Toward Efficient Compute-Intensive Job Allocation

for Green Data Centers:

A Deep Reinforcement

Learning Approach

Deliang Yi Xin Zhou

Yonggang Wen Rui Tan

School of Computer Science and Engineering, Nanyang Technological University, Singapore
{yideliang, zhouxin, ygwen, tanrui} @ntu.edu.sg

Abstract—Reducing the energy consumption of the servers in
a data center via proper job allocation is desirable. Existing ad-
vanced job allocation algorithms, based on constrained optimiza-
tion formulations capturing servers’ complex power consumption
and thermal dynamics, often scale poorly with the data center size
and optimization horizon. This paper applies deep reinforcement
learning (DRL) to build an allocation algorithm for long-lasting
and compute-intensive jobs that are increasingly seen among
today’s computation demands. Specifically, a deep Q-network
is trained to allocate jobs, aiming to maximize a cumulative
reward over long horizons. The training is performed offline
using a computational model based on long short-term memory
networks that capture the servers’ power and thermal dynamics.
This offline training approach avoids slow online convergence,
low energy efficiency, and potential server overheating during
the DRL’s extensive state-action space exploration if it directly
interacts with the physical data center in the usually adopted
online learning scheme. At run time, the trained Q-network
is forward-propagated with little computation to allocate jobs.
Evaluation based on 8 months’ physical state and job arrival
records from a national supercomputing data center hosting 1,152
processors shows that our solution reduces computing power
consumption by nearly 10% and processor temperature by more
than 3°C without sacrificing job processing throughput.

I. INTRODUCTION

Energy efficiency is a key metric of a data center serving
the endlessly growing computation demands. In the U.S.,
data centers consumed 70 billion kWh of electricity in 2014,
which accounted for 1.8% of the country’s total electricity
consumption [1]. In the tropics such as Singapore, this ratio
is up to 7% [2]. Despite the adoption of greener designs
and operational improvements in recent years, the energy
consumption of data centers will still increase due to the rise
of hyper-scale data centers [3]. Continual energy efficiency
improvement for data centers remains an urgent, strategic task.

High PUE (power usage effectiveness)! with an average of
1.9 [4] was a major issue in the past decade. However, the
latest facility designs have significantly reduced the PUE to 1.3
[5] and even 1.06 [6] for commissioned data centers. There-
fore, in this paper, we focus on improving the energy efficiency
of the computing infrastructure, i.e., to reduce the energy
consumed by the servers while maintaining the job processing

The first two authors contribute equally.

'PUE is defined as the ratio of the total facility energy to the IT equipment
energy. Thus, higher PUE means that more energy is consumed by the
supporting facility (e.g., cooling systems), which is undesirable.

throughput. The approach to this goal will be perpendicular to
the efforts of reducing PUE (e.g., by improving cooling system
operation [7] or raising server room temperature setpoint [8]).
The computing energy efficiency improvement will engender
various benefits. First, the less heat generation by the servers
reduces the possibility of processor frequency throttling that
degrades the quality of service. Second, according to the
Arrhenius equation [9], the failure rates of server components
increase exponentially with the servers’ internal temperatures.
Thus, less heat generation implies servers’ longer lifetimes and
lower maintenance cost. Third, the reduced heat generation
also lowers the workload and energy consumption of the
cooling systems in maintaining the server room temperatures.
An important approach to improving computing energy
efficiency is to properly allocate the computing jobs to the
servers. With the emergence of big data-driven business,
scientific research, and social services, the long-lasting and
compute-intensive jobs (e.g., genomic data analysis, domain-
specific optimization and simulations, deep learning, etc.)
form a major portion of today’s computation demands. Thus,
efficient allocation approaches for compute-intensive jobs are
important to the data centers providing such services. Various
job scheduling algorithms have been proposed [10]-[13]. In
cloud computing data centers, the computation can be allo-
cated by migrating and consolidating the virtual machines that
process massive and short jobs [10], [11]. However, these ap-
proaches are ill-suited for long-lasting and compute-intensive
jobs because the migration will interrupt the job execution
and also cause the overhead of moving data. Thermal-aware
job allocation can be formulated as constrained optimization
problems based on certain models capturing the power con-
sumption and heat processes to minimize energy use [12], [13].
However, due to the complexity of the models, the algorithms
solving these problems generally need extensive search and
scale poorly with data center size and optimization horizon.
Recently, deep reinforcement learning (DRL), which is an
important extension of the traditional reinforcement learn-
ing (RL) method, has been applied to various sophisticated
online optimization problems with large solution spaces. In
a traditional RL system as illustrated in Fig. 1, an agent
interacts with an environment by iteratively sending action
to the environment, monitoring the state of the environment,
and assessing a scalar reward to guide the next action, aiming

action

state

Fig. 1. The agent-environment interactions in RL.

to maximize the cumulative reward. During the interactions,
the agent builds a look-up table that can be used afterward
to choose an action based on the state of the environment.
RL is model-free and supports online learning. Specifically,
it does not require an a priori model on the state transition
of the environment; instead, it learns the reward dynamics at
run time in the iterative interactions with the environment and
eventually approaches to the optimal action strategy. However,
the look-up table will have extremely high row dimension for
the optimization problems with large state and action spaces.
Moreover, it cannot well handle continuous states and the
states unseen during the training phase. DRL addresses these
issues by replacing the table with a deep neural network called
deep Q-network. The Q-network is trained during the agent-
environment interactions to capture the optimal action strategy.
Allocating continually arriving jobs to a large number of
servers in a data center is an optimization problem with a large
solution space, since allocating a pending job to each server
is a candidate solution. Applying DRL to the job allocation
problem gives two key advantages. First, during the learning
phase, DRL learns the end-to-end mapping from the data
center state and the job allocation action to the resulted reward
function that can be defined to capture one or more opti-
mization objectives such as reducing energy consumption and
server temperatures. Moreover, after an adequate exploration
of the state-action space, the trained Q-network will inherently
encompass the job allocation strategy that maximizes the
overall reward for a long-term period similar to the training
period. Second, after the learning completes, the DRL-based
job allocator that forward-propagates the Q-network to allocate
jobs has light computation overhead. Thus, different from the
model-based job allocation that adopts explicit constrained
optimization formulations and often scales poorly with data
center size and optimization horizon, the DRL-based solution
will be computationally lightweight and more scalable.
However, we face two major challenges in applying DRL to
the job allocation problem. First, in the training phase, before
DRL converges, to adequately explore the state-action space, it
may attempt random and radical actions that may lead to sig-
nificant deviations from the optimum and server overheating.
Second, the training convergence time of DRL is in general
proportional to the size of the state-action space [14]. For the
considered job allocation problem, the size of the state-action
space is in quadratic of the number of servers (cf. §III). Thus,
the DRL may have unacceptably long training convergence
time when the number of servers is large. To tackle these two
issues, we adopt an offline training approach. Specifically, we
construct a computational model based on neural networks to

