A Simulation Study on Smart Grid Resilience under
Software-Defined Networking Controller Failures

Uttam Ghosh!
Zbigniew Kalbarczyk?®

3University of lllinois at Urbana-Champaign, USA

ABSTRACT

Riding on the success of SDN for enterprise and data cen-
ter networks, recently researchers have shown much interest
in applying SDN for critical infrastructures. A key con-
cern, however, is the vulnerability of the SDN controller as
a single point of failure. In this paper, we develop a cyber-
physical simulation platform that interconnects Mininet (an
SDN emulator), hardware SDN switches, and PowerWorld
(a high-fidelity, industry-strength power grid simulator). We
report initial experiments on how a number of representative
controller faults may impact the delay of smart grid commu-
nications. We further evaluate how this delay may affect the
performance of the underlying physical system, namely au-
tomatic gain control (AGC) as a fundamental closed-loop
control that regulates the grid frequency to a critical nom-
inal value. Our results show that when the fault-induced
delay reaches seconds (e.g., more than four seconds in some
of our experiments), degradation of the AGC becomes evi-
dent. Particularly, the AGC is most vulnerable when it is
in a transient following say step changes in loading, because
the significant state fluctuations will exacerbate the effects
of using a stale system state in the control.

Keywords

Smart grid, software-defined networking, attacks, faults

1. INTRODUCTION

Power grids are complex systems that support electricity
generation, transmission, and distribution. Current smart
grid initiatives aim to incorporate information and commu-
nication technologies (ICT) to improve the management of
power grids, in which real-time sensing and actuation are
used to bring about benefits of sustainability, economics,
and resilience against contingencies. There is also much re-
cent interest in applying software-defined networking (SDN)
for smart grid communication and control, because SDN’s
programmability could improve the system’s ability to op-
timize performance online or respond to incidents in an ag-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CPSS’16, May 30-June 03 2016, Xi’an, China
© 2016 ACM. ISBN 978-1-4503-4288-9/16/05. .. $15.00
DOL http://dx.doi.org/10.1145/2899015.2899020

Xinshu Dong!
David K. Y. Yau'+*

! Advanced Digital Sciences Center, lllinois at Singapore

52

Rui Tan'2
Ravishankar K. lyer?
2Nanyang Technological University, Singapore
“Singapore University of Technology and Design

ile manner. In general, networking support for smart grids
must be highly available and reliable, since we need to en-
sure 24/7 trouble-free operation of the grid as a critical
infrastructure. Emerging smart grid applications, such as
demand-response and the integration of distributed renew-
able generation, place additional real-time constraints on the
network’s quality of service (QoS) [8].

As a new and versatile networking paradigm, SDN has
been gaining in popularity for an expanding range of ap-
plications. Prominent examples can be found in enterprise
networks and data centers [17], and even wide-area networks
of scale and generality comparable to the Internet [9]. Re-
searchers have argued for the case of using SDN for critical
infrastructures as well, such as smart grids, citing superior
support for responsive QoS, network reconfiguration, and
fine-grained accounting [6]. At the same time, however, it
has been questioned whether SDN is sufficiently resilient for
mission-critical operation that may have stringent real-time
requirements, because the SDN controller represents a single
point of failure in the face of unforeseen disruptions [5, 11].
Indeed, besides natural faults and human errors, smart grids
can be subjected to coordinated cyber attacks by strong
foes, such as demonstrated by a recent episode against the
Ukraine power system [18]. Design of distributed SDN con-
trollers that work seamlessly and efficiently in concert, yet
are robust to failures of individual components, could pro-
vide an answer, but it turns out to be a highly non-trivial
endeavor [11].

To help assess the suitability of SDN for smart-grid appli-
cations, in this paper we evaluate, via cyber-physical simula-
tions, how failure of the SDN controller can adversely affect
salient operational aspects of the power grid. We focus on
delays of data packets arising from the failures, which can
be triggered by natural faults, human errors, or malicious
attacks. The packet delays account for resulting network
conditions such as congestions, packet losses, or packet re-
transmissions. We characterize the consequences of the de-
layed communications on the smart grid control. Specif-
ically, we focus on the grid’s automatic generation control
(AGC), which regulates the grid frequency to a critical stan-
dard value in the midst of dynamic electrical loading and
inter-area power flows.

