, the dynamics
Yi(vi(t)) can be designed by

Yi(vi(t)) =

N∑
j=0

aij [y(Vi(hij(t))− vi(t))], (13)

where y is the sensitivity constant, Vi(hij(t)) is the nonlinear
reaction function, or so-called the “optimal velocity function”
(OVF), that captures the interactions between the CAVs i and
j, and is associated with the specific average bumper-to-bumper
headway [50]

Vi(hij(t)) = V C1 + V C2 tanh(V C3(hij(t))− V C4), (14)

where V C1, V C2, V C3, V C4 are the positive constants, obtained
from a calibration of the OVM with respect to empirical data [50].

Accordingly, the average bumper-to-bumper headway hij(t) be-
tween the CAVs i and j can be designed by

hij(t) = (si(t)− sj(t))/(i− j). (15)

Remark 7: Different from the previous results [25], [26], [55]
that assume either system dynamics with self-feedback terms of
each node or the leader vehicle with a zero-input, the dynamics
of the vehicle concerned in this paper are affected by the external
unknown acceleration reference signals. What makes the problem
interesting is that the inappropriate self-feedback terms of the
CAVs may lead to more difficulties in coordinating controller
design and platoon queue maintenance in an actual urban traffic
environment. In addition, although the constant distance policy
has the best potential to reduce the platoon length and thus

improve urban road throughput, the platoon stability still relies
on the leader CAV’s information. To solve these issues, the
distributed observer design is developed to estimate the accel-
eration reference signals of the leader CAV using the local and
directed information interaction, to improve the performance of
cooperative platooning tracking control protocols on the resilience
and robustness of platoon systems.

III. Cooperative platooning tracking control with
unknown jerk dynamics

In this section, the cooperative platooning tracking control prob-
lem for the CAVs (2) and (3) under the unknown jerk dynamics
will be solved by synchronizing distributed observers for all
the CAVs and using our developed distributed protocols (8) -
(12), where the feedback gains for the cooperative controller
are considered to be fixed first; the optimal design of variable
feedback gain will be discussed later. To obtain the main results,
the following assumption and lemma are introduced.

Assumption 1: The leader CAV has one directed path to each
follower CAV.

Remark 8: Note that Assumption 1 can be easily satisfied by
using the V2V/V2X communication, which is reconfigurable on
the basis of the actual communication capabilities at the design
time because it only requires that the graph of communication
topology satisfies the directed spanning tree condition. This is
very different from the existing ACC [11], [12] and CACC [14]–
[16] policy, in which the ideal control topology of a static
and fixed communication pattern is usually considered [17],
[18]. Therefore, we introduce the Assumption 1 to remove this
limitation to consider a reconfigurable (not fixed) control topology
at design-time to match the complex platoon characteristics.

Since the leader CAV has zero in-degree, according to [37], [56],
the Laplacian matrix L of the communication topology G can be
partitioned as

L =

(
0 L2

L0 L1

)
, (16)

where L2 ∈ 0>N , L0 ∈ RN and L1 ∈ RN×N .

Lemma 5: [56] With Assumption 1, there exists a positive vector
θ = (θ1, · · · , θN )> ∈ RN , such that

ΘL1 + L>1 Θ > 0, (17)

where L>1 θ = 1N , L1 is defined in (16), and Θ =
diag{1/θ1, · · · , 1/θN}.

Define θ0 = mini(θi), i ∈ F and λ0 = λmin(ΘL1 + (L1)
>

Θ).
Using the protocols (8) - (12), we have the following closed-loop

6
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system:

ξ̇i(t) =T1T
>
2 ξi(t) + T2ζi(t)

+ cT2K1

 N∑
j=0

aij((sj(t)−hjs)−(si(t)−his))


+ cT2K2

 N∑
j=0

aij((vj(t)−hjv)−(vi(t)−hiv))


+ T3

 N∑
j=0

aij(Vi(hij(t))− vi(t))

 ,

ξ̇0(t) =T1T
>
2 ξ0(t) + T2ζ0(t),

(18)
where T3 = [0, y]> and y is given by (13).

Furthermore, we have

T3

 N∑
j=0

aij(Vi(hij(t))− vi(t))


=T3

 N∑
j=0

aij(Vi(hij(t))− vi(t) + v0(t)− v0(t))


=T3

 N∑
j=0

aij(Vi(hij(t))−v0(t))

−T3

 N∑
j=0

aij(vi(t)−v0(t))


Define δi(t) = ξi(t) − ξ0(t) − hi as the cooperative platooning
tracking error, and εi(t) = ζi(t) − ζ0(t) as the estimation error,
where δ(t) = [δ>1 (t), . . . , δ>N (t)]>, ε(t) = [ε>1 (t), . . . , ε>N (t)]>,
h=[h>1 , . . . , h

>
N ]>, hi = [his, hiv]>, and i∈F . Then, we have

ξ̇i(t) =T1T
>
2 ξi(t) + T2ζi(t)

+ cT2K1

 N∑
j=0

aij((sj(t)−hjs)−(si(t)−his))


+ cT2K2

 N∑
j=0

aij((vj(t)−hjv)−(vi(t)−hiv))


+ T3

 N∑
j=0

aij(Vi(hij(t))− v0(t))


− T3

 N∑
j=0

aij((vi(t)− v0(t)))

 ,

(19)

Remark 9: It is noted that control objective includes the
lim
t→∞

‖vi(t) − v0(t)‖ = 0,∀i ∈ F , that will be achieved
by using the developed cooperative platooning tracking control
protocols (8) - (12) with a distributed observer design under a
directed communication topology. Therefore, the item v0(t) here
is only used to describe the relative velocity error of cooperative
platooning tracking, which does not require to be obtained for
every CAV because v0 is only accessible to a subset of CAVs in

our distributed protocols (8) - (12). With this design, the system
dynamic (19) will represent the stable traffic flow by using our
developed protocol.

Furthermore, we define f̄(t) = [f>i (t), . . . , f>N (t)]>,
where fi(t) =

∑N
j=0 aij(Vi(hij(t))− v0(t)). Let

ξF (t) = [ξ>1 (t), . . . , ξ>N (t)]>, ξL(t) = [ξ>0 (t), . . . , ξ>0 (t)]>.
Then, the tracking error system can be described by a compact
form

δ̇(t) =(IN ⊗ T1T
>
2 − c(L⊗ T2K))ξF (t)− c(L⊗ T2K)h

+ (IN ⊗ T2)ε(t)− (IN ⊗ T1T
>
2 )ξL(t)

+ (IN ⊗ T4)f̄(t)− (L1 ⊗ T2T
>
3 )δ(t)

− (L1 ⊗ T2T
>
3 )h

=(IN ⊗ T1T
>
2 − c(L1 ⊗ T2K))δ(t) + (IN ⊗ T2)ε(t)

+ (IN ⊗ T4)f̄(t)− (L1 ⊗ T2T
>
3 )δ(t)

+ (IN ⊗ T1T
>
2 )h− (L1 ⊗ T2T

>
3 )h,

(20)

where T4 =

[
0 0

y 0

]
, K = [K1 K2].