provide system state prediction capability. The computational
model can be trained based on extensive system state and
job arrival traces collected from the target data center. Then,
the training of the DRL-based job allocator is performed
offline driven by the computational model and real job arrival
history. As a result, the real-world time for completing the
training is no longer a concern. For instance, we can complete
the training for Singapore’s National Supercomputing Center
(NSCC) hosting 1,152 processors within one day. In contrast,
our simulations show that the online training needs about 40
days to converge. After the completion of the offline training,
the DRL-based job allocator is commissioned to actuate in the
physical data center.

We implement and evaluate our approach for NSCC. Specif-
ically, based on system state and job arrival traces over a period
of six months, we implement the computational model for pre-
dicting system state (including processors’ temperatures and
servers’ power consumption) using long short-term memory
(LSTM) networks and then train the DRL-based job allocator
using the model. The training aims at maximizing a weighted
sum of server power savings and processor temperature reduc-
tions. After that, we reuse the model to conduct simulations
driven by real job arrival records over a period of 52 days.
The evaluation shows that, with our DRL-based job allocator,
the simulated data center can save nearly 10% computing
power and reduce the average processor temperature by more
than 3°C without compromising job processing throughput,
compared with several baseline approaches including a basic
round-robin allocator and a short-horizon optimizer.

The rest of the paper is organized as follows. §II reviews
related work. §III describes the problem and overviews our
approach. §IV and §V present the designs of the computational
model for system state prediction and the DRL-based job
allocator, respectively. §VI presents evaluation results. §VII
discusses several issues. §VIII concludes this paper.

II. RELATED WORK

Workload management in cloud computing data centers has
been widely studied. It is often achieved by managing the
virtual machines (VMs) that serve massive, frequent, and short
computing jobs (e.g., web requests). In the studies [11], [15],
[16], the VMs are consolidated and/or migrated to reduce the
number of active physical servers. Different from VM with
migratability as its key advantage, the compute-intensive jobs
considered in this paper can be dependent on massive data that
may have high migration overhead. Thus, the VM management
approaches are ill-suited for our problem.

A variety of computing job allocation and scheduling algo-
rithms have been proposed. Early studies [17]-[19] schedule
a collection of jobs known a priori. Differently, we consider
jobs that arrive dynamically. Accumulating sufficient arrived
jobs to run the scheduling algorithms will lead to unacceptable
job waiting times. Recent studies schedule computing jobs to
achieve various objectives. In [20], the jobs are scheduled to
minimize the average job waiting time under various resource

constraints. In [21], the jobs are allocated among geograph-
ically distributed data centers to reduce the communication
overhead among them. The above two studies [20], [21] fall
short of considering the thermal effects and requirements. The
studies [22]-[24] develop various constrained optimization
formulations that explicitly address the thermal effects and
aim at improving energy efficiency. The approach in [22]
allocates the jobs to minimize the electricity bills while
satisfying several constraints such as processing time, total
electricity budget, and the number of servers, etc. Based on
certain models describing the servers’ power consumption
behaviors and thermal processes, the approaches in [23], [24]
use heuristic algorithms to reduce the power consumption
of the data center. Due to the complexity of the thermal
processes and server/facility power consumption behaviors,
the constrained optimization formulations often lead to high-
complexity solvers that cannot scale well with the size of the
data center and the optimization horizon.

A recent study [25] applies RL techniques to allocate
arriving jobs. Specifically, in the proposed two-tier framework,
the global tier applies DRL to allocate jobs to the servers
in a cluster to reduce server power consumption, whereas
the local tier applies the traditional RL to adjust a single
parameter of a server (i.e., a timeout before the server in the
idle state goes to sleep) such that the overhead of server state
transition and the resulted job latency can be reduced. The
local tier builds an LSTM network to predict the arrival time
of the subsequent job. The global tier of [25] and the approach
proposed in this paper address a similar problem of allocating
jobs to servers. However, they differ in the following aspects.
First, the global tier of [25] follows the online learning scheme
that may have undesirably long convergence time when the
number of servers is large. Thus, the evaluation performed in
[25] is limited to 30 servers. Differently, our approach adopts
offline training that is not concerned with the convergence
time in scaling with the number of servers. For instance,
this paper builds a DRL-based job allocator for NSCC with
1,152 processors. In §VI-C2, we also conduct simulations to
investigate the shortcomings of the online learning scheme
for NSCC. Second, the study [25] does not consider the
thermal effect of job allocation. The online training may cause
server overheating due to DRL’s random attempts. In contrast,
our approach performs temperature prediction and integrates
processor temperatures into the reward function. As shown
in §VI, our offline training scheme can effectively prevent
overheating. Third, the server power consumption model in
[25] is a simplistic binary model (i.e., peak and idle powers).
In contrast, we build LSTM networks to capture the complex
thermal and power consumption dynamics.

Another recent study [26] applies online DRL to allocate
computing resources to arriving jobs such that the job latency
is reduced. However, the study does not consider the physi-
cal aspects of computing, i.e., power consumption and heat
generation, which are important to data center operation.

