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Attacks against Power Grids 

• 59% attacks on critical infrastructures target grids [DHS’13] 
– Night Dragon: grid operation data exfiltration [McAfee’11] 

– Dragonfly: Trojan horses in grid control systems [Symantec’14] 



[Kundur 94] 

Frequency Control 

• Maintain freq. at 50 or 60 Hz when loads change 

 

 

 

 

 

 

• Widespread and costly impact of failure 
 System frequency is global 

 −0.5 Hz: load shedding (regional blackout) 

 ±2.0 Hz: permanent equipment damage 
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Automatic Generation Control (AGC) 
• More than frequency control 

– Regulates power exchanges btw control areas 

– Input: freq. deviation, area power export deviations 

– Output: Area Control Error (ACE) 

 

 

 

 

• Further dispatched 
to generators 

– Cycle: 2 to 4 secs 

A 37-bus grid 

Area 2 

Area 1 

Area 3 

50 MW 

20 MW 

35 MW 
Frequency 
deviation 

Power export 
deviation 

ACE = α • Δω + β • ΔpE 
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False Data Injection (FDI) 

• Corrupt measurements 

 

 

– Can read z and corrupt a subset of z elements 

– Stealthy to fault/attack detectors 

• Bypass bad data detection [Liu CCS’09] 

 

 

• Bypass data quality checks 

azz '
Attack vector 

Hca  Arbitrary vector 

maxmax
aaa 

Measurement vector 

Measurement matrix 



Research Question 
• Optimal attack via worst-case analysis 

– A sequence of FDIs to deviate frequency to unsafe 
level in shortest time 
Protection assessment given attack response delay 

– How to compute? 

– Achievable in practice? 

 

• Existing work on AGC security 
– Simulations based on predefined attack templates 

scaling, ramps, surges, random noises, time delays 
[Bose 2004 2005] [Sridhar 2010 2014] 

– Reachability analysis [Esfahani 2010] 
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Attack Impact Model 

• T: constant integer matrix 

– From grid topology 

– Can be obtained by attacker (social engineering) 

• Φ, Λ 

– Transfer functions of turbines, generators, 
transmission lines, etc 

– Closed-forms unknown 

aΦΛTpΦ  In Laplace domain: 

Freq. deviation 
Vector of load 

changes of areas 
Attack vector 



Optimal Attack 

• Time-to-emergency (TTE): remaining time before 

 

– Δωmin = −0.5 Hz: load shedding (regional blackout) 

 

• Compute a series of a to minimize TTE subject to 

– Write access 

– Stealthiness 

 

•                                      complex differential eqns 

– Exhaustive search with prohibitive complexity 

aΦΛTpΦ  

),(
maxmin

 



Regression 
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Regression 

• Coefficients u and v 

– Trained using data generated by Laplace-domain model 
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Optimal Attack Algorithm 

• Increasing h from 1, minimize and maximize Δωk+h until  
 
– Optimal, modulo approx err of regression 
– Linear programming 
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– How to compute? 
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A Baseline Approach 

• Inject small attack vectors to collect training 
data to learn the coefficients 

• Less stealthy 
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Passive Monitoring 

• Learn Φ, Λ from eavesdropped measurements 
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Passive Monitoring 

• Learn Φ, Λ from eavesdropped measurements 
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Microgrid Testbed 
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generator 
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Accuracy of Learned Attack Model 

Time (sec) 

Injection to 
freq. reading 

(Hz) 

A random bounded injection sequence to avoid damage to testbed 

System freq. 
(Hz) 

true system response 
prediction 

From learned model, 30 seconds to achieve 0.5 Hz deviation 



Conclusion 

• FDI attack again AGC 
– Attack impact model 
– Learned using data in normal state 
– Minimize time-to-emergency 

 

• Evaluation 
– PowerWorld simulations 
– Experiments on a real power system 

 

• Ongoing work 
– Attack detection, identification (which measurements 

compromised?), mitigation 