Define ζF = [ζ>1 (t),. . ., ζ>N (t)]> and ζL = [ζ>0 (t),. . ., ζ>0 (t)]>.
Accordingly, the estimation error dynamics can be given by

ε̇(t) =(IN ⊗ IN )ζF (t)− c(L⊗ F )ζ(t)

− c0(IN ⊗ IN )sgn((L⊗ F )ζ(t))

− (IN ⊗ IN )ζL(t)− (IN ⊗ IN )ρ(t)

=(IN ⊗ IN )ε(t)− c(L1 ⊗ F )ε(t)

− c0(IN ⊗ IN )sgn((L1 ⊗ F )ε(t))− (IN ⊗ IN )ρ(t).
(21)

Remark 10: It follows from (20) and (21) that, the platoon
dynamics in this paper are the functions of vehicle longitudinal
dynamics denoted by T1T

>
2 , the traffic information flow denoted

by the communication G and the matrix L1, the nonlinear vehicle
dynamics denoted by f̄(t), the unknown external input dynamics
denoted by ρ(t) and the feedback and observer gains denoted by
the matrices K and F , which implies that the overall closed-loop
system will be modified for the local vehicle closed-loop system
under the information flow topology L. Therefore, different from
the work [34], the stability of a platoon in this paper depends not
only on its cooperative platooning tracking controller but also on
the directed information flow topologies. Notably, the information
flow in the current paper will be a fundamental condition for the
platoon properties, i.e., stability and scalability.

Then, we present the first result for the cooperative platooning
tracking control problem by developing a distributed estimation
approach.

Theorem 1: Under Assumption 1, the cooperative platooning
tracking control problem for the CAVs (2) and (3) is solved by the
protocols (8) - (12) with proper feedback gains, identical inter-
vehicle constraints (2), and the local information interaction if the
following properties hold:

1) The platoon variable satisfies

(IN ⊗ T1T
>
2 )h− (L1 ⊗ T2T

>
3 )h = 0, (22)

7
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2) There exist two positive definite matrices P0 and P such
that

P0 + P>0 − ωθ0P0F = −In, (23)

T1T
>
2 P + P (T1T

>
2 )> − ωθ0T2T

>
2 + λ0θ0T4(V C2)DP

− λ0θ0T2T
>
3 P + βP < 0,

(24)

where ω > 0, c > ω/λ0, λ0 = λmin(ΘL1 + L1
>Θ), θ0 =

min θi, θ = {θ1, . . . , θN},L>1 θ=1N , L1 is defined in (16),
Θ = diag{1/θ1, . . . , 1/θN}, β > 0, V C2 is a scalar, and
D = min(1/(i− j)).

In this case, the parameters of protocols (8) - (12) will be
determined as follows: F = T−1P0, T = T>, K = T>2 P

−1,
and c0 ≥ ρ̄.

Proof: Based on Lemma 5, the matrix L1 is invertible.
Thereby, the cooperative platooning tracking control problem for
the CAVs (2) and (3) will be solved if and only if both error
dynamics εi(t) and δi(t) converge synchronously to zero. Then,
consider the Lyapunov function as follows

V̄ (ε, δ, t) = V̄1(ε, t) + V̄2(ε, δ, t), (25)

With V̄1(ε, t) = 8β−1λmax(T>2 P
−1T2)ε>(t)(Θ ⊗ P0)ε(t),

V̄2(ε, δ, t) = δ>(t)(Θ ⊗ P−1)δ(t). The proof contains the fol-
lowing two parts.

Part I): the time derivative of V̄1(ε, t) along the trajectories of
system (21) takes

˙̄V 1(ε, t) ≤8β−1λmax(T>2 P
−1T2)(ε>(t)(Θ⊗ (P0+P>0 )

− 2cΘL1 ⊗ P0F )ε(t)

− 2c0ε
>(t)(Θ⊗ P0)sgn((L1 ⊗ F )ε(t))

− 2ε>(t)(Θ⊗ P0)ρ(t)).

(26)

Choose c > ω/λ0, where λ0 = λmin(ΘL1 + (L1)
>

Θ) and Θ =
diag {1/θ1, . . . , 1/θN}. Then, we have

˙̄V 1(ε, t) ≤8β−1λmax(T>2 P
−1T2)(ε>(t)(Θ⊗ (P0 + P>0 )

− a((ΘL1 + (L1)
>

Θ)⊗ P0F ))ε(t)

− 2c0ε
>(t)(Θ⊗ P0)sgn((L1 ⊗ F )ε(t))

− 2ε>(t)(Θ⊗ P0)ρ(t))

≤8β−1λmax(T>2 P
−1T2)(ε>(t)(Θ⊗ (P0 + P>0 )

− aλ0(IN ⊗ P0F ))ε(t)

− 2c0ε
>(t)(Θ⊗ P0)sgn((L1 ⊗ F )ε(t))

− 2ε>(t)(Θ⊗ P0)ρ(t))

≤8β−1λmax(T>2 P
−1T2)(ε>(t)(Θ⊗ (P0 + P>0 )

− ωθ0(Θ⊗ P0F ))ε(t)

− 2c0ε
>(t)(Θ⊗ P0)sgn((L1 ⊗ F )ε(t))

− 2ε>(t)(Θ⊗ P0)ρ(t)),

(27)

where θ0 = minθi, i ∈ F . Then, we consider the last two item
in (27). With F = T−1P0, we have

∆ =− 2c0ε
>(t)(Θ⊗ P0)sgn((L1 ⊗ F )ε(t))

− 2ε>(t)(Θ⊗ P0)ρ(t)

≤− 2c0(Θ⊗ IN )((L1)−1 ⊗ T )ε>(t)(L1 ⊗ P0T
−1)

× sgn((L1 ⊗ T−1P0)ε(t))

− 2(Θ⊗ IN )((L1)−1 ⊗ T )ε>(t)(L1 ⊗ P0T
−1)ρ(t).

(28)

It is noted that x>sgn(x) = ||x||1. By using the boundedness of
ρ(t), we can have

∆ ≤2c0(Θ⊗ IN )((L1)−1 ⊗ T )(||(L1 ⊗ P0T
−1)ε(t)||1)

− 2(Θ⊗ IN )((L1)−1 ⊗ T )ε>(t)(L1 ⊗ P0T
−1)ρ(t)

≤2c0(Θ⊗ IN )((L1)−1 ⊗ T )(||(L1 ⊗ P0T
−1)ε(t)||1)

+ 2(Θ⊗ IN )((L1)−1 ⊗ T )

× ||ρ(t)||∞(||(L1 ⊗ P0T
−1)ε(t)||1)

≤2(c0 − ρ̄)(Θ⊗ IN )((L1)−1 ⊗ T )(||(L1 ⊗ P0T
−1)ε(t)||1).

(29)

Let c0 ≥ ρ̄. Then, we have ∆ ≤ 0. By using (23) and the Schur
complement lemma, we have

˙̄V1(ε, t) ≤ −8β−1ε>(t)(Θ⊗ T>2 P−1T2)ε(t). (30)

Part II): Letting h∗ij(t) represents the steady headway between two
neighboring CAVs and Vi(h∗ij(t)) is the optimal velocity function
under uniform traffic flow which satisfy limt→∞ h∗ij(t) = dc
and limt→∞ Vi(h

∗
ij(t)) = v0. Since Vi(hij(t)) = Vi(h

∗
ij(t)) +

8



A PREPRINT - SEPTEMBER 1, 2022

V
′

i (hij(t))(hij(t)− h∗ij(t)), we have

N∑
j=0

aij(Vi(hij(t))− v0(t))

=

 N∑
j=0

aij(Vi(hij(t))− Vi(h∗ij(t)) + Vi(h
∗
ij(t))− v0(t))


=

N∑
j=0

aij(Vi(hij(t))− Vi(h∗ij(t)) +

N∑
j=0

aij(Vi(h
∗
ij(t))− v0(t))