To support the study, we design and implement a simula-
tion platform that interconnects both the cyber and physical
parts of a smart grid. Specifically, a Mininet simulator com-
ponent allows us to model a larger network of SDN switches
(of configurable topologies), simulation results of which are
validated using a smaller number of hardware SDN switches.

The SDN component works with a PowerWorld simula-
tor component for studying physical aspects of power grids.
We use PowerWorld to set up an IEEE 37-bus system with
AGC. PowerWorld is a high-fidelity simulator that has been
adopted by the power industry. Further than steady-state
results, it is capable of modeling and outputting results
about transient dynamics of the grid.

We inject a number of representative controller faults into
the SDN simulator, and analyze their impact on the AGC
of the 37-bus power system as it is reported by Power World.
Our experiments show that if the controller’s failure causes
a delay of less than one second, the failure has negligible
impact on the AGC. When the delay is longer, especially
during a transient following a step change of load, the ad-
verse effects of the failure become apparent. For example, in
a denial-of-service attack scenario [20] in our experiments,
which causes a delay of about 4.2 seconds, the AGC’s per-
formance deteriorates by about 20% in terms of a widely
used performance metric of summed absolute error (SAE).
These initial results suggest that further research is neces-
sary to more fully quantify the performance implications of
SDN on smart grid control, or more generally the control
of critical infrastructures that have (near) real-time require-
ments, based on representative and real/realistic empirical
and operational scenarios.

In summary, this work makes the following contributions.
We prototype a simulation platform to show the relationship
between cyber communications and physical power systems.
We utilize it to evaluate how AGC control of a power grid
can be impacted by a range of representative faults that
affect the SDN controller. The results shed light on the im-
plications of using SDN for supporting the control of critical
infrastructures. Whereas the reported experiments repre-
sent an initial effort and focus on the impact of network
delays, the simulation platform can be used in more general
and extensive experiments in future research efforts.

2. RELATED WORK

There are proposals to integrate SDN with IEC 61850 sub-
station automation systems. Cahn et al. suggest that SDN
can facilitate the networking of many (up to a hundred) in-
telligent electric devices (IEDs) in a substation [3]. Molina
et al. discuss various desirable features of SDN for IEC 61850
substations, including routing control, traffic filtering, QoS
enforcement, load balancing, and monitoring [15]. In partic-
ular, they discuss OpenFlow’s fast failover for the detection
of node failures in IEC 61850 substations. Dorsch et al.
discuss the use of SDN for controlling and managing the
transmission and distribution power grids [6]. Based on a
testbed of OpenFlow network with a few hosts, they mea-
sure the communication delays for IEC 61850 MMS and SV
messages under link loss events. Sydney et al. present a
prototype SDN-enabled 4-bus power grid testbed [22]. They
demonstrate the impact of a coincident occurrence of a com-
munication link failure, and a load shedding event caused by
a generator failure.

SDN is also proposed for managing high-rate data traf-
fic in smart grids. Goodney et al. propose to use SDN
to build Phasor Measurement Unit (PMU) networks [7].
The multicast and data rate filtering functionalities of Grid-
Stat [10], a Java-based PMU communication infrastructure
for routers, are re-implemented using OpenFlow rules on the
SDN switches. Because of hardware acceleration provided

Power System Case File

... Linux VM (Scheduler)

Windows VM

> Python27\Scripts\rpyc_classic

== Controlled by Scheduler
<"1 Controlled by VM

Figure 1: An interconnected environment for cyber-
physical simulations.

by the switches, the switching capacity and latency are sig-
nificantly improved compared with the original application-
layer implementation using Java. Kim et al. propose to
use OpenFlow switches to form virtual local-area networks
(VLANS) for multiple grid applications having different QoS
requirements [12]. A VLAN tree of limited depth is found
suitable for PMU data collection network.

Sydney et al. envision that SDN can enable innovations
and experimentation for smart-grid communications at real-
istic scales [21]. They consider a grid application of demand-
response (i.e., reduce load when a generator is disconnected).
It compares the performance of SDN and Multiprotocol La-
bel Switching (MPLS), a currently adopted grid communi-
cation technology, in the context of the demand response.
Their simulation results show that, when hard timeout of
the SDN is disabled and with a long idle timeout, SDN has
comparable communication performance with MPLS.

