Optimal False Data Injection Attack against Automatic Generation Control in Power Grids

Rui Tan¹ Hoang Hai Nguyen² Eddy. Y. S. Foo³ Xinshu Dong⁴ David K. Y. Yau^{1,5} Zbigniew Kalbarczyk² Ravishankar K. Iyer² Hoay Beng Gooi³

¹ School of Computer Science & Engineering, Nanyang Technological University
² Coordinated Science Lab, University of Illinois at Urbana-Champaign
³ School of Electrical & Electronic Engineering, Nanyang Technological University
⁴ Advanced Digital Sciences Center, Illinois at Singapore
⁵ Singapore University of Technology and Design

Attacks against Power Grids

- 59% attacks on critical infrastructures target grids [DHS'13]
 - Night Dragon: grid operation data exfiltration [McAfee'11]
 - Dragonfly: Trojan horses in grid control systems [Symantec'14]

Frequency Control

• Maintain freq. at 50 or 60 Hz when loads change

- Widespread and costly impact of failure
 - System frequency is global
 - –0.5 Hz: load shedding (regional blackout)
 - ±2.0 Hz: permanent equipment damage

Automatic Generation Control (AGC)

- More than frequency control
 - Regulates power exchanges btw control areas
 - Input: freq. deviation, area power export deviations
 - Output: Area Control Error (ACE)

A 37-bus grid

- Networked control system
 - Distributed, networked sensors
 - Control center
 - Generators

- Networked control system
 - Distributed, networked sensors
 - Logically isolated links (e.g., VPN) in existing networks
 - Control center
 - Generators

- Networked control system
 - Distributed, networked sensors
 - Logically isolated links (e.g., VPN) in existing networks
 - Control center
 - Well protected
 - Generators

• Networked control system

vs. 81 sensors

- Distributed, networked sensors
 - Logically isolated links (e.g., VPN) in existing networks
- Control center
 - Well protected
- Generators
 - Limited #, physically isolated links

Networked control system

vs. 81 sensors

- Distributed, networked sensors
 - Logically isolated links (e.g., VPN) in existing networks
- Control center
 - Well protected
- Generators
 - Limited #, physically isolated links

Outline

- Motivation & Background
- Attack Model
- Optimal Attack
- Simulations & Testbed Experiments

False Data Injection (FDI)

Corrupt measurements

- Can read z and corrupt a subset of z elements
- Stealthy to fault/attack detectors
 - Bypass bad data detection [Liu CCS'09]

Research Question

- Optimal attack via worst-case analysis
 - A sequence of FDIs to deviate frequency to unsafe level in shortest time

Protection assessment given attack response delay

- How to compute?
- Achievable in practice?
- Existing work on AGC security
 - Simulations based on predefined attack templates scaling, ramps, surges, random noises, time delays [Bose 2004 2005] [Sridhar 2010 2014]
 - Reachability analysis [Esfahani 2010]

Outline

- Motivation & Background
- Attack Model
- Optimal Attack
 - How to compute?
 - Achievable?
- Simulations & Testbed Experiments

Attack Impact Model

- T: constant integer matrix
 - From grid topology
 - Can be obtained by attacker (social engineering)

• Φ, Λ

- Transfer functions of turbines, generators, transmission lines, etc
- Closed-forms unknown

Optimal Attack

• Time-to-emergency (TTE): remaining time before $\Delta \omega \notin (\Delta \omega_{\min}, \Delta \omega_{\max})$

 $-\Delta\omega_{\rm min}$ = -0.5 Hz: load shedding (regional blackout)

- Compute a series of *a* to minimize TTE subject to
 - Write access
 - Stealthiness

 $\Delta \omega = \Phi \cdot \Delta \mathbf{p} + \Phi \Lambda \mathbf{T} \cdot \mathbf{a}$ complex differential eqns

Exhaustive search with prohibitive complexity

Regression

Laplace domain: $\Delta \omega = \mathbf{\Phi} \cdot \Delta \mathbf{p} + \mathbf{\Phi} \mathbf{\Lambda} \mathbf{T} \cdot \mathbf{a}$

Regression

Laplace domain: $\Delta \omega = \mathbf{\Phi} \cdot \Delta \mathbf{p} + \mathbf{\Phi} \mathbf{\Lambda} \mathbf{T} \cdot \mathbf{a}$

Coefficients u and v

- Trained using data generated by Laplace-domain model

Regression

Laplace domain: $\Delta \omega = \mathbf{\Phi} \cdot \Delta \mathbf{p} + \mathbf{\Phi} \mathbf{\Lambda} \mathbf{T} \cdot \mathbf{a}$

Coefficients u and v

- Trained using data generated by Laplace-domain model

Optimal Attack Algorithm

• Increasing *h* from 1, minimize and maximize $\Delta \omega_{k+h}$ until

$$\Delta \boldsymbol{\omega}_{_{k+h}} \not\in (\Delta \boldsymbol{\omega}_{_{\min}} \ , \Delta \boldsymbol{\omega}_{_{\max}} \)$$

- Optimal, modulo approx err of regression
- Linear programming

Outline

- Motivation & Background
- Attack Model
- Optimal Attack

- How to compute?