=

N∑
j=0

aij(V
′

i (hij(t))(hij(t)−h∗ij(t))+

N∑
j=0

aij(Vi(h
∗
ij(t))−v0(t))

≤
N∑
j=0

aij(V C2)(hij(t)− dc)−
N∑
j=0

aij(V C2)(h∗ij(t)− dc)

+
N∑
j=0

aij(Vi(h
∗
ij(t))− v0(t))

≤
N∑
j=0

aij(V C2)(
si(t)− sj(t)− (i− j)dc

i− j
)

−
N∑
j=0

aij(V C2)(h∗ij(t)− dc) +

N∑
j=0

aij(Vi(h
∗
ij(t))− v0(t))

(31)

Therefore, with the condition (22), the time derivative of
V̄2(ε, δ, t) along the trajectories of system (20) takes

˙̄V 2(ε, δ, t) =∆1 + ∆2 + ∆3

∆3 =δ>(t)(Θ⊗ (P−1T1T
>
2 + (T1T

>
2 )
>
P−1))δ(t)

− 2cδ>(t)(ΘL1 ⊗ P−1T2K)δ(t)

+ 2δ>(t)(ΘL1 ⊗ P−1T4(V C2)D)δ(t)

− 2δ>(t)(ΘL1 ⊗ P−1T2T
>
3 )δ(t)

+ 2δ>(t)(Θ⊗ P−1T2)ε(t).
(32)

where D = min(1/(i−j)), limt→∞∆1 = 0 and limt→∞∆2 = 0
due to limt→∞ h∗ij(t) = dc and limt→∞ Vi(h

∗
ij(t)) = v0.

Substituting K = T>2 P
−1 into (32) yields

∆3 =δ>(t)(Θ⊗ (P−1T1T
>
2 + (T1T

>
2 )
>
P−1))δ(t)

− 2cδ>(t)(ΘL1 ⊗ P−1T2T
>
2 P

−1)δ(t)

+ 2δ>(t)(ΘL1 ⊗ P−1T4(V C2)D)δ(t)

− 2δ>(t)(ΘL1 ⊗ P−1T2T
>
3 )δ(t)

+ 2δ>(t)(Θ⊗ P−1T2)ε(t).

(33)

Let ε̃(t) = (ε̃>1 (t), . . . , ε̃>N (t))>, where ε̃i(t) = P−1δi(t), i ∈ F .
Then, δ(t) = (IN ⊗ P )ε̃(t). It follows from (33) that

∆3 =ε̃>(t)(Θ⊗ (T1T
>
2 P + P (T1T

>
2 )
>

))ε̃(t)

− 2cε̃>(t)(ΘL1 ⊗ T2T
>
2 )ε̃(t)

+ 2ε̃>(t)(ΘL1 ⊗ T4(V C2)DP )ε̃(t)

− 2ε̃>(t)(ΘL1 ⊗ T2T
>
3 P )ε̃(t)

+ 2δ>(t)(Θ⊗ P−1T2)ε(t).

(34)

Noting that c > ω/λ0, where λ0 = λmin(ΘL1 +L1
>Θ) and Θ =

diag{1/θ1, . . . , 1/θN}. Using (24) and the Schur complement
lemma, we have

∆3 ≤− βε̃>i (t)(IN ⊗ P )ε̃i(t) + 2δ>(t)(Θ⊗ P−1T2)ε(t)

=− βδ>(t)(Θ⊗ P−1)δ(t) + 2δ>(t)(Θ⊗ P−1T2)ε(t).
(35)

Thus, it follows from (25), (30), (31) and (35) that

lim
t→∞

˙̄V (ε, δ, t) ≤
(
ε

δ

)>(
Ω11 Ω12

∗ Ω22

)(
ε

δ

)
∆
= ψ>Ωψ,

(36)
where Ω11 = −8β−1(Θ ⊗ T>2 P−1T2), Ω12 = 2(Θ ⊗ T>2 P−1),
and Ω22 = −β(Θ⊗P−1). It is not difficult to obtain that Ω11 <
0,Ω22 < 0 and Ω11 − Ω12Ω−1

22 Ω>12 = Ω11

2 < 0, and which is
Schur equivalent to Ω < 0. Then, V̄ (εi, δi, t) is bounded since
limt→∞

˙̄V (εi, δi, t) < 0. Accordingly, εi(t), δi(t) are bounded
as t → ∞, and further ε̇i(t), δ̇i(t) and δ̈i(t) are also bounded
for (20), (21) and (25). For ˙̄V (εi, δi, t) in (26) and (32), we can
conclude that ¨̄V (εi, δi, t) is bounded. With Barbalat’s lemma, we
have ˙̄V (εi, δi, t) → 0 as t → ∞. Furthermore, using Squeeze
Theorem, it is resulting that both error dynamics εi(t) and δi(t)
converge synchronously to the origin as t → ∞. Therefore, the
cooperative platooning tracking control problem (6) is solved by
the protocols (8) - (12). The proof is complete.

Remark 11: This section develops a cooperative platooning track-
ing control protocol to ensure the desired safety distance among
the CAVs, which allows each CAV to track its leader by us-
ing local information interaction and a car-following model.
Specifically, the protocols (8) - (12) can be constructed if the
conditions (22) - (24) are solvable for the given positive scalars
ω, c, c0, and β. It is noted that the selections of ω, c, c0, and β do
not influence the qualitative results given in Theorem 1. That is,
ω, c, c0, and β are free positive scalars in (22) - (24). However, a
larger β will lead to a high gain feedback, which does not affect
the asymptotic consensus behaviors of the platoon system, but
could affect the transient behaviors or consensus rate which will
be discussed below.

9
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IV. Cooperative platooning tracking control with
unknown jerk dynamics under intermittent
optimization feedback gains

A general framework for the cooperative platooning tracking con-
trol problem for the CAVs (2) and (3) with the proper distributed
estimation and compensation is presented in Sections III. Based
on the results, we can design a cooperative tracking controller
for the CAVs to ensure safe cruising. However, due to the cost
constraints and the maneuverability demands for the dynamic
response of the vehicle control, we would like to realize the
cooperative platooning tracing control with an optimal control
cost and minimum optimization calculations, which requires
a new optimization design and a novel intermittent sampling
condition of the feedback gain.

Consensually, to ensure that the velocity and acceleration es-
timation are within the given admissible range, the following
constraints are first imposed

v0,min ≤ v0(t) ≤ v0,max,

a0,min ≤ a0(t) ≤ a0,max,

vi,min ≤ vi(t) ≤ vi,max,

a0,min ≤ ζi(t) ≤ a0,max, i ∈ F ,

(37)

where vi,min and vi,max are the known minimum and maximum
speed limits, and ai,min and ai,max are the known minimum
and maximum acceleration. Similarly, all the nonidentical ac-
celeration/deceleration bounds for each CAV are assumed to
be pre-specified and known. Different from the constraints in
Subsection III, vehicle diversity here is considered owing to the
nonidentical driveline performance.