III. PROBLEM DESCRIPTION AND APPROACH OVERVIEW
A. Problem Description

In this paper, we abstract the computing infrastructure
in a data center as a collection of N processors denoted
by {p1,p2,...,pn}. We assume that p; has n; (n;, > 1)
processing cores. The utilization of p;, denoted by u;, is the
average utilization of p;’s cores. Denote by t; the temperature
of p;, by w; the power consumption of p; and the associated
supporting devices (e.g., main memory, hard disc, etc.). Note
that u; greatly affects both ¢, and w;.

We consider compute-intensive and deadline-free jobs with
the following characteristics. First, each job is a process
executed on a single processor only and can use multiple cores
on the processor to optimize multithreading performance.
To meet this requirement, a large-scale computing task can
be decomposed into multiple jobs that will be allocated to
multiple processors. Second, each job is compute-intensive in
that the cores used by the job will be fully utilized. Thus, each
core should be exclusively used by a single job only, because
otherwise the contention among multiple jobs for a shared core
will increase overhead and cause inefficiency. Third, the jobs
do not impose deadlines. The above characteristics well model
many long-lasting computing tasks, such as those submitted
to NSCC.

We define the data center’s system state as follows.

Definition 1 (System state): The data center’s system state is
a vector consisting of all processors’ utilizations, temperatures,
power consumption, and the numbers of spare cores. Formally,
the state x = [u,t,w,c] € R*Y, where u = [uy,...,un],
t= [tl,...,t]v], W = [wl,...,wN], C = [Cl,...,CN], and C;
is the number of spare cores on p;.

To simplify the discussion, we consider a problem of
allocating a single job at the front of a job queue to one of
the IV processors for execution. In §V-B, we will present the
extension to allocating multiple jobs at the front of the job
queue to one or more processors for execution. We define the
allocation action as follows.

Definition 2 (Allocation action): The a = [aq,...,an] is
the allocation action, where a; = 1 or a; = 0 means that the
job is allocated to processor p; or not. Thus, Zfil a; = 1.

Each job in the queue is described by the number of cores
requested by the job. As the job is compute-intensive, based on
the number of requested cores only, we can predict the job’s
impact on the utilization, temperature, and power consumption
of any processor that the job is allocated to. This will be shown
with more details in §IV. Following the standard formulation
of reinforcement learning, the allocation action a is chosen
to maximize the expected return E[R(k)] defined from the
current time step k. Note that we discretize time into steps in
assessing the return. Specifically, the return R(k) is defined
as the exponential average of future rewards, ie., R(k) =
> o r(k+T7+1), where v € (0,1) is a constant discount
factor and 7(k) is a scalar reward in the system state x(k).
The reward function r(k) can be defined by the data center
operator to drive the DRL toward the desired goal. §V will

Runtime system state

/G— State

LSTM-based
Reward state prediction
(2) DRL training m
Action

&/ No overheating
Job allocation decision m

Runtlme verification using
LSTM-based state prediction

Physical
data cener

(1) Train

Execution of]
the decision

Fallback

x Overheating detected mechanism

Fig. 2. Workflow of our offline training approach.

present the detailed form of r(k) used in our evaluation. The
jobs in the queue are allocated sequentially and continuously
to the processors until the queue is empty.

B. Approach Overview

The allocation action a for the job at the queue front should
be chosen according to the current state x(k). The size of
the state-action space is 4N x N, where 4N and N are the
dimensions of the state and action spaces, respectively. As
N is often large (up to thousands) in typical data centers,
it is infeasible to pre-compute the job allocation for every
possible state to maximize the expected return. In this paper,
we apply DRL to address the issue. During the learning
phase, a deep Q-network is trained to capture the allocation
policy that maximizes the expected returns for the encountered
system states. The job allocator trained with a sufficiently
large number of system states is expected to give the optimal
allocation at run time by forward-propagating the Q-network
based on the observed system state. Thus, the DRL-based job
allocator will have low run-time overhead.

During the training phase, the DRL will extensively explore
the state-action space by applying a large number of tentative
actions and then learning the responses of the system as well
as the impact on the reward. These tentative actions can lead to
large deviations of the reward from the optimum. In particular,
they may result in undesirable service quality degradation and
server overheating. Fig. 2 illustrates the workflow of our offline
training approach to address this issue. In the step (1), we col-
lect a large amount of system state and job allocation records
from the physical data center to train a computational model
that can predict the future system states given the current state
and a job allocation. In the step (2), we use the computational
model and real job traces to drive the offline training of the
DRL-based job allocator. Once the offline training completes,
the job allocator is commissioned to actuate in the physical
data center. The following sections of this paper will present
the detailed designs of the computational model and the DRL-
based job allocator, as well as the evaluation.

The computational model can also be used to predict the
consequence of executing a job allocation action chosen by the
DRL-based job allocator to detect potential server overheating.
The job allocation action that will not cause undesirable server
overheating will be executed. Otherwise, a fallback mechanism
that does not try to maximize the reward will be used to

k+1)
ui(k) > LSTM1 | ti(k—1+1)
ik —1+1)
cilk) (k) w;(k + 1)

wi(k)

Fig. 3. A tandem of LSTM networks for system state prediction.

allocate the job. For instance, the job can be allocated to
the coolest processor. Other more advanced thermal-aware job
allocators [27] can also be adopted.

IV. SYSTEM STATE PREDICTION

This section presents the design of our system state pre-
diction based on long short-term memory (LSTM) networks
(§IV-A) and the evaluation using real data traces (§IV-B).

A. Prediction Approach

Data center thermal state prediction is often performed using
computational fluid dynamics (CFD) models. However, the
CFD models generally require extensive calibration by domain
experts for accuracy [28]. Moreover, CFD introduces notably
high computation overhead, making it unsuitable for driving
DRL. In this work, we build neural networks for the prediction.

Recurrent neural networks (RNNs) can well capture tem-
poral correlations. LSTM [29] is an RNN architecture that
addresses the vanishing and exploding gradient problems of
conventional RNNSs. Its outperforming performance has been
demonstrated in a number of sequence prediction tasks such
as speech recognition. Gated RNN [30] is an alternative with
lower compute overhead but inferior prediction accuracy for
sequences with fast dynamics, compared with LSTM. As the
main purpose of the prediction system is for offline training
of DRL, we choose LSTM. We design a bank of LSTM-based
predictors to predict the next system state x(k + 1) based on
the current job allocation a and the latest [€ Z~ measured
system states, i.e., x(k — 1 + 1),...,x(k). Specifically, the
ith predictor in the bank predicts the next system sub-state
corresponding to the ith processor p;, which is defined by
xi(k+1) =[ui(k+1),t;(k+1),w;(k+1),c;(k+1)] € R4,
based on x;(k — [+ 1),...,x;(k). Thus, the LSTM-based
predictors in the bank predict the processors’ states separately.