Potential security benefits and challenges of applying SDN
to smart grids have been discussed, together with high-level
design of a CPS testbed for supporting further investiga-
tion [5]. In this paper, we measure the impact of SDN con-
troller failures on a specific smart grid application, namely
AGC for frequency regulation, and report simulation results
that relate the cyber and physical components of the sys-
tem.

3. SIMULATION ENVIRONMENT

3.1 Cyber-Physical Simulation of SDN & Smart
Grid
Figure 1 depicts the implementation of the cyber-physical
simulation environment used in this study. The system con-
sists of:

1. Cyber component, which emulates a network infras-
tructure for communications among devices used to
control and manage the power grid’s operation. We
utilize the Mininet emulator for this task.

2. Physical component, which models various physical grid
elements (e.g., generators, buses, transmission lines,
and electrical loads) and the power flows between them.
We utilize the PowerWorld simulator for this task.

Most of the operations in our simulations are performed
through a Scheduler object, which takes as input a power

Figure 2: Network topology for a 37-bus smart grid
system.

system case file for constructing the power grid’s topology.
The scheduler coordinates the simulation between the cy-
ber and physical components, via remote procedure calls to
interconnect simulations running on different hosts.

In our implementation, as PowerWorld runs only on the
Windows operating system, we initiate a Python server on
a remote Windows machine, implemented using the RPyC
library [1]. The Scheduler object, which runs on a Linux
virtual machine, calls a Python module through the remote
server. It first connects to the appropriate RPyC server,
then interacts with PowerWorld via the latter’s COM-based
APIs.

In our study, SDN supports communications within a 37-
bus smart grid as shown in Fig. 2. The network connects 15
substations with a control center over a wide-area network.
Each substation, say ¢, consists of: (i) an SDN-enabled
switch S;, (ii) a sensor/actuator 7; to mimic communica-
tions between the control center and electronic devices in
the substation, and (iii) a host H; to generate background
traffic (a continuous stream of UDP packets) that competes
with the smart grid traffic. The SDN has a data plane with
24 OpenFlow (v1.3) enabled switches and a Ryu/Pox con-
troller running on Linux (Ubuntu 3.16.0-38-generic kernel).
The controller is remote from the switches. The following
kinds of traffic exist for communication within the 37-bus
smart grid: (a) substation to substation, (b) substation to
control center, and (c) control center to substation. For each
simulation run, every substation generates 100 TCP packets
(1,500 bytes each, a typical Maximum Transmission Unit
size for many Ethernet networks) at one second intervals,
and sends them to the control center. The control center in
turn responds to the substations. The traffic lows mimic
the exchange of data and commands between the substa-
tions and control center. We implement such traffic gener-
ation and transmission with Java programs running on the
corresponding virtual hosts in Mininet.

We perform 10 simulation runs and report measurement
averages over the 10 runs. We mainly focus on evaluating the
end-to-end communication delay between the control center
to a substation, to assess the effects of SDN controller faults
on the data plane. Such delay will subsequently affect the
AGC, which we will demonstrate using the PowerWorld sim-
ulator. For some of the experiments, we will also report the
packet loss rate, which will influence the communication de-

54

Linux based
Raspberry Pi
(Sensors)

Linux based
Raspberry Pi
(Generators)

--=----- Control Plane

Data Plane

Ubuntu Server
Ryu Controller

» TCP Traffic
(Grid Data)

/v S4
Linux based

Raspberry Pi
v\Comm] Center)

10.0.0.16

10.0.09

Figure 3: Experimental validation of the fidelity of
simulations of the SDIN switches.

Hardware Setup|
—— Mininet

150 —
125 4
100 +

75 4

50

End-to-end Delay (ms)

25 o

Time (s)

Figure 4: Communication delay under hardware
SDN switches versus Mininet.

lay indirectly, such as through TCP level retransmissions.