We now would like to consider a sequence
[0, T1), [T1, T2), . . . , [Tk, Tk+1), k ∈ N, where T0 := 0.
For each interval [Tk, Tk+1), there exists another finite partition,
{[Tk,q, Tk,q+1) ⊆ [Tk, Tk+1)|q ∈ {0, . . . , q̄k} ∈ N ∧ Tk,0 :=
Tk ∧ Tk,q̄k+1

= Tk+1}. Consider that the feedback gains of the
interval [Tk, Tk+1), K1,k(t), K2,k(t) are chosen to be piecewise
constants, where there exists an instant q̂k ∈ {0, ..., q̄k} (which
will be designed later to minimize the total number of discrete
time interval optimization) such that for all t ∈ [Tk,q, Tk,q+1),
0 ≤ q < q̂k, K1(t) = K1(Tk,q), K2(t) = K2(Tk,q), and for all
t̂ ∈ [Tk,q̂k , Tk+1), K1(t̂) = K1(Tk,s), K2(t̂) = K2(Tk,s), where
Tk,s be the last sampling at t ∈ [Tk,q, Tk,q̂k). Then, for q < q̂k,

we design the following protocols

ui(Tk,q) =ζi(Tk,q) + û(Tk,q,K1(Tk,q),K2(Tk,q)) (38)
û(Tk,q,K1(Tk,q),K2(Tk,q)) (39)

=cK1(Tk,q)

(
N∑
j=0

aij((sj(Tk,q)−hjs) (40)

− (si(Tk,q)−his))

)

+ cK2(Tk,q)

(
N∑
j=0

aij((vj(Tk,q)−hjv) (41)

− (vi(Tk,q)−hiv))

)
, (42)

ζ̇i(Tk,q) =ζi(t) + cF

 N∑
j=0

aij(ζj(t)− ζi(t))

 (43)

+ c0sgn

F
 N∑

j=0

aij(ζj(t)− ζi(t))

 , (44)

where K1(Tk,q) ∈ R1 and K2(Tk,q) ∈ R1 are the feedback gains.
Similarly, the condition (42) represents the optimal regulation in-
formation from the neighbors, and the condition (44) denotes the
distributed observer dynamics of the leader CAV and formulates
an idea of applying a large compensation input of distributed
estimation of the unknown jerk dynamics.

Remark 12: In this section, an optimization design of the feed-
back gain and an intermittent sampling condition is given in (38)
- (44) to address the cost constraints and the maneuverability
demands for the dynamic response of the vehicle control, aiming
to improve the driving smoothness and comfort. It is noted that the
optimization design and the intermittent sampling condition are
only for the feedback gains K1(Tk,q) and K2(Tk,q), which does
not change the communication among CAVs. Since the leader
CAV exists the unknown jerk dynamics, to ensure safety, we here
do not consider a sampling observer for the leader’s acceleration;
that is, maintaining the observer gain F for all the follower CAVs
to handle the emergency. Therefore, the stability analysis is given
again when the form of observer (44) is the same as that of
observer (12) for the reader to understand.

The aim here is to find a q̂i as small as possible, which can
sufficiently guarantee the stability of CAVs (2) and (3) and main-
tain the minimum energy computation. Therefore, following [57],
[58], we now formulate an intermittent optimization problem in

10
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each time interval [Tk,q, Tk,q+1), shown as follows:

[K1(Tk,q),K2(Tk,q)] :=arg min
[K1,K2]

Ji,Tk,q

=

N∑
i=0

(
‖ξi(t)−hi−ξ0(t)‖2Q + ‖ζi(Tk,q)

+ û(Tk,q,K1(Tk,q),K2(Tk,q))‖2R

)
,

Subject to (2), (3),(6), (7), (37)− (44),
(45)

where ξi(t) and ξ0(t) are the sampling states, and ui,Tk,q is the
control input for the follower CAV i, i ∈ F , at the time Tk,q ,
Q > 0 and R > 0 are the symmetric weighting matrices, and Ji
is the optimization cost.

Then, we introduce the following assumption:

Assumption 2: The optimization (45) can be solved within
[Tk,q, Tk,q+1) for each q ∈ {0, ..., q̂k}. And K1,0, K2,0 are either
computed in the last sub-interval of [Tk−1, Tk), when k ≥ 1, or
offline computed, when k = 0.

Remark 13: Assumption 2 implies that the CAVs can have the
access to the optimal feedback gains over some discontinuous
time intervals owing to the discrete digital sampling signals of
vehicular equipment and V2X infrastructure. Under this assump-
tion, we consider that for all [Tk,q̂k , Tk+1), K1(t) = K1,tq̂k

,
K2(t) = K2,tq̂k

, to reduce the amount of computation. In
addition, the optimization problem (45) is not just about saving
energy, it’s a design approach about how to achieve the stability
of the platoon systems with the shortest amount of computation
under the condition of each step optimization. Different from [57],
[58], we here consider achieving the goal with the minimization
number of optimization methods.

In the following, we will present the sampling condition and ana-
lyze the stability of the CAVs under the intermittent optimization
problem. Then, for t ∈ [Tk,q, Tk,q̂k), using the protocols (38) -
(44), the closed-loop system is given by:

ξ̇i(t) =T1T
>
2 ξi(t) + T2ζi(t)

+ cT2K1(Tk,q)

(
N∑
j=0

aij((sj(t)−hjs)− (si(t)−his))

)

+ cT2K2(Tk,q)

(
N∑
j=0

aij((vj(t)−hjv)− (vi(t)−hiv))

)

+ T3(

N∑
j=0

aij(Vi(hij(t))− vi(t))),

ξ̇0(t) =T1T
>
2 ξ0(t) + T2ζ0(t),

(46)

Define δi(t) = ξi(t) − ξ0(t) − hi as the tracking er-
ror, εi(t) = ζi(t) − ζ0(t) as the estimate error, where
δ(t) = [δ>1 (t), . . . , δ>N (t)]>, ε(t) = [ε>1 (t), . . . , ε>N (t)]>,
h = [h>1 , . . . , h

>
N ]>, hi = [hix, hiv]>, and K(Tk,q) =

[K1(Tk,q)K2(Tk,q)]. Then, for t ∈ [Tk,q, Tk,q̂k), the tracking error

systems can be written as a compact form

δ̇(t) =(IN ⊗ T1T
>
2 − c(L1 ⊗ T2K(Tk,q)))δ(t)

+ (IN ⊗ T2)ε(t) + (IN ⊗ T4)f̄(t)

− (L1 ⊗ T2T
>
3 )δ(t) + (IN ⊗ T1T

>
2 )h− (L1 ⊗ T2T

>
3 )h.

(47)

where f̄(t) = [f>i (t), . . . , f>N (t)]>, fi(t) =∑N
j=0 aij(Vi(hij(t))− v0(t)).

Thus, the estimate error are given by

ε̇(t) =(IN ⊗ IN )ε(t)− c(L1 ⊗ F )ε(t)

− c0(IN ⊗ IN )sgn((L1 ⊗ F )ε(t))− (IN ⊗ IN )(ρ(t)).
(48)

Similarly, for t̂ ∈ [Tk,q̂k , Tk+1), the tracking error is as follows:

δ̇(t̂) =(IN ⊗ T1T
>
2 − c(L1 ⊗ T2K(Tk,s)))δ(t̂)

+ (IN ⊗ T2)ε(t̂) + (IN ⊗ T4)f̄(t̂)

− (L1 ⊗ T2T
>
3 )δ(t̂) + (IN ⊗ T1T

>
2 )h− (L1 ⊗ T2T

>
3 )h.

(49)

Thereby, the estimate error can be given by

ε̇(t̂) =(IN ⊗ IN )ε(t̂)− c(L1 ⊗ F )ε(t̂)

− c0(IN ⊗ IN )sgn((L1 ⊗ F )ε(t̂))− (IN ⊗ IN )(ρ(t̂)).
(50)

Then, we present the following result.