By analyzing the internal causality among the system state
components, we design the predictor as a tandem of two
LSTM networks for utilization prediction and temperature and
power prediction, respectively. The tandem is illustrated in
Fig. 3 and explained as follows.

Utilization prediction: For the :th processor p;, the first
LSTM network predicts the processor’s next utilization u; (k+
1) based on the past utilizations w;(k — 1 + 1), ..., u;(k), the
past spare cores ¢;(k — 1+ 1),...,¢;(k), and the number of
p;’s cores to be used by the allocated job, which is denoted
by m;(k). Specifically, if a; = 0 (i.e., the job is not allocated
to p;), m;(k) = 0; otherwise, m;(k) is the number of cores
requested by the job.

XXA

XXX

N W
T
1

2

X

076
KR

%6

© o o

XX

<X
XX

—_

Probability

X0
X

K
XXX

03
X

0 m@ \
N AR BN

Coefficient e

R K

10 15 20 24

Number of requested cores

Probability
oo
(==

ol ESX
et T

Fig. 4. Distribution of the number of Fig. 5. Distribution of compute-
cores requested by a job. intensive coefficient e.

Temperature and power prediction: The second LSTM
network predicts the processor’s next temperature ¢;(k + 1)
and power consumption w;(k + 1) based on the past tempera-
tures t;(k — 1+ 1),...,t;(k), past power consumption values
wi(k—1+1),...,w;(k), and predicted utilization w;(k + 1).
Note that the output layer of the LSTM has two units for
temperature and power consumption. After the LSTM, we add
a fully connected layer with 100 units and then another output
layer with two units to yield the final prediction.

The rationale of the above tandem design is that the two
LSTM networks capture two causal processes with different
time constants. The first LSTM network captures a compu-
tation domain process with a short time constant. Ideally,
the processor utilization should respond immediately to the
allocation of the job. Moreover, under the assumption of
compute-intensive jobs made in §III-A, the next utilization
can be predicted analytically as w;(k + 1) = u;(k) + mn—(k)
The LSTM captures other realistic factors that are beyond the
compute-intensive assumption such as non-full utilization of
cores due to core swapping during job execution and I/O-
induced waiting, etc. Differently, the second LSTM network
captures a physical domain process with a larger time con-
stant. That is, the responses of the processor temperature and
power consumption to the utilization changes can be dynamic
processes over time. Intuitively, our tandem design integrating
the above knowledge about the system state evolution will
outperform those based on a pure black box approach. For
instance, another design option is to use a single LSTM
network with the past system states as the input and the next
system state as the output. Our evaluation in §VI-B shows that
this single-LSTM design yields inferior prediction accuracy.

Real system state data traces collected from the target data
center running simple/heuristic job allocation algorithms can
be used as the training data to build the LSTM-based predic-
tors. The two LSTM networks for each processor are trained
separately. We use the mean squared error (MSE) between the
prediction and the ground truth over a training batch as the
loss function. Backpropagation is used to derive the network
gradients and update the LSTM network parameters.

B. Evaluation for a Real Data Center

We apply the prediction approach described in §IV-A to
NSCC hosting 1,152 processors in 16 racks. Each processor
has 24 cores. The data center uses both air cooling and liquid

32 5 | IstLSTM ——
2 208\ 2ndLSTM -------- 1
e 3 W
] 2= 8 0.6 . b
g . 5 g 0.4 ‘~‘\ R
E T tus B 5 - ~ -
S 45 |- Temperature| —e— 2 z 0.2 .
& 40 1| Powerl 11 0 1 1 T Y
012345678 0 10 20 30 40 50 60
Index of time step Epoch

Fig. 6. Impact of a job on processor. Fig. 7. Running loss during training.

cooling. It offers computing services to multiple scientific
research organizations. Each job submitted by the user consists
of an executable, the number of requested cores, and the
expected execution time. The data center currently applies a
round-robin job allocator. We collect the job allocation history
from the data center for six months. The system state is
sampled every ten minutes. Accordingly, we set the time step
length for state prediction to be ten minutes. From our results
of profiling the job arrivals in this data center (which will
be presented in §VI-C4), 97% of the intervals between two
consecutive job arrivals are longer than ten minutes. Thus,
with the 10-min time step length, each of most time steps has
one or zero job arrival only.

1) Dataset profiles: Fig. 4 shows the distribution of the
number of the cores requested by a job. We can see that the
number of requested cores ranges from the lower limit (i.e.,
1) to the upper limit (i.e., 24). The distribution is not uniform,
because programmers are used to choose certain numbers
(e.g., 16 and 24). As discussed in §IV-A, under the compute-
intensive assumption, we have u;(k + 1) = u;(k) + mT(qk)
Thus, we measure a coefficient € = u; (k+ 1) —u;(k) — m;—(k)
for each allocated job to assess the validness of this assump-
tion. If the assumption holds perfectly, we should observe
e = 0. Fig. 5 shows the distribution of all jobs’ € values, which
exhibits a Gaussian-like shape. This means that a majority of
jobs achieve high utilization of the assigned cores. However,
the core utilization behaviors of the computing jobs can be
complex. For instance, a newly admitted job may contend
for low-speed resources (e.g., hard disks) with existing jobs,
leading to a reduction of the overall processor utilization. The
deviations from the ideal compute-intensive assumption shall
be addressed by the first LSTM network.

Fig. 6 shows the processor temperature and the server
power consumption traces when a job is allocated to the
server. We can see that both the temperature and power
consumption increase during the job execution period that is
illustrated by the shaded area. After the completion of the
job, the temperature and power consumption drop gradually.
This example shows the temporal dynamics of the processor
temperature and power consumption processes. Such dynamics
shall be captured by the second LSTM network.