3.2 Experimental Platform with SDN Switches

In addition to Mininet, we set up a hardware configuration
that is similar to the Mininet platform and conduct several
validation experiments to compare the two. Figure 3 shows
the configuration consisting of hardware SDN switches, a
Raspberry Pi that mimics the control center, and 15 other
Raspberry Pi’s that mimic the substations. Four OpenFlow-
enabled HP2920 switches (version 1.3) and a Ryu controller
running on a remote Linux server are used to connect the
substations and control center. We use the same Java pro-
grams as those for Mininet to emulate smart grid traffic
between the substations in the form of TCP packets (also of
the same packet size of 1,500 bytes each) sent at one second
intervals. In order to compare the hardware and Mininet
setups, we use similar network parameters and topologies
for both of them.

The communication delays between substations in the hard-
ware and Mininet setups are presented in Figure 4. Note
that the average communication delay for Mininet (about
30ms) is almost twice of that on the hardware setup (about
15ms). This is because Mininet runs on a single physical ma-
chine, whose CPU cycles need to be shared by all the virtual
hosts, virtual switches, and the SDN controller. However,
the delays for both the setups are of the order of tens of
milliseconds whereas, as we will show, the network delays

Topology Manager

’ Routing Manager ’ Host Tracker ‘

Switch Manager ‘

Faulty Application
(e.g., exit, infinite loop)

Controller

Control Plane
Data Plane

Disconnect Links between
Controller and Switches

X

H1

Figure 5: Faulty application in SDN controller.

100 4
80 +
60 -

40 |

% of Packet Drops

20 4

T T T T T
10 20 30 40 50

% of Probability of Controller Failure

Figure 6: Effects of SDN controller failure on packet
drops.

caused by the generated SDN controller faults in our exper-
iments are of the order of seconds.

4. FAULT INJECTION IN SDN

We concentrate on faults on the SDN control plane, par-
ticularly the SDN controller. The controller may crash due
to failure of hardware or software. Switches on the data
plane can make excessive flow table requests that overload
or crash the controller. Malicious attackers are also known to
have injected malware into SDN controllers to induce faults
[2]. The control plane and data plane may become discon-
nected due to failure of a connecting link or failure of the
OpenFlow protocol. A faulty application may disrupt net-
work functionalities. For example, the topology manager
may generate a faulty topology due to software bugs. This
may in turn affect other applications (e.g., the routing man-
ager in Figure 5) and subsequently communications at the
network layer. Figure 5 shows an example faulty applica-
tion that causes disconnection between the controller and
switches.

Random failure: Here we show impact on the data plane
when the SDN controller fails due to a random transient er-
ror and subsequently recovers. An OpenFlow switch sends
a FlowRemoved message to the controller when it removes
an entry from the flow table. The removal happens when a
timeout occurs, either due to inactivity (idle timeout) or a
hard timeout. An idle timeout (idle_timeout) happens when
no packets match the flow in question for a duration of time.

55

4500 - 10%

—— 20%

4000

3500

3000

2500

2000

1500

End-to-end Delay (ms)

1000

500

Time (s)

Figure 7: Effects of SDN controller failure on com-
munication delays.

A hard timeout (hard_timeout) happens after a certain pe-
riod of time elapses, regardless of the number of matching
packets. If the controller fails but recovers before the time-
outs, there will be no effects on the data plane and hence no
packet drops. In our experiments, we set idle_timeout = 30
and hard_timeout = 30. The effects of controller failures
on the packet drop rate and communication delay on the
data plane are shown in Figure 6 and Figure 7, respectively.
It can be seen that when the probability of SDN controller
failures varies from 10% to 50%, around 3% to 85% of the
packets are dropped, and maximum communication delays
of about 0.70s to 4.2s are observed.

We note that the specific results vary with the SDN timers
idle_timeout and hard_timeout. For example, if we set
idle_timeout = oo and hard_timeout = oo, any flow rules
inserted into the flow table will be static. Longer time-
outs reduce premature evictions, but this effect comes at
the cost of a larger flow table occupancy. In general, an
OpenFlow switch may support a limited number of flow ta-
ble entries. For example, the HP5406z1 OpenFlow switch
supports approximately 1500 OpenFlow rules and the NEC
PF5820 switch supports only 750 flow entries due to limited
TCAM. Shorter timeouts reduce the size of a flow table, but
they may prematurely evict a (still active) flow rule before
all the matching packets are transmitted. A large number of
premature evictions can add significantly to the load of the
controller [23]. Hence, we need to strike a suitable balance
in selecting the timeouts. It can be seen that in our exper-
iments, the SDN performs best when the timeouts are set
according to the flow lifetimes. However, it can be difficult
to predict the lifetime of a flow in practice.