Theorem 2: Under Assumptions 1 and 2, the cooperative pla-
tooning tracking control optimization problem for the CAVs (2)
and (3) is solved by the protocols (38) - (44) with intermit-
tent optimization feedback gains, nonidentical inter-vehicle con-
straints (37), and local information interaction if the following
properties hold:

1) The conditions (7) and (22) hold,
2) The following optimal problem with LMI and the cost

constraints has a feasible solution

min γTk,q (51)
Subject to :(37),
T1T

>
2 WTk,q +WTk,q (T1T

>
2 )>−ωθ0γTk,qT2T

>
2 HTk,q

(52)
+ λ0θ0T4(V C2)DWTk,q

− λ0θ0T2T
>
3 WTk,q + βWTk,q < 0, (53)

T1T
>
2 WTk,q +WTk,q (T1T

>
2 )>−ωθ0γTk,qT2T

>
2 HTk,q

(54)
+ λ0θ0T4(V C2)DWTk,q

− λ0θ0T2T
>
3 WTk,q − λ̄WTk,q<0, (55)

V̄Tk,q < γTk,q , (56)
WTk,q > 0, (57)
HTk,q > 0. (58)

where γTk,q is the cost and V̄Tk,q is the energy function.

11
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3) The sampling time internals satisfy

q̂k
2λmin(P0)

−
(
−8β−1 + 4λ̄−1

)
8β−1λmin (P0)

(Tk+1 − Tk − q̂k) > 0,

(59)
where ω > 0 are β > 0 two scalars.

In this case, the parameters of protocols (38) - (44) will be deter-
mined as follows: KTk,q = T>2 γTk,qW

−1
Tk,q

HTk,q , and F =T−1P0,
T =T>, c0 ≥ ρ̄, c > ω/λ0 and the other parameters are the same
as that of Theorem 1.

Proof: To analyze the stability of the closed-loop systems,
we define the following Lyapunov function

V̄ (ε, δ, t) = V̄1(ε, t) + V̄2(ε, δ, t), t ∈ [Tk, Tk+1), (60)

with V̄1(ε, t) = 8β−1λmax(T>2 P
−1
Tk,q

T2)ε>(t)(Θ ⊗ P0)ε(t),
V̄2(ε, δ, t) = δ>(t)(Θ ⊗ P−1

Tk,q
)δ(t), where PTk,q = γ−1

Tk,q
WTk,q ,

WTk,q is the positive definite matrix. To ensure the mobility of
the CAVs, we consider that the acceleration estimation has a fixed
feedback gain F . This implies that the acceleration estimation
only schedules the estimated state at each time interval Tk,q .
That is, for each t ∈ [Tk, Tk+1), we only need to analyze
V̄2(ε, δ, t). In fact, the matrix WTk,q is the solution of LMI (53)
for t ∈ [Tk,q, Tk,q̂k) and WTk,q = WTk,s which will be held for
t̂ ∈ [Tk,q̂k , Tk+1). The specific proof contains the following two
parts.

Part I): For t ∈ [Tk,q, Tk,q̂k), with the condition (22), the time
derivative of V̄2(ε, δ, t) along the trajectories of system (47) takes

˙̄V 2(ε, δ, t) =∆1 + ∆2 + ∆3

∆3 =δ>(t)(Θ⊗ (P−1
Tk,q

T1T
>
2 + (T1T

>
2 )
>
P−1
Tk,q

))δ(t)

− 2cδ>(t)(ΘL1 ⊗ P−1
Tk,q

T2KTk,q )δ(t)

+ 2δ>(t)(ΘL1 ⊗ P−1
Tk,q

T4(V C2)D)δ(t)

− 2δ>(t)(ΘL1 ⊗ P−1
Tk,q

T2T
>
3 )δ(t)

+ 2δ>(t)(Θ⊗ P−1
Tk,q

T2)ε(t).

(61)

where limt→∞∆1 = 0 and limt→∞∆2 = 0 due to
limt→∞ h∗ij(t) = dc and limt→∞ Vi(h

∗
ij(t)) = v0. Ideally, the

proof of Theorem 2 will be the same as that in Theorem 1 if
we can prove that ∆3 ≤ −βδ>(t)(Θ⊗P−1

Tk,q
)δ(t) + 2δ>(t)(Θ⊗

P−1
Tk,q

T2)ε(t) for t ∈ [Tk,q, Tk,q̂k). For simplify, we only consider
the optimal profile below

∆ =δ>(t)(Θ⊗ (P−1
Tk,q

T1T
>
2 + (T1T

>
2 )
>
P−1
Tk,q

))δ(t)

− 2cδ>(t)(ΘL1 ⊗ P−1
Tk,q

T2KTk,q )δ(t)

+ 2δ>(t)(ΘL1 ⊗ P−1
Tk,q

T4(V C2)D)δ(t)

− 2δ>(t)(ΘL1 ⊗ P−1
Tk,q

T2T
>
3 )δ(t),

(62)

which implies that we only need to prove ∆ < −βδ>(t)(Θ ⊗
P−1
Tk,q

)δ(t). Therefore, following [57], [58], we define the follow-
ing cost constraint

JTk,q ≤ V̄Tk,q ≤ δ>(t)(Θ⊗ P−1
Tk,q

)δ(t). (63)

By defining an upper bound V̄Tk,q ≤ γTk,q , we get

JTk,q ≤ γTk,q . (64)

If the condition (63) holds, the ellipsoid Ω(Θ⊗P−1
Tk,q

, γTk,q ) will
be a convergence domain for each iteration calculation. Define
WTk,q = γTk,qPTk,q , HTk,q = MTk,qPTk,q . Then, substituting
KTk,q = T>2 MTk,q into (61) yields

∆ =δ>(t)(Θ⊗ (P−1
Tk,q

T1T
>
2 + (T1T

>
2 )
>
P−1
Tk,q

))δ(t)

− 2c(δ>(t))(ΘL1 ⊗ P−1
Tk,q

T2T
>
2 MTk,q )δ(t)

+ 2δ>(t)(ΘL1 ⊗ P−1
Tk,q

T4(V C2)D)δ(t)

− 2δ>(t)(ΘL1 ⊗ P−1
Tk,q

T2T
>
3 )δ(t).

(65)

By choosing c > ω/λ0, where λ0 = λmin(ΘL1 + (L>1 )Θ) and
Θ = diag{1/θ1, . . . , 1/θN}, we have

∆ ≤δ>(t)(Θ⊗ (P−1
Tk,q

T1T
>
2 + (T1T

>
2 )
>
P−1
Tk,q

))δ(t)

− ωθ0δ
>(t)(Θ⊗ P−1

Tk,q
T2T

>
2 MTk,q )δ(t)

+ λ0θ0δ
>(t)(Θ⊗ P−1

Tk,q
T4(V C2)D)δ(t)

− λ0θ0δ
>(t)(Θ⊗ P−1

Tk,q
T2T

>
3 )δ(t).

(66)

Let ε̃(t) = (ε̃>1 (t), . . . , ε̃>N (t))>, where ε̃i(t) = γ−1
Tk,q

P−1
Tk,q

δi(t),
i ∈ F . Then, δ(t) = (IN ⊗ γTk,qPTk,q )ε̃(t). It thus follows
from (66) that

∆ ≤ε̃>(t)(Θ⊗ (γTk,qT1T
>
2 PTk,qγTk,q

+ γTk,qPTk,q (T1T
>
2 )>γTk,q ))ε̃(t)

− ωθ0ε̃
>(t)(Θ⊗ γTk,qT2T

>
2 MTk,qPTk,qγTk,q )ε̃(t)

+ λ0θ0ε̃
>(t)(Θ⊗ γTk,qT4(V C2)DPTk,qγTk,q )ε̃(t)

− λ0θ0ε̃
>(t)(Θ⊗ γTk,qT2T

>
3 PTk,qγTk,q )ε̃(t).