2) LSTM training and prediction results: We divide the
dataset into training, validation, and testing datasets that have
20000, 3126, and 2159 system states, respectively. We set

"ground truth prediction '

Utilization (%)
D
S

1
3000 4000

5000 6000 7000

0 1000 2000

T T
ground truth i
prediction

Temperature (°C)

250
groun(li truth I h

100 150 200 300

350 T T T T

WM%

280 Il Il Il Il Il Il
0 50 100 150 200 250 300
Index of time step

Fig. 8. Prediction results for a processor. Top: utilization; middle: temperature;
bottom: power usage.

Il = 3. We use the PyTorch framework [31] to implement
the LSTM networks.

First, we present the training and evaluation of the utiliza-
tion prediction. The hidden size of the first LSTM is set to be
32. Training settings include: the learning rate is 0.01; mini-
batch size is 32; training time is 30 epochs. The solid curve in
Fig. 7 shows the running loss curve during the training of the
first LSTM for a processor. It shows that the training converges
after about ten epochs. The top part of Fig. 8 shows the ground
truth and the prediction of the utilization of a processor. The
root mean square error (RMSE) of the prediction is 3% only.

Second, we present the training and evaluation of the
temperature and power prediction. The hidden size of the
second LSTM is set to be 128. Training settings include:
learning rate is 0.001; mini-batch size is 15; training time
is 85 epochs. Fig. 7 shows the running loss curve during
the training of the second LSTM for a processor. It shows
that the training converges after about 50 epochs. Compared
with the first LSTM, the second LSTM takes a longer time to
converge. This is because the dynamics of the physical domain
process addressed by the second LSTM is more complex than
the job-utilization process addressed by the first LSTM. The
middle and bottom parts of Fig. 8§ show the temperature and
power consumption predictions made by the tandem of the
two LSTM networks for a processor and the corresponding
ground truths. We can see that the predictions track the ground
truths. The RMSE:s of the temperature and power consumption
predictions are 1.24°C and 8.29 W.

V. DRL-BASED JOB ALLOCATION

To formulate the job allocation as a RL problem, the RL’s
system and action are the data center’s system state x and job
allocation action a defined in Definitions 1 and 2. As discussed
in §I, the traditional RL builds a look-up table Q(x,a) to

assess the value of taking an action a given the current state
x. DRL builds a deep Q-network to approximate Q(x,a)
for problems with large state-action spaces. The Q-network
needs to be “deep” to well approximate (Q(x,a) that can be
highly complicated due to the complex coupling between the
state, action, and value. This section presents the design of the
DRL-based job allocators that allocate a single job (§V-A) or
multiple jobs (§V-B) each time.

A. Design of DRL-Based Job Allocator

As discussed in §I1I-B, the training phase of DRL follows a
trial-and-error paradigm. Thus, the training may attempt ran-
dom and radical actions that will lead to significant deviations
from the optimal values and server overheating. Thus, we use
the system state prediction model presented in §IV as the
environment to train the job allocator in an offline manner. The
training can be driven by real historical job arrival records.

The data center operator can define the reward function
to direct DRL to desired goals. For instance, we may focus
on minimizing the total computing power consumption by
defining the reward to be r(k) = —Zf\il w; (k). We can
also direct DRL to outperform any baseline job allocator by
defining the reward to be

ST (PR ()Pt () +a (PR ()~ PV () (1)
i=1

where the « is a non-negative weight; the superscripts DRL
and BL denote the sub-states under the DRL and the baseline
control schemes, respectively. With a smaller «, the DRL is
driven more toward reducing the total power consumption of
processors; with a larger «, the DRL is driven more toward
reducing the average processor temperature. In §VI, we will
quantitatively evaluate the impact of the « setting on the
performance of the DRL-based job allocator.

We now discuss the techniques that we use to speed up
the convergence of the DRL training. Many deep learning
algorithms assume that the training samples are independent.
However, in the DRL paradigm, the online learning of the deep
Q-network will receive temporally correlated training samples
as the system state transits in response to the actions. Thus, the
online DRL may not converge. Fortunately, with the system
state prediction model as the environment, we can generate the
training samples computationally and perform offline training.
With the offline training data, we use a technique called
experience replay [32], [33] to deal with the training sample
correlation issue mentioned earlier. Specifically, a number of
temporally consecutive training samples compose an episode.
In the inner loop of the training algorithm, a certain number of
episodes are randomly selected from a pool of episodes to form
a mini-batch. This technique effectively breaks the training
sample temporal correlation and improves the efficiency of
training data use as each episode may be used multiple times.

B. Allocating Multiple Jobs Each Time

§V-A presented the DRL-based job allocator when a single
job at the front of the job queue is allocated each time.

This section discusses the extension to allocating J jobs each
time, where J is a fixed integer. Now, the allocation action a
becomes a J x N (0,1)-matrix, in which the (j,¢)th element
aj; =1 or a;; = 0 represents that the jth job is allocated to
processor p; or not. Thus, vazl aj; = 1. When the number
of pending jobs in the queue (denoted by Jg) is less than J,
we supplement the queue with J — Jg dummy jobs requesting
zero cores. As we build a separate LSTM tandem for each
processor, the system state prediction approach in §IV can
also be applied for the case of allocating multiple jobs. The
training of the DRL is same as that presented in §V-A. The
main challenge caused by allocating multiple jobs is that the
dimension of the action space significantly increases to N”. In
general, with a larger action space, the DRL will need more
training data and longer training time for convergence. For
instance, the offline training of the DRL-based job allocator
with J = 1 and J = 2 for NSCC takes about 1 and 1.5
days, respectively. In §VI, we will evaluate the performance
improvement brought by allocating multiple jobs each time.

VI. PERFORMANCE EVALUATION

In this section, we extensively evaluate our DRL-based job
allocator against several baseline approaches.

A. Implementation and Evaluation Methodology

This section presents the implementation details of different
approaches and the evaluation methodology.