– Achievable?

How to learn attack impact model? What prior information needed?

• Simulations & Testbed Experiments

A Baseline Approach

$$\Delta \boldsymbol{\omega}_{k+1} = \sum_{i=0}^{H-1} \mathbf{u}_i \cdot \Delta \mathbf{p}_{k-i} + \mathbf{v}_i \cdot \mathbf{a}_{k-i}$$

- Inject small attack vectors to collect training data to learn the coefficients
- Less stealthy

Passive Monitoring

 $\Delta \omega = \mathbf{\Phi} \cdot \Delta \mathbf{p} + \mathbf{\Phi} \mathbf{\Lambda} \mathbf{T} \cdot \mathbf{a}$

• Learn **Φ**, **Λ** from eavesdropped measurements

Passive Monitoring $\Delta \omega = \Phi \cdot \Delta \mathbf{p} + \Phi \Delta \mathbf{T} \cdot \mathbf{a}$

• Learn Φ , Λ from eavesdropped measurements

 $- \mathbf{\Phi}$: from $\Delta \omega$ and $\Delta \mathbf{p}$

$$\Delta \omega = \mathbf{\Phi} \cdot \Delta \mathbf{p}$$

Passive Monitoring $\Delta \omega = \mathbf{\Phi} \cdot \Delta \mathbf{p} + \mathbf{\Phi} \mathbf{A} \mathbf{T} \cdot \mathbf{a}$

- Learn Φ , Λ from eavesdropped measurements
 - $\mathbf{\Phi}$: from $\Delta \omega$ and $\Delta \mathbf{p}$

 $\Delta \boldsymbol{\omega} = \boldsymbol{\Phi} \cdot \Delta \mathbf{p}$

Passive Monitoring $\Delta \omega = \mathbf{\Phi} \cdot \Delta \mathbf{p} + \mathbf{\Phi} \mathbf{\Lambda} \mathbf{T} \cdot \mathbf{a}$

- Learn Φ , Λ from eavesdropped measurements
 - $\mathbf{\Phi}$: from $\Delta \omega$ and $\Delta \mathbf{p}$

 $\Delta \omega = \mathbf{\Phi} \cdot \Delta \mathbf{p}$

Passive Monitoring $\Delta \omega = \mathbf{\Phi} \cdot \Delta \mathbf{p} + \mathbf{\Phi} \mathbf{A} \mathbf{T} \cdot \mathbf{a}$

- Learn Φ , Λ from eavesdropped measurements
 - $\mathbf{\Phi}$: from $\Delta \omega$ and $\Delta \mathbf{p}$

 $\Delta \omega = \mathbf{\Phi} \cdot \Delta \mathbf{p}$

Passive Monitoring $\Delta \omega = \Phi \cdot \Delta \mathbf{p} + \Phi \Delta \mathbf{T} \cdot \mathbf{a}$

- Learn Φ , Λ from eavesdropped measurements
 - $\mathbf{\Phi}$: from $\Delta \omega$ and $\Delta \mathbf{p}$

 $\Delta \omega = \mathbf{\Phi} \cdot \Delta \mathbf{p}$

Passive Monitoring $\Delta \omega = \Phi \cdot \Delta \mathbf{p} + \Phi \Delta \mathbf{T} \cdot \mathbf{a}$

- Learn Φ , Λ from eavesdropped measurements
 - $\mathbf{\Phi}$: from $\Delta \omega$ and $\Delta \mathbf{p}$

 $\Delta \boldsymbol{\omega} = \boldsymbol{\Phi} \cdot \Delta \mathbf{p}$

- Λ : from $\Delta \omega$, **z** in normal state and 4 system constants:
 - ACE weight parameters α and β : public
 - Load damping constant and total inertia of generators

Passive Monitoring $\Delta \omega = \mathbf{\Phi} \cdot \Delta \mathbf{p} + \mathbf{\Phi} \mathbf{\Lambda} \mathbf{T} \cdot \mathbf{a}$

- Learn Φ , Λ from eavesdropped measurements
 - $\mathbf{\Phi}$: from $\Delta \omega$ and $\Delta \mathbf{p}$

 $\Delta \boldsymbol{\omega} = \boldsymbol{\Phi} \cdot \Delta \mathbf{p}$

– **A**: from $\Delta \omega$, **z** in normal state and 4 system constants:

- ACE weight parameters α and β : public
- Load damping constant and total inertia of generators

Outline

- Motivation and Background
- Attack Model
- Optimal Attack
- Simulations & Testbed Experiments

Microgrid Testbed

Accuracy of Learned Attack Model

From learned model, 30 seconds to achieve 0.5 Hz deviation

Conclusion

• FDI attack again AGC

- Attack impact model
- Learned using data in normal state
- Minimize time-to-emergency

Evaluation

- PowerWorld simulations
- Experiments on a real power system

Ongoing work

Attack detection, identification (which measurements compromised?), mitigation