(67)

Let WTk,q = γTk,qPTk,q . Then, we have

∆ ≤ε̃>(t)(Θ⊗ (γTk,qT1T
>
2 WTk,q + γTk,qWTk,q (T1T

>
2 )
>

))ε̃(t)

− ωθ0(ε̃>(t))(Θ⊗ γTk,qT2T
>
2 MTk,qWTk,q )ε̃(t)

+ λ0θ0ε̃
>(t)(Θ⊗ γTk,qT4(V C2)DWTk,q )ε̃(t)

− λ0θ0ε̃
>(t)(Θ⊗ γTk,qT2T

>
3 WTk,q )ε̃(t).

(68)

Together with HTk,q = MTk,qPTk,q , we can obtain

∆ ≤(ε̃>(t))(Θ⊗ (γTk,qT1T
>
2 WTk,q+γTk,qWTk,q (T1T

>
2 )>))ε̃(t)

− ωθ0(ε̃>(t))(Θ⊗ γTk,qT2T
>
2 HTk,qγTk,q )ε̃(t)

+ λ0θ0ε̃
>(t)(Θ⊗ γTk,qT4(V C2)DWTk,q )ε̃(t)

− λ0θ0ε̃
>(t)(Θ⊗ γTk,qT2T

>
3 WTk,q )ε̃(t).

(69)

Using (53) and the Schur complement lemma, we have

∆ ≤ −γTk,qβ(ε̃(t))>(Θ⊗WTk,q )ε̃(t). (70)

That is
∆ ≤ −β(δ>(t))(Θ⊗ P−1

Tk,q
)δ(t). (71)

12
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which is follows from (30), (31), (60) and (71) that

˙̄V (ε, δ, t) ≤
(
ε

δ

)>(
Ω̃11 Ω̃12

∗ Ω̃22

)(
ε

δ

)
+ ∆1 + ∆2

∆
=ψ>Ω̃ψ + ∆1 + ∆2,

(72)

where Ω̃11 = −8β−1(Θ⊗ T>2 P−1
Tk,q

T2), Ω̃12 = 2(Θ⊗ T>2 P−1
Tk,q

),
and Ω̃22 = −β(Θ⊗P−1

Tk,q
). Using Lemma 4, it is not difficult to

obtain that Ω̃11 < 0, Ω̃22 < 0 and

Ω̃11 − Ω̃12Ω̃−1
22 Ω̃>12 =

Ω̃11

2
= −4β−1(Θ⊗ T>2 P−1

Tk,q
T2)

< 0,

(73)

which is Schur equivalent to Ω̃ =
[

Ω̃11 Ω̃12

∗ Ω̃22

]
< 0.

Part II): For the t̂ ∈ [Tk,q̂k , Tk+1), based on the dynamics (49)
and (50), using a similar calculation, LMI (55) condition and the
Schur complement lemma, we have

∆ ≤ λ̄(δ>(t̂))(Θ⊗ P−1
Tk,s

)δ(t̂), (74)

which draws from (30), (32), (60) and (74) that

˙̄V (ε, δ, t̂) ≤
(
ε

δ

)>(
Ω11 Ω12

∗ Ω22

)(
ε

δ

)
+ ∆1 + ∆2

∆
=ψ>Ωψ + ∆1 + ∆2,

(75)

where Ω11 = −8β−1(Θ⊗ T>2 P−1
Tk,s

T2), Ω12 = 2(Θ⊗ T>2 P−1
Tk,s

),
and Ω22 = λ̄(Θ ⊗ P−1

Tk,s
). Using Lemma 4, it is not difficult to

obtain that Ω11 < 0, Ω22 < 0 and

Ω11−Ω12Ω−1
22 Ω>12 =

Ω11

2
= (−8β−1 + 4λ̄−1)(Θ⊗ T>2 P−1

Tk,s
T2).

(76)

According to (31), (59), (73), and (76), we can get

V̄ (ε, δ, Tk+1) <e
− q̂k

2λmax(P0)
+( −8β−1+4λ̄−1

8β−1λmin(P0)
)(Tk+1−Tk−q̂k)+∆̂

× V̄1(Tk),
(77)

where ∆̂ is a small difference due to the bounded dynamics ∆1

and ∆2 and satisfies limt→∞ ∆̂ = 0.

Therefore, it follows the condition (77) that

V̄ (ε, δ, Tk+1) < e−ϑV̄1(Tk), (78)

where ϑ > 0 is a sufficiently small positive scalar. Since the time
intervals [Tk, Tk+1) are uniformly bounded, V̄ (ε, δ, t) is bounded.
Similar to the proof in Theorem 1, we have that ˙̄V (εi, δi, t) and
¨̄V (εi, δi, t) are also bounded. With Barbalat’s lemma, we have
˙̄V (εi, δi, t)→ 0 as t→∞. Furthermore, using Squeeze Theorem,

it is resulting that both error dynamics εi(t) and δi(t) converge
synchronously to the origin as t → ∞. Thus, it concludes that
we can prove the reasonable conditions (63) and (64). The rest

of the proof is the same as that in Theorem 1. This completes the
proof.

Remark 14: Similar to Theorem 1, the selections of ω, c, c0, β,
and ϑ do not influence the qualitative results given in Theorem 2,
which implies that ω, c, c0, β, and ϑ are free positive scalars in
the solutions of (53) - (55). Differently, a larger β, in this case,
will not only affect the transient behaviors but also the sampling
time internals so it must be a trade-off between the sampling cost
and consensus rate.

Remark 15: Generally, the stability analysis of the platoon vehi-
cles in the ACC and CACC strategies is also called single-vehicle
stability (or platoon stability/plant stability) and stability over
vehicles (or string stability), respectively [59]. Although local
stability analysis of car-following models has been conducted
since 1959 [60], due to its relative simplicity compared with
string stability analysis, it did not attract as much attention as
that of string stability analysis in the literature. Notably, unlike
local stability, to be string stable requires that the perturbation
strictly attenuates for each leader-follower pair as it propagates
away from the first leader [36]. Specifically, an important feature
is that a car-following model is able to easily recover from small
disturbances in real traffic and return to a steady car-following
model state over time. Thus, different from the existing works
[15], [17], [28], [35] that mainly focus on the constant cruising
speed for the leader CAV, for the first time, this paper develops an
integrated model consisting of consensus-based information and
car-following model under the unknown jerk profile, in which
the consensus protocol can provide a free design for the commu-
nication information exchanged and the optimal velocity model
can provide the perception information via V2X communication.
Specifically, compared with the works [34], [40], [41], we can
provide the distributed control and real-time optimal design for
the feedback gains to improve the applicability and extensibility
of the system in complex traffic environments.

Remark 16: In this paper, we aim to obtain the cooperative
platooning tracking control by developing the distributed control
ui(t) with the proper feedback gains and local information
interaction, where the communication topology among the CAVs
is free-design but has a directed spanning tree. Compared with
the work [40], the cooperative platooning tracking control in our
paper does not need the extra global variables, which is easier
to implement for the real traffic environment because there are
no special constraints on the upper bounds of the unknown jerk
dynamics. In fact, the jerk dynamics of the leader CAV in the
actual traffic control will be affected by the unknown traffic
network conditions, e.g., stop-and-go, or sudden acceleration
caused by unpredicted traffic congestion so it has to observe the
dynamics of the leader CAV in real-time. Therefore, our paper
develops a distributed and real-time optimal framework to address
the cooperative platooning tracking control problem under a more
general and practical traffic control scenario.
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V. Simulations

The effectiveness of the proposed cooperative platooning tracking
algorithms is illustrated in this section through two study cases.
The CAVs are defined by the dynamics (2) and (3). We consider
a single lane in the simulations.