1) Implementation of DRL-based job allocator: We build
the Q-network with three dense layers: the input layer admits
the system state; the hidden layer has 24 nodes; the output
layer consists of IV units. The pending J jobs are allocated to
the processors corresponding to the output-layer units giving
the J highest values. The input and hidden layers use rectified
linear units (ReLUs); the output layer uses a linear activation
function. We choose MSE as the loss function and Adam as
the optimizer. The Adam optimizer is a method for efficient
stochastic optimization that only requires first-order gradients
with little memory requirement. The epsilon of DRL, i.e., the
probability that DRL randomly chooses an action, is set to be
0.2. Additionally, we set two hyperparameters called epsilon
decay and epsilon minimum to be 0.999 and 0.01, respectively.
During the training, the epsilon is decayed by multiplying it
with the epsilon decay every job allocation until the epsilon
minimum. Other settings include: learning rate is 0.001; mini-
batch size is 5; discount factor A is 0.99. By DRLI and DRL2,
we refer to the DRL-based job allocators with J is 1 or 2, i.e.,
to allocate one or two jobs in each time step, respectively.

2) Implementations of baseline approaches: We implement
several baseline job allocators as follows.

a) Round-robin (RR) job allocator: RR allocates the job
at the front of the job queue each time to the processors in
a round robin fashion. If the processor in turn does not have
enough spare cores to admit the job, RR skips this processor
and checks the next processor.

b) Job consolidator: Different from RR that tries to
spread the jobs to the processors, the job consolidator tries to
reduce the number of processors to serve the jobs. Specifically,
it first identifies a set of eligible processors with enough
cores that can admit the job at the front of the job queue.
Then, it assigns the job to the processor whose post-allocation
utilization would be higher than that of any other eligible
processor. Note that the post-allocation processor utilization
can be predicted by the system state prediction model.

¢) Online optimizer: For an optimization horizon of h
time steps, the online optimizer follows the principle of model-
predictive control [34] to exhaustively search for the allocation
actions {a(k),a(k+1),...,a(k+h—1)} such that the return
R(k) = Z?:o ~Tr(k + 7 + 1) is maximized, where the
setting for the discount factor v is same as the DRL-based job
allocator. We consider two variants of the online optimizer:

o Online-opt]l adopts a reward function of r(k) =
— N wOPT(k) 4+ a - tOPT(k), where wOPT (k) and
tOPT (k) are the computing power consumption and pro-
cessor temperature under the online optimizer.

e Online-opt2 adopts a reward function similar
to the DRL-based job allocator: r(k) =

N (wPPT (k) — wPl(k)) + o (L7 T (k) — tBH(k)).

K3
Both variants have an exponential complexity with respect to
h, i.e., O(N"). Thus, they scale poorly with h.

3) Evaluation methodology: We conduct trace-driven sim-
ulations to compare the approaches described in §VI-Al
and §VI-A2. In §IV, we have constructed the system state
prediction model using real data traces collected from NSCC.
As discussed in §V-A, we use the model as the environment to
train the DRL-based job allocator. In our evaluation, we also
use the model to simulate the state evolution of the data center
with a job allocator being evaluated. We drive the simulations
using real job arrival records of the data center. Note that these
records are not used in the training phases of the system state
prediction model and the DRL-based job allocator.

To show the DRL-based job allocator’s robustness against
the inherent randomness of its training process, we run
10 training-testing processes with the same hyperparameters
driven by the same training and testing data. We report the
average and standard deviation (s.d.) of the 10 runs’ results.

B. Evaluation Results of System State Prediction

This section evaluates the accuracy of the system state
prediction under various settings. Denoting by F,, and T,
the prediction and the true value, respectively, the prediction
accuracy is computed as 1 — ﬁ Z%:l %, where M is
the number of data points. Table I shows the average prediction
error and the prediction accuracy of processor temperature (t;)
and power consumption (w;) under various combinations of
hyperparameter settings. With the Adam optimizer and the
hyperparameter settings highlighted by bold text in Table I,
the minimum average temperature and power prediction errors
are 1.09°C and 4.89 W only. The corresponding prediction
accuracies are 98.42% and 97.54%. These results show that

TABLE I
IMPACT OF HYPERPARAMETER SETTINGS ON PREDICTION ACCURACY.
Hyperparameters Avg error Accuracy
learn. input hidden batch
. . . t; w; ti w;

rate size size size

le-3 3 32 20 1.65 545 | 97.57% 97.21%
le-3 3 128 20 1.09 489 | 9842% 97.54%
Se-3 3 128 30 205 612 | 96.98% 96.87%
le-3 5 128 30 1.87 534 | 97.25% 97.26%
le-3 3 128 40 192 563 | 97.17% 97.12%
Se-4 3 64 30 143 524 | 97.89% 97.32%

“The units for temperature and power consumption are °C and W.
bThe Adam optimizer and MSE loss function are used in training.

T T
Temperature BZZZH
Power consumption ===

74.4% .
60.0% |

M |

Linear

T
100 | 984% 97.5%

=23 17.0%

SRR
Sote%ed|
RRRKE
<7
oo
S
%

TXIIRLIR

%
25
5o
oo
0%

W
N

.
22
5
%
%

0%
%
oo

~
(=)
T
2T
55
o0
o
X
3

o
5
S5

00

%

%%

29593
o

%%

=
9%
3
%%
%
&

Accuracy (%)
o0
S
T

SO
R
oSe%%

2420208

L

()]
o
T
s
X
oate%es
e
oo

oS
222

=
3

o
e
%
%%
%%

<

S
3
e
$o5
%
o

wn
(=]

Single LSTM SGD

Fig. 9. Temperature and power prediction accuracy of different approaches.

our LSTM tandem can predict the processor temperature and
power consumption accurately.

We also compare our LSTM tandem design with several
alternative design options of (1) single LSTM network, (2)
using stochastic gradient descent (SGD) optimizer instead of
Adam optimizer for the LSTM tandem, and (3) using fully
connected linear network instead of LSTM. Fig. 9 shows the
accuracy of different designs in predicting processor temper-
ature and power consumption. We can see that our design
achieves the highest accuracy. Consistent with our discussion
in §IV-A, our LSTM tandem capturing knowledge about the
system state evolution outperforms the single LSTM network
that follows the black box design approach. The other design
options of using SGD optimizer and linear network give worse
prediction accuracy.