Delayed response by controller: The SDN controller
may run slowly and delay in sending flow tables to the
switches. Furthermore, a switch may receive its flow table
after a long delay due to link delays on the control plane.
Unavailability of timely flow table information may cause
many packets to be dropped, which leads to long delays in
related data-plane communications. In this set of experi-
ments, we vary the delay of the controller’s response from
0.5s to 2.5s. Figure 8 shows the effects of SDN controller
delays on communication delays between the substations.
From the figure, it can be seen that the communication de-
lay on the data plane increases from 0.15s to 3.2s when the
control-plane delay increases from 0.5s to 2.5s.

3000

\'\\/_,—'»MWJ ——o0.59

— 0.8s|
1.0s|
— 1.5s|
— 2.0s|
—— 2.5s|

2500

2000

1500

1000

End-to-end Delay (ms)

500 <

o 20 40 60 80 100

Time (s)

Figure 8: Effects of delayed response by controller
on communication delays, when Hard-time=30s and
Idle-time=30s.

4.1 Other types of SDN controller faults

In this subsection, we discuss other common types of faults
that concern the SDN controller and the control plane. These
faults may be the results of: (i) programming errors of the
controller; (b) excessive numbers of flow table requests by
switches to the controller (e.g., in a DoS attack); and (iii)
link failures and packet collisions on the control plane. These
faults can lead to termination of the controller’s execution,
which can subsequently cause a flow to drop all its data pack-
ets. The lost packets affect the power grid directly because
they carry commands to control, configure, and monitor the
power grid. As we focus on faults at the SDN controller, we
do not discuss direct attacks against the data packets, e.g.,
corrupting smart grid control commands, but note that such
attacks merit a separate study.

Error in control messages: OpenFlow control mes-
sages can be modified, deleted, or dropped to put the control
plane in an unpredictable state.

Flow rule modification: A faulty application in the con-
troller may send flow rules to overwrite the existing rules
in the flow table of a switch to cause unexpected network
behaviour (see Figure 9). These anomalies may compromise
the integrity of the flow table and cause significant perfor-
mance degradation of the network.

Flow table deletion: An application may send a control
message to delete all the entries in a switch’s flow table,
thereby disrupting all communications that go through the
switch.

Control message drop: A buggy application can drop con-
trol messages that are required by other applications.

Undefined control message: An application may send un-
defined control messages to put an OpenFlow switch into an
unpredictable state.

Infinite loops: A buggy application at the SDN con-
troller’s machine may fall into an infinite loop or hang, which
may interfere with the controller’s ability to perform its nor-
mal job.

Resource exhaustion: A faulty application may ex-
haust system resources (e.g., memory and the CPU). Loss of
critical resources will lead to substantial performance degra-
dation of the SDN controller, and subsequently its discon-
nection from the switches [19].

Although our study shows that the SDN controller can be
a single point of failure of concern in a conventional setup,

56

Tr 5. =)

Routii ‘ ’ Host Tracker ‘

Switch Manager ‘

Faulty Application

Controller

Control Plane

Data Plane

Flow table
Flow table

' | Modify/Delete @7@

t | Flow table
$/ 5 H2
b Flow Table (S3)

S3 SRC DST Action

S4

\

Flow Table (S3)
DST
H1 H2
H2 H1

Action

Forward - . H1 H2 Drop
H2—HI— Forward-

Forward

Figure 9: Flow table modifications by a faulty ap-
plication running on the SDIN controller.

implementation techniques such as hot standby, shadow con-
troller [14], and redundant distributed controllers [4] may
mitigate the issue in selective deployments. We do not con-
sider these techniques in this paper, but note that they can
be critical to the resiliency of SDN in mission-critical appli-
cations.