Example 1: We consider a CAV system consisting of seven
CAVs under the directed communication topology with the fol-
lowing Laplacian matrix

L =


0 0 0 0 0 0 0
−1 1 0 0 0 0 0
0 −1 1 0 0 0 0
0 0 −1 1 0 0 0
0 0 0 −1 1 0 0
0 0 0 0 −1 1 0
0 0 −1 0 0 −1 2

 .
In this simulation, the cooperative platooning tracking protocols
(8) - (12) are constructed according to Theorem 1. It is noted
that the parameters of the protocols (8) - (12) rely on the
solutions to (23) and (24). By choosing ω = 1, we have c >
ω/λ0 = 9.1575. Then, take c = 9.2 > 9.1575. Letting V C1 =
6.75m/s, V C2 = 7.91m/s, V C3 = 0.13m−1, V C4 = 1.59
(see [30]). Define the formation information as h0 = [0, 0], h1 =
[−30, 0], h2 = [−60, 0], h3 = [−90, 0], h4 = [−120, 0], h5 =
[−150, 0], h6 = [−180, 0]. Then, we have dc = 30m. We
consider the identical constraints of acceleration and velocity as
amin = −5m/s2, amax = 3m/s3, vmin = 7m/s, vmax = 20m/s.
Specifically, motivated by [61], we here consider the following
Sine jerk model-like unknown signals for the leader CAV

ρ(t) =


−0.01, 0 ≤t ≤ 10,

2.5× sin(0.2× t), 10 <t ≤ 20,

2.5× cos(0.2× t), 20 <t ≤ 30,

0.01, 30 < t.

Clearly, ρ̂ = 2.5.

Remark 17: The jerk dynamics have been developed in the iden-
tification of driver intention [62], the identification of aggressive
drivers [63], the detection of jerks in safety-critical events [64],
the analysis in rail vehicle dynamics [65], and the optimal eco-
driving for autonomous vehicles [41]. However, the jerk dynamics
in the above works are assumed to be constant or different
types of phases. Recently, an optimal jerk profile of bang-off-
bang type for automated robots and machines was introduced
in [66], where the specified jerk dynamics are a piecewise func-
tion with polynomial models. For traffic control, the piecewise
performance of jerk dynamics has been studied in the trajectory
planning and tracking for pedestrian-aware autonomous driving in
urban environments [67], and the velocity planner for the online
management of autonomous vehicles [68], where jerk dynamic
is the trapezoidal trajectory as the polynomial models featuring
an impulsive jerk profile. Notably, the trapezoidal trajectory will
cause excessive stress on the actuators and mechanical structure
engendered by step changes in acceleration as shown in [67],
[68]. To this end, the rectangular-shaped jerk is adopted to
weaken excessive stress from the trapezoidal trajectory. However,
the trajectory has a shortcoming of jumps in jerk, and nonzero
instantaneous jerks at the target points will lead to unexpected
residual vibrations with accompanying extra settling time, which

deteriorates the positioning accuracy [66]. To further enhance
the smoothness of the trajectory, the continuity of snap, or even
higher-order derivatives, should be taken into account. However,
the number of trajectory segments will increase exponentially
along with the model order and hence can lead to a complicated
algorithm for modeling the jerk dynamics with no available ana-
lytical solutions, which shows a remarkable negative effect on the
computational efficiency and poses a challenge for the controller.
Since the formulation of the trajectory profile and the scheduling
procedure will become rather cumbersome as the polynomial
model becomes smoother, in the exploration of new S-curve
approaches, some investigations have attempted to devise motion
profiles applying a trigonometric model to ensure the continuity of
the jerk [66]. In fact, as pointed out in [36], all vehicles should
decelerate smoothly and the time derivative of the acceleration
function, i.e., the jerk, is finite at all times, which implies that
the acceleration function is continuously differentiable in many
cases. Motivated by [61], unlike the above piecewise function for
a polynomial model, we here consider a piecewise function for
applying a trigonometric model to ensure the continuity of the
jerk and formulate the driving condition in urban environments

In the simulation, by letting c0 ≥ ρ̂, we can analyze
the cooperative platooning tracking behaviors for the CAVs
in the absence and presence of effects of a car-following
model, respectively, such as y = {0, 0.3, 0.5}s−1. Tak-
ing the platooning tracking speed as β = 0.1, according
to Theorem 1, we can obtain F = 2.4142 and K =
{[2.3432, 5.6905], [3.2193, 7.5110], [5.9320, 12.9989]}. To show
the platoon performance, first, we analyze the cooperative pla-
tooning tracking control for the closed-loop system (3) with
the leader (2) under the protocols (8) - (12) without the car-
following model, i.e., setting the parameter y = 0. Define the av-

erage observer error as Error0(t) = 1
6

√∑6
i=1 ‖ζi(t)− a0(t)‖2

and the distributed observer tracking errors as Error0i(t) =√
‖ζi(t)− a0(t)‖2, i = 1, . . . , 6. The average and distributed

observer errors for seven CAVs are shown in Fig. 1, where all
the observer errors will converge to zero, which implies that
the estimation of all the follower CAVs for the unknown jerk
dynamics of the leader CAV has been achieved. Then, the velocity
and displacement trajectories of the closed-loop system (3) with
the leader CAV (2) under the protocols (8) - (12) are shown in
Figs. 2. (a) - (b), respectively. Define the average tracking error

as Error(t) = 1
6

√∑6
i=1 ‖si(t)− s0(t)‖2 and the distributed

tracking errors as Errori(t) =
√
‖si(t)− s0(t)‖2, i = 1, . . . , 6.

Thereby, the average and distributed tracking distances for seven
CAVs are shown in Fig. 2 (c), which implies that the cooperative
platooning tracking queue is indeed achieved among the CAVs.
Now, we show the cooperative platooning tracking control under
the different car-following model profiles. Notably, the distributed
observer protocol is not affected by the car-follower model.
Therefore, by setting the parameters y = {0.3, 0.5}, the velocity
and displacement trajectories of the closed-loop system (3) with
the leader CAV (2) under the protocols (8) - (12) are shown in
Figs. 3. (a) - (b) and Figs. 4. (a) - (b), respectively. Specifically,
the tracking distances of seven CAVs are shown in Fig. 3. (c)
and Fig. 4. (c), which imply that the cooperative platooning
tracking queues are indeed achieved. From the velocity and

14
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displacement trajectories, we can see that the cooperative platoon
behaviors among the CAVs are achieved earlier when each CAV
has a car-following model, which is also reflected in the tracking
distances of the CAVs because the driver has better driving
sensitivity. In addition, we introduce three evaluation indicators,
i.e., mean, variance, and standard deviation(SD), to show the
platoon performance for the average vehicle tracking error under
the different car-following models, where y = 0, y = 0.3 and
y = 0.5 are respectively the Model 1, Model 2 and Model 3,
as shown in the Table 1). It is shown that the mean of the
average tracking error of all CAVs fluctuates very little, i.e., about
0.9% increase, but the variance and SD of the average tracking
error decrease significantly as y increases, i.e., about 6% and
3% decreases, as shown in Fig. (5) and Table 1. This implies
that the platoon performance of the proposed new car-following
model compared with the existing formation tracking [40] or the
platoon control [17], [25], [26], [28], [32]–[35] (only consider the
cooperative information, not cooperative perception, as Model 1
shown in Table 1) has better traffic performance, i.e., the smaller
variance and SD of average vehicle tracking error, the higher
vehicle efficiency and driving safety;

Fig. 1. Swarm distributed observers for the unknown jerk dynamics of the leader CAV
under the protocols (12) without the car-following model.