C. Evaluation Results of DRL-based Job Allocator

1) Training convergence of DRLI: We adopt the reward
function in Eq. (1) with RR and job consolidator as the base-
line approaches, respectively. Fig. 10 shows the training and
validation reward traces when Eq. (1) is instantiated with RR

8 211
= 210k
E 6 s.d. range i _§ 9 s.d. range R
= mean = 8 F mean
= 1 1 1 <>3 7 1 1 1
0 100 200 300 400 0 20 40 60 80
Epoch Epoch

(a) Training reward (b) Validation reward

Fig. 10. Training and validation rewards of DRLI. Eq. (1) uses RR as baseline
(o = 0.5). Mean and s.d. are obtained from 10 runs.

mgg T T T mgi B T T T]
EN =1 f]
=2 20+ i
L0 =1]
) 52]
=2 =3 4
=l s.d. range | =1 s.d. range i
k2 4 mean =5 | mean —
=6 . -6 . !

0 100 200 300 400 0 20 40 60 80
Epoch Epoch
(a) Training reward (b) Validation reward
Fig. 11. Training and validation rewards of DRLI. Eq. (1) uses job consol-

idator as baseline (o = 0.5). Mean and s.d. are obtained from 10 runs.

~ 58 o=

Q

Z 54 g

. -

g 50 2

5 4 2
42 1 1 1 1

0 10 20 30 40 50 0
Day

10 20 30 40 50
Day

(a) Online learning with one training epoch per day
155

Temp. (°C)
Power (W)
=T o
W

0 10 20 30 40 50 0 10 20 30 40 50
Day Day
(b) Online learning with 400 training epochs per day
— 58 [T T T T] AISS T T T T
O L i
< 54t { 2150
E‘. §145 - 1
S 2 140 4
42 L L L L 135
0 10 20 30 40 50 0 10 20 30 40 50

Day Day

(c) Online execution of DRLI that is trained offline

Fig. 12. Processor temperature & power consumption. Error bar represents
min & max among 1,152 processors over testing data.

as the baseline. Note that we perform a validation epoch every
five training epochs. The mean traces and the corresponding
s.d. ranges are obtained from 10 runs of the training-validation
process. We can see that both the training and validation
rewards become flattened after about 200 training epochs.
The positive rewards suggest that DRLI can be trained to
outperform the RR approach. Fig. 11 shows the results when
Eq. (1) is instantiated with the job consolidator as the baseline.
The positive rewards suggest DRLI’s superior performance.
By comparing Fig. 10 and Fig. 11, DRLI achieves larger
rewards with respect to RR than the job consolidator. This
is because that the job consolidator outperforms RR in terms
of the reward concerning power and temperature reduction.
2) Convergence time and temperature spikes of online
learning: We conduct simulations to investigate the conver-
gence time and processor temperature profile of DRL when
it directly interacts with the physical data center to perform
online learning. The simulations are driven by real job arrival

:O 44 T T T T T T T T T 14~
g 4.2 'f'"‘. oot 1 12 g)
S 41 f 2
T 3
; 4ar Temperature] 10§
=] 39 F Power --------- o
ﬁ 38 1 1 1 1 1 1 1 1 1 1 8 (=9

0 5 10 15 20 25 30 35
Day

40 45 50

Fig. 13. Temperature reduction and power saving for a processor by DRLI
with respect to RR (a = 0.5).

records collected from NSCC over a period of 52 days.
During the 52 days, a total of 1,500 jobs arrived. On each
simulated day, we train the DRL-based allocator for one
epoch or 400 epochs based on the jobs that have arrived on
that day and before. After the daily update of the DRL, we
perform simulations driven by all the jobs and the system
state predictor constructed in §VI-B to test the performance
of the daily updated DRL-based job allocator. Figs. 12(a)
and 12(b) show the processor temperature and server power
consumption in the daily testing when one or 400 training
epochs are performed for each update. As a comparison, we
test DRLI that has been adequately trained during the offline
learning phase. The offline training of DRLI takes about one
day. Fig. 12(c) shows the testing result for DRLI.

The processor temperatures and power consumption in
Fig. 12(a) are consistently higher than those in Fig. 12(c).
This suggests that the online learning with one training epoch
each day has not converged after 50 days. The slow online
convergence is caused by the large state-action space and
the inadequate training each day. Moreover, from Fig. 12(a),
the servers experience spikes of processor temperature and
power consumption during the testing. They are caused by the
random attempts of DRL during the online learning. Differ-
ently, in Fig. 12(c), DRLI does not cause spikes of processor
temperature and power consumption. From Fig. 12(b), the
online learning with 400 training epochs each day needs about
40 days to converge. It also causes processor temperature
spikes in the first 30 days.

3) Run-time temperature reduction and power saving: We
conduct trace-driven simulations to evaluate the temperature
reduction and power saving achieved by the DRL-based job
allocators that are trained under the reward in Eq. (1) with RR
as the baseline and different o and J settings. The simulations
are driven by the real job arrival records used in §VI-C2, which
span 52 days. Fig. 13 shows the temperature reduction and
power saving for a certain processor when the simulated data
center adopts DRLI (« = 0.5) instead of RR. We can see that
for this processor, DRLI reduces the processor temperature by
about 4°C and power consumption by about 12 W.