5. IMPACT OF SDN CONTROLLER

FAILURES ON SMART GRID

In this section, we present the PowerWorld simulation to
demonstrate impacts of SDN controller failures on the per-
formance of a smart grid as a cyber-physical system. For
the cyber component, as Section 4 discusses, we focus pri-
marily on end-to-end delays of TCP communications on the
data plane. For the physical component, we focus on the
performance of automatic generation control (AGC) [13], a
fundamental and automated closed-loop control that reg-
ulates the grid’s frequency and power exchanges between
different grid areas to their respective nominal values. In
the AGC, the grid control center retrieves measurements
from remote sensors that monitor the system’s frequency
and power flows on different transmission lines. It then runs
an AGC control algorithm to determine the power outputs
of synchronous generators in each area, and transmits the
power output commands to the corresponding generators.
The sensor measurements and control commands are trans-
mitted on the SDN data plane. The simulations in this
section are based on a 37-bus system, which well represents
grids of small to medium scales. A detailed one-line diagram
of the simulated system can be found in [16].

If the grid’s frequency has been well regulated at its nom-
inal value (i.e., the system has converged), before the trans-
missions of sensor measurements and control commands are
delayed, the delays will not significantly affect the system’s
control performance. For instance, in the scenario that the
sensor measurements are delayed, the control commands
computed based on an old system state (due to the com-
munication delay) will be close to those computed based on
the present system state. This is because the state of the
converged system changes little. However, if the system is
in a transient state, the impact of the communication delays

5 004t I I No delay —
£ 602 \ Delay = 4.25 ------ 1
S) \

& 60 e |

o

5 598 i
£ 596 . . |

0 50 100 150 200
Time (s)

Figure 10: Frequency transients after a load increase
of 3% in the absence and presence of communication
delay, respectively.

140 T T T T T T T
120
100

80

SAE (Hz)
=N
S

LI B

No delay
Dela}ll =4.2s P B

300 350

150

0 1 1
50 100

1
200
Time (s)

(=]

250

Figure 11: Summed absolute error (SAE) of the fre-
quency transients in Figure 10.

can be quite significant. This is because, during transients
when the system state may experience large fluctuations,
an old system state used for the control can produce quite
different results from the present system state, leading to
possibly large control errors. Thus, in this paper, we focus
on the AGC’s performance when the grid is in a transient
state after, for example, a step change of load. Such a step-
change response method is also widely used to evaluate the
regulation performance of general closed-loop control sys-
tems.

Figure 10 shows the frequency transients after a load in-
crease of 3% at the 20th second, when the system experi-
ences no delay and a delay of 4.2 seconds, respectively. The
setting of 4.2 seconds is based on the largest communication
delay caused by the SDN control plane faults that we observe
in our experiments (see Section 4). We can see that the load
increase causes an initial drop of the grid frequency, then
followed by oscillations of the frequency. The initial drop is
due to the sudden imbalance between load and generation.
Afterwards, the AGC takes effect and brings the frequency
back to the nominal value of 60 Hz. We can see clearly that
the longer communication time delays the response of the
AGC.

The summed absolute error (SAE) is a widely used metric
to characterize control performance. In our setting, specif-
ically, it is the sum of absolute frequency deviations from
the nominal frequency of 60 Hz over time. Figure 11 shows
the SAE of the frequency transients in Figure 10. The SAE
converges to 105 Hz and 126 Hz when there is no delay and
a delay of 4.2 seconds, respectively. Thus, in terms of the
SAE, the control performance degrades by 20% under a com-
munication delay of 4.2 seconds. Figure 12 characterizes the
performance degradation against the data-plane communi-
cation delay.