TABLE I
THE AVERAGE TRACKING ERROR OF ALL CAVS(M)

Mean Variance SD % % %

Model 1 45.2614 33.2111 5.7629 (+)0.0% (+)0.0% (+)0.0%
Model 2 45.5826 32.7908 5.7263 (+)0.7% (-)1.3% (-)0.6%
Model 3 45.6905 31.2016 5.5858 (+)0.9% (-)6.0% (-)3.0%

Example 2: In this example, we consider the cooperative pla-
tooning tracking control for seven CAVs with optimal feedback
gains. Specifically, motivated by [69], we here consider the
following Harmonic jerk model-like unknown signals for the

leader CAV

ρ(t) =


−0.01, 0 ≤t ≤ 20,

1.4× (1− cos(0.2× t)), 20 <t ≤ 30,

1.4× (1− sin(0.2× t)), 30 <t ≤ 40,

0.01, 30 < t.

Clearly, ρ̂ = 2.8. The other system dynamics and the communi-
cation topology are the same as that in Example 1. Different from
the Example 1 that employs the fixed feedback gain K, the feed-
back gain K(t) will be calculated online from zero to an optimal
value. The constraints of acceleration and velocity for the i-th
vehicle are considered as a0,min = −5m/s2, a0,max = 3m/s2,
ai,min = (7 + 0.1 × i)m/s2, ai,max = (20 + 0.1 × i)m/s2, i =
0, . . . , 6, respectively. The other parameters are the same as that
in Example 1. With β = 0.2, λ̄ = 0.1, and λmin (P0) = 2.4142,
it is assumed that the sample and optimal time are activated
when t ∈ [Tk, Tk+0.2)s and the fixed feedback gain is to be
taken in t ∈ [Tk+0.2, Tk+1)s. Then, the cooperative platooning
tracking for the CAV (3) with the leader CAV (2) under protocols
(38) - (44) will be achieved. Similarly, by setting the parameter
y = 0, the average and distributed observers errors for seven
CAVs are shown in Fig. 6, where all the observer errors will
converge to zero, which implies that the estimation of all the
follower CAVs for the unknown jerk dynamics of the leader
CAV has been achieved. Then, the velocity and displacement
trajectories of the closed-loop system (3) with the leader CAV (2)
under protocols (38) - (44) are shown in Figs. 7. (a) and (b),
respectively. Besides, the tracking distances of seven CAVs are
shown in Fig. 7. (c), which shows that the cooperative platooning
tracking queue is indeed held under the optimized feedback gains.
Then, we present the cooperative platooning tracking control
under the car-following model profiles. By setting the different
reaction parameters y = {0.3, 0.5}, the velocity and displacement
trajectories of the closed-loop system (3) with the leader CAV (2)
under the protocols (38) - (44) are shown in Figs. 8. (a) - (b)
and Figs. 9. (a) - (b), respectively. Accordingly, the tracking
distances of seven CAVs are shown in Fig. 8. (c) and Fig. 9. (c),
which show that the cooperative platooning tracking queues are
indeed achieved. In addition, from the velocity and displacement
trajectories, we can also see that the cooperative platoon behaviors
among the CAVs are achieved earlier when each CAV has a car-
following model and optimal feedback gains, which is particularly
shown in the tracking distances of the CAVs. It is also shown
that the cooperative platooning tracing control with optimized
feedback gains can provide better platoon performance compared
with the developed distributed control framework as shown in
Example 1. Similarly, we also consider three evaluation indicators
to show the platoon performance for the average vehicle tracking
error. Clearly, the mean of the average tracking error of all CAVs
changes very little, about 1.8%, but the variance and SD of the
average tracking error also decrease significantly as y increases,
about 22.2% and 11.8%, as shown in Fig. (5) and Table 2. This
implies that under the identical condition (the optimization design
and intermittent sampling condition of the feedback gain) the
platoon performance of the proposed new car-following model
compared with the existing formation tracking [40] or the platoon
control [17], [25], [26], [28], [32]–[35], still has better traffic per-
formance. Specifically, compared with the developed distributed
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(a) The velocity of seven CAVs; (b) The displacement of seven CAVs; (c) The tracking distance of the CAVs.

Fig. 2. Swarm cooperative platooning tracking under the protocols (8) - (12) without the car-following model.

(a) The velocity of seven CAVs; (b) The displacement of seven CAVs; (c) The tracking distance of the CAVs.

Fig. 3. Swarm cooperative platooning tracking with the car-following model (y = 0.3) under the protocols (8) - (12).

(a) The velocity of seven CAVs; (b) The displacement of seven CAVs; (c) The tracking distance of the CAVs.

Fig. 4. Swarm cooperative tracking with the car-following model (y = 0.5) under the control protocols (8)- (12).

control framework with a fixed feedback gain design as shown
in Example 1, the optimization design and intermittent sampling
condition of the feedback gain may provide more benefits, i.e.,
better traffic throughput and driving safety.

TABLE II
THE AVERAGE TRACKING ERROR OF ALL CAVS(M)

Mean Variance SD % % %

Model 1 45.2478 33.8229 5.8157 (+)0.0% (+)0.0% (+)0.0%
Model 2 45.8371 28.9330 5.3789 (+)1.3% (-)14.5% (-)7.5%
Model 3 46.0562 26.3071 5.1290 (+)1.8% (-)22.2% (-)11.8%

VI. Conclusions

So far, we have investigated the problem of cooperative platoon-
ing tracking control and optimization for the CAVs in a distributed
framework with a leader CAV having unknown jerk dynamics and
a nonlinear car-following model to provide the optimal velocity
for each tracking CAV. The main contribution is to achieve the
cooperative platooning tracking by designing a distributed control
that consists of both the estimated dynamics and cooperative
dynamics. Within this framework, the cooperative platooning
tracking control problem can be regarded as the distributed
estimation and compensation problem of the follower CAVs with
optimal velocities for the leader CAV to reach the specified
platoon queue. By introducing the distributed observer approach,
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Fig. 5. Platoon performances under different car-following models.

Fig. 6. Swarm distributed observers for the unknown jerk dynamics of the leader CAV
under the protocols (44) without the car-following model.

our theory and experimental results indicate that follower CAVs
are able to track their leader with a safe inter-vehicle separation.
Furthermore, the feedback control gain is optimized by using
a robust control scheme. It is noted that, for some complex
traffic scenarios, e.g., lane changes, the information exchange
pattern may be time-varying owing to the communication distance
or safety constraints both at run-time and design time. In this
case, the dynamic topology of the exchanged weights should
be considered at design time, which will affect the estimation
and perception of all the follower CAVs for the unknown jerk
dynamics of the leader CAVs. Specifically, the switching condi-
tions for the time-varying communication topologies need to be
investigated, which will be our future works.

In addition, although the constant distance headway can lead
to the high traffic capacity, effectiveness and adaptability are
still equally important. However, as [6] pointed out that main-
taining a small gap among the vehicles may require aggressive
throttling and braking, and may lead to suboptimal operation of
the powertrain when the velocity profile is variable. Therefore,

how to design the proper constant time headway to enhance a
high safety level at high speed and ensure traffic flow stability
while improving the efficient movement of platoon CAVs with
heterogeneous vehicle parameters will be developed in the future
in virtue of the works [34], [40].
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