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Attacks against Power Grids
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* 59% attacks on critical infrastructures target grids
— Night Dragon: grid operation data exfiltration
— Dragonfly: Trojan horses in grid control systems



Frequency Control

 Maintain freq. at 50 or 60 Hz when loads change

Frequency-sensitive
[Frequency-insensitive load
load

PG
\( Generation ]

D: load-damping constant
w: system frequency

* Widespread and costly impact of failure
= System frequency is global
= —0.5 Hz: load shedding (regional blackout)
= +2.0 Hz: permanent equipment damage



Automatic Generation Control (AGC)
 More than frequency control

— Regulates power exchanges btw control areas

— Input: freq. deviation, area power export deviations

— Output: Area Control Error (ACE) A 37-bus grid
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Implementation & Threat

Control center

[ State estimation

measurements
Bad data detection
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* Networked control system
— Distributed, networked sensors

— Control center

— Generators



Implementation & Threat

Eavesdropping

Control center & tampering
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* Networked control system
— Distributed, networked sensors

* Logically isolated links (e.g., VPN) in existing networks
— Control center
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* Networked control system
— Distributed, networked sensors

* Logically isolated links (e.g., VPN) in existing networks
— Control center

« Well protected v
— Generators
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Implementation & Threat
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— Distributed, networked sensors
e Logically isolated links (e.g., VPN) in existing networks
— Control center
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Implementation & Threat
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False Data Injection (FDI)

° Corrupt measurements

7'— 7 1 3 :! Attackvector}

Measurement vector }

— Can read z and corrupt a subset of z elements

— Stealthy to fault/attack detectors
* Bypass bad data detection [Liu CCS'09]

a = HC { Arbitrary vector]

[ Measurement matrlx

* Bypass data quality checks
—a <a<a
MmaxXx maxX



Research Question

* Optimal attack via worst-case analysis

— A sequence of FDIs to deviate frequency to unsafe
level in shortest time
Protection assessment given attack response delay

— How to compute?
— Achievable in practice?

* Existing work on AGC security

— Simulations based on predefined attack templates
scaling, ramps, surges, random noises, time delays

— Reachability analysis
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Attack Impact Model

In Laplace domain: Aw = ® -Ap + ®AT -a

/\

[Freq.deviation] [ VG @IFLEE ] [ Attack vector
changes of areas

* T: constant integer matrix

— From grid topology

— Can be obtained by attacker (social engineering)
* O, A

— Transfer functions of turbines, generators,
transmission lines, etc

— Closed-forms unknown



Optimal Attack

 Time-to-emergency (TTE): remaining time before
Aw ¢ (Aa)min ’Awmax )

— Aw,;,, = —0.5 Hz: load shedding (regional blackout)

 Compute a series of a to minimize TTE subject to
— Write access
— Stealthiness

* |Aw=® - Ap+@AT -a| complex differential eqns

— Exhaustive search with prohibitive complexity



Regression

Laplace domain: Aw = ® -Ap + ®AT -a

~ =

H -1
Timedomain: Aw, ., => U -Ap,_, +V, -2,
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Regression

Laplace domain: Aw = ® -Ap + ®AT -a

~ =

H -1
Timedomain: Aw, ., => U -Ap,_, +V, -2,
i=0

e Coefficientsuandv
— Trained using data generated by Laplace-domain model



Regression

Laplace domain: Aw = ® -Ap + ®AT -a

~ =

H -1
Timedomain: Aw, ., => U -Ap,_, +V, -2,
i=0

e Coefficientsuandv

— Trained using data generated by Laplace-domain model
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Optimal Attack Algorithm

Eavesdropped
past load changes

At prediction horizon h: [

Attack vectors
to be scheduled

Predicted future
load changes

* Increasing h from 1, minimize and maximize Aw,,, until
Ao, ¢ (Aw Aw__ )

— Optimal, modulo approx err of regression
— Linear programming

min ?



Outline

Motivation & Background
Attack Model
Optimal Attack

— How to compute?

— Achievable?
How to learn attack impact model?
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Simulations & Testbed Experiments



A Baseline Approach

H -1
Aw,,, = Z u,-Ap,;+v,-a

i=0

k—1i

* |nject small attack vectors to collect training
data to learn the coefficients

* Less stealthy



Passive Monitoring

Aw = ® -Ap + ®AT -a

 Learn @, A from eavesdropped measurements



Passive Monitoring

A w :-Ap + ®AT -a

 Learn @, A from eavesdropped measurements
— @: from Aw and Ap
Ao =D -Ap



Passive Monitoring

Aa):(I)-Ap+(I) - a

 Learn @, A from eavesdropped measurements
— @: from Aw and Ap
Ao =D -Ap
— N\: no training data



Passive Monitoring

Aa):(I)-Ap+(I) - a

 Learn @, A from eavesdropped measurements
— @: from Aw and Ap
Ao =D -Ap
— N\: no training data
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Passive Monitoring

Aa):(I)-Ap+(I) - a

 Learn @, A from eavesdropped measurements
— @: from Aw and Ap
Ao =D -Ap
— N\: no training data
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Passive Monitoring

Aa):(I)-Ap+(I) - a

 Learn @, A from eavesdropped measurements
— @: from Aw and Ap

Ao =D -Ap

— N\: no training data
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Passive Monitoring

Aa):(I)-Ap+(I) - a

* Learn @, A from eavesdropped measurements
— @: from Aw and Ap
Ao =D -Ap
— N\: from Aw, z in normal state and 4 system constants:

* ACE weight parameters a and B: public
* Load damping constant and total inertia of generators



Passive Monitoring

Aa):(I)-Ap+(I) - a

 Learn @, A from eavesdropped measurements
— @: from Aw and Ap
Ao =D -Ap
— N\: from Aw, z in normal state and 4 system constants:

* ACE weight parameters a and B: public
* Load damping constant and total inertia of generators
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PowerWorld Simulations

37-bus 3-area grid, 81 sensors (all compromised), frequency safety range: (-0.5, +0.5) Hz
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PowerWorld Simulations

37-bus 3-area grid, 81 sensors (all compromised), frequency safety range: (-0.5, +0.5) Hz
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PowerWorld Simulations

37-bus 3-area grid, 81 sensors (all compromised), frequency safety range: (-0.5, +0.5) Hz
TTE = 11 cycles
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PowerWorld Simulations

37-bus 3-area grid, 81 sensors (all compromised), frequency safety range: (-0.5, +0.5) Hz
TTE = 11 cycles
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Microgrid

switchboard ' - variable load

16-bus 400V
meter
13.5kVA 2
generator o command “ frequency readings

AN over Modbus/TCP
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Accuracy of Learned Attack Model

A random bounded injection sequence to avoid damage to testbed
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Conclusion
* FDI attack again AGC

— Attack impact model
— Learned using data in normal state
— Minimize time-to-emergency

 Evaluation
— PowerWorld simulations
— Experiments on a real power system

* Ongoing work

— Attack detection, identification (which measurements
compromised?), mitigation