6. CONCLUSION & FUTURE WORK

We presented a study on the impact of using SDN for
smart grid AGC, when the SDN controller fails due to at-
tacks or faults. Our results, based on CPS simulations and
measurements with our hardware setup, demonstrate that

57

700 T T T T T
600
500
400
300
200
100

Performance drop (%)

(=]
—_
(=]
—_
W
[
(=]
]
W
9%
(=]

Delay (s)

Figure 12: Performance degradation in terms of
SAE versus data plane communication delay.

different controller faults can manifest in different commu-
nication delays. We evaluated the impact of the delays on
the AGC, which relies on the communications for timely
sensing information and actuation commands for adjusting
power generation in response to dynamic load changes. Our
results show that when the delays reach seconds, as demon-
strated in some of our experiments, they can cause signif-
icant degradation of the AGC, especially when the grid is
in a transient state and experiencing large fluctuations in
its system state. Our work is an initial effort towards prac-
tical and quantitative assessment of the resiliency of SDN,
particularly the critical SDN controller, for mission-critical
infrastructures including smart grids. The following are in-
teresting topics for future research:

e Smart grid applications of diverse timing requirements.
It is interesting to investigate scenarios of smart grid
control that have stricter timing requirements than
AGC, e.g., switching a circuit breaker under contin-
gencies and emergencies. Applications with more re-
laxed timing requirements are also of interest, such as
system state estimation.

e Comprehensive fault models. 1t is interesting to ex-
amine fault types beyond SDN controller faults, e.g.,
attacks that aim to exhaust the limited TCAM space
in typical SDN switches, with resulting delays in the
packet forwarding.

e Recovery from faults using SDN. It is interesting to
study whether and how SDN may help speed up re-
covery from faults in a communication network that
supports smart grids or other critical infrastructures.

e Large-scale experimentation. SDNs for large power
systems may require larger scale than what we used
in this study. It is interesting to conduct experiments
on an at-scale real SDN testbed for large-scale power
grids that have dozens or more buses.

Acknowledgments

We thank our shepherd and the anonymous reviewers for
their helpful feedback. We thank Ziyi Wang for his help to
this work, and Hui Lin for the helpful discussions with us.

This work was supported by the research grant for the
Human-Centered Cyber-physical Systems Programme at the
Advanced Digital Sciences Center from Singapore’s Agency
for Science, Technology and Research (AxSTAR).

Zbigniew Kalbarczyk and Ravishankar Iyer are supported
in part by the grant Cyber Resilient Energy Delivery Con-
sortium (CREDC) DOE DE-0E0000780 (NETL) from De-
partment of Energy, USA, and another grant Semantic Se-

curity Monitoring for Industrial Control Systems, NSF CNS
13-14891, from National Science Foundation, USA.

7.
1
2]

[10]

[11]

REFERENCES

RPyC. https://rpyc.readthedocs.org/en/latest/.
Homa Alemzadeh, Daniel Chen, Andrew Lewis,
Zbigniew Kalbarczyk, Jaishankar Raman, Nancy
Leveson, and Ravishankar Iyer. Systems-theoretic
safety assessment of robotic telesurgical systems. In
34th International Conference on Computer Safety,
Reliability, and Security (SAFECOMP), 2015.

Adam Cahn, Jose Hoyos, Matthew Hulse, and Eric
Keller. Software-defined energy communication
networks: From substation automation to future
smart grids. In Smart Grid Communications
(SmartGridComm,), 2013 IEEE International
Conference on, pages 558-563. IEEE, 2013.

Advait Abhay Dixit, Fang Hao, Sarit Mukherjee, T.V.
Lakshman, and Ramana Kompella. Elasticon: An
elastic distributed SDN controller. In Proceedings of
the Tenth ACM/IEEE Symposium on Architectures
for Networking and Communications Systems, ANCS
14, 2014.

Xinshu Dong, Hui Lin, Rui Tan, Ravishankar K. Iyer,
and Zbigniew Kalbarczyk. Software-defined
networking for smart grid resilience: Opportunities
and challenges. In Proceedings of the 1st ACM
Workshop on Cyber-Physical System Security, CPSS
’15, 2015.

Nils Dorsch, Fabian Kurtz, Hanno Georg, Christian
Hagerling, and Christian Wietfeld. Software-defined
networking for smart grid communications:
Applications, challenges and advantages. In Smart
Grid Communications (SmartGridComm), 2014 IEEE
International Conference on, pages 422-427. IEEE,
2014.

Andrew Goodney, Sudhakar Kumar, Adit Ravi, and
Young H Cho. Efficient PMU networking with software
defined networks. In Smart Grid Communications
(SmartGridComm,), 2013 IEEE International
Conference on, pages 378-383. IEEE, 2013.

V.C. Gungor, D. Sahin, T. Kocak, S. Ergut,

C. Buccella, C. Cecati, and G.P. Hancke. A survey on
smart grid potential applications and communication
requirements. Industrial Informatics, IEEE
Transactions on, 9(1):28-42, Feb 2013.

Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah
Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon
Zolla, Urs Holzle, Stephen Stuart, and Amin Vahdat.
B4: Experience with a globally-deployed software
defined WAN. In Proceedings of the ACM SIGCOMM
2018 Conference on SIGCOMM, SIGCOMM ’13, 2013.
Ryan Johnston, Carl H Hauser, K Harald
Gjermundrod, and David E Bakken. Distributing
time-synchronous phasor measurement data using the
GridStat communication infrastructure. In System
Sciences, 2006. HICSS’06. Proceedings of the 39th
Annual Hawaii International Conference on,

volume 10, pages 245b—245b. TEEE, 2006.

Naga Katta, Haoyu Zhang, Michael Freedman, and
Jennifer Rexford. Ravana: Controller fault-tolerance

58

[12]

[13]

[14]

[15]

[16]

[17]

[20]

[21]

[22]

23]

in software-defined networking. In Proceedings of the
1st ACM SIGCOMM Symposium on Software Defined
Networking Research, SOSR ’15, 2015.

Young-Jin Kim, Keqiang He, Marina Thottan, and
Jayant G Deshpande. Virtualized and self-configurable
utility communications enabled by software-defined
networks. In Smart Grid Communications
(SmartGridComm,), 2014 IEEE International
Conference on, pages 416—421. IEEE, 2014.

Prabha Kundur, Neal J Balu, and Mark G Lauby.
Power system stability and control, volume 7.
McGraw-hill New York, 1994.

Maciej Kuzniar, Peter Peresini, Nedeljko Vasi¢, Marco
Canini, and Dejan Kosti¢. Automatic failure recovery
for software-defined networks. In Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking, HotSDN 13, 2013.
Elias Molina, Eduardo Jacob, Jon Matias, Naiara
Moreira, and Armando Astarloa. Using software
defined networking to manage and control IEC
61850-based systems. Computers € Electrical
Engineering, 2014.

Hoang Hai Nguyen, Rui Tan, and David KY Yau.
Safety-assured collaborative load management in
smart grids. In ACM/IEEE 5th International
Conference on Cyber-Physical Systems, pages 151-162.
IEEE Computer Society, 2014.

B.A.A. Nunes, M. Mendonca, Xuan-Nam Nguyen,

K. Obraczka, and T. Turletti. A survey of
software-defined networking: Past, present, and future
of programmable networks. Communications Surveys
Tutorials, IEEFE, 16(3):1617-1634, 2014.

SANS ICS. Confirmation of a coordinated attack on
the Ukrainian power grid. https://ics.sans.org/blog/
2016/01/09/confirmation-of-a-coordinated-attack
-on-the-ukrainian-power-grid, 2016.

Seungwon Shin, Yongjoo Song, Taekyung Lee, Sangho
Lee, Jaewoong Chung, Phillip Porras, Vinod
Yegneswaran, Jiseong Noh, and Brent Byunghoon
Kang. Rosemary: A robust, secure, and
high-performance network operating system. In
Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’14,
pages 78-89, New York, NY, USA, 2014. ACM.
Seungwon Shin, Vinod Yegneswaran, Phillip Porras,
and Guofei Gu. Avant-guard: Scalable and vigilant
switch flow management in software-defined networks.
In Proceedings of the 2013 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’13,
2013.

Ali Sydney, James Nutaro, Caterina Scoglio, Don
Gruenbacher, and Noel Schulz. Simulative comparison
of multiprotocol label switching and OpenFlow
network technologies for transmission operations.
Smart Grid, IEEE Transactions on, 4(2):763-770,
2013.

Ali Sydney, David S Ochs, Caterina Scoglio, Don
Gruenbacher, and Ruth Miller. Using GENT for
experimental evaluation of software defined networking
in smart grids. Computer Networks, 63:5—-16, 2014.

A. Zarek. OpenFlow timeouts demystified. Master’s
thesis, University of Toronto, 2012.