We also investigate the impact of the weight o in Eq. (1)
on the temperature reduction and power saving with respect
to RR. The results for a certain processor are shown in
Fig. 14. In Fig. 14(a), with smaller o, more power can be
saved. The s.d. of the power saving increases with «. This

14 T T T T T T 6 A T | T T
online-opt2 &z | < | Online-opt’ mzEsER
SB3r DRL| mmmmm| =6 DRLI mmmmm E
b 2 DRL2 £X~7
' Q
on ‘ 5
E11 5 N k=]
& % 3] N
3 & NS 5| N | K
210 5 NI g ‘Il | o
5 2 Nl N 5 Y DT N
2 N K o 2 I S A N
o bl A A i RN N\
g K] '4. 5*. = I 1 (& & K
o 5 NI S Nl) Il W\ R\l
&8 X NI NI VG N N T N N Y NI
TN : WA\ N N
05 1 15 2 3 4 05 1 15 2
« «

(a) Power saving (b) Temperature reduction

Fig. 14. Impact of o on temperature reduction & power saving of a processor
with respect to RR (error bar represent s.d.; h = 1 for online-opt2).

pnln-optl

&)
004 +
02

s 0
8§ 9 10 11 12 13 14 34 36 38 4 42
Power saving (W) Temperature reduction ("C)

(a) CDF of power saving (b) CDF of temperature reduction

Fig. 15. CDFs of power saving & temperature reduction by DRLI with respect
to various baseline approaches (a = 0.5; h = 1 for online-optl).

is because, with a larger «, the power saving becomes a
less important component in the reward function and more
uncertain at run time. In Fig. 14(b), with a larger o, DRLI
and DRL?2 achieve more temperature reduction. For the same
reason aforementioned, the s.d. of the temperature reduction
generally decreases with a. These results are consistent with
our discussion in §V-A regarding the impact of a on the
training goal. Compared with DRLI, DRL2 achieves more
power savings and temperature reductions. This is because,
compared with sequentially scheduling individual jobs, jointly
scheduling two jobs each time will have a better chance to
further increase the reward. However, DRL2 requires 1.5x
training time compared with DRLI.

We also apply the online optimizer online-opt2 with the
horizon h = 1 and the reward function defined with RR
as the baseline. The power saving and temperature reduction
achieved by online-opt2 are also shown in Fig. 14. The impact
of o on the power saving and temperature reduction is similar
to that under the DRL solutions. Compared with the online op-
timizer, our DRL solutions (i.e., DRLI and DRL2) save more
power and achieve larger temperature reduction. Note that the
online-opt with h = 2 has unacceptably long computation time
(40 minutes) on a GPU-equipped workstation to allocate a job,
rendering the approach unrealistic. Thus, we skip evaluating
online-opt with h > 2.

We investigate the per-processor power savings for all the
1,152 processors in the data center that are achieved by
DRLI with respect to different baseline approaches over the
simulated period of 52 days. Fig. 15(a) shows the cumulative

TABLE II
AVERAGE RELATIVE POWER SAVING & TEMPERATURE REDUCTION
ACHIEVED BY DRLI WITH RESPECT TO BASELINE APPROACHES.

o Relative power saving (%) Avg temperature reduction (°C)
RR greedy online-optl RR greedy online-opt1
0 9.82 9.41 9.22 3.65 3.43 3.21
05 | 9.12 9.10 9.04 4.02 3.85 3.56
1.0 | 832 8.12 8.19 434 3.94 3.72
1.5 | 7.56 7.38 7.33 4.88 422 3.98
2.0 | 6.77 6.60 6.56 4.69 435 4.09
3.0 | 6.44 6.28 6.29 5.21 4.76 445
40 | 6.26 6.12 6.22 5.17 497 4.71

h =1 for online-optl.

distribution function (CDF) of the per-processor power savings
when a = 0.5. We can see that DRLI saves the largest power
over RR. It also saves more than 10 W over the online-optl.
Fig. 15(b) shows the CDF of the temperature reduction. We
can see that, compared with the baseline approaches, DRLI
reduces the processor temperature by 3.4°C to 4.2°C. Table II
shows the average relative power saving and temperature
reduction with respect to various baselines under different «
settings The c average relative power saving is computed as
M Zm 1 wB“{n , where the superscripts DRL and BL
denote the per-processor power consumption (w) under the
DRLI and baseline job allocators, respectively; the M is the
total number of data points for all processors in the 52 days.
We can see that, for any baseline, the relative power saving
achieved by DRLI decreases with «; differently, the average
temperature reduction achieved increases with a.. These results
are consistent with intuition and the result in Fig. 14 for a
single processor. From Table II, compared with the baseline
approaches, DRLI saves computing power by more than 9%
and reduces processor temperature by more than 3°C.

4) Job processing throughput: From our investigation on
the distribution of the time interval between the arrivals of any
two consecutive jobs over the period of 52 days, only 3% of
the intervals are smaller than 10 minutes. Each job allocation
approach operates on a first-come, first-served (FCFS) basis.
If a job at the front of the job queue cannot find an eligible
processor with sufficient spare cores, the job allocator will wait
until an eligible processor becomes available. Thus, the jobs’
waiting times from arrival to allocation and the completion
time of all the 1,500 jobs characterize the job processing
throughput under a certain job allocation approach. Note that
DRLI and DRL?2 allocate a single job and two jobs each time,
respectively. Other baseline approaches allocate a single job
each time. To account for the DRL’s randomness, we conduct
the simulation of allocating the 1,500 jobs for 500 times.

Fig. 16(a) shows the waiting time for each job under dif-
ferent allocation approaches. DRLI and DRL2 achieve similar
job waiting times because both them continuously allocate jobs
until the queue is empty. With our DRL-based job allocators,
the jobs can be promptly allocated to the processors for exe-
cution. With RR, the jobs experience the longest waiting time.
We also measure the completion time of all jobs. Fig. 16(b)
shows the distribution of the completion time with DRLI. The
completion time is up to 1,286 hours. The vertical lines in

o
o

T T T T
DRL1

Probability
=)
T
greedy
online-opt1

Job waiting time (h)

D P 2 P
RORRVHRVR A '»f»

Completion time (hours)

Approaches

(a) Waiting time (b) Completion time
Fig. 16. Job waiting time & jobs completion time. Error bar represents s.d.

the figure represent the completion times with other baseline
approaches. We can see that DRLI has slightly shorter com-
pletion time (i.e., higher job processing throughput) compared
with other baselines. Therefore, our DRL-based job allocator
achieves slightly higher job processing throughput.

Note that if some other job in the queue that requests less
cores can be allocated before the job at the queue front that
cannot be allocated due to lack of eligible processors, the job
waiting times and the completion times can be reduced. Our
future work will study how to extend the DRL formulation to
address such non-FCFS schemes. Moreover, the extensions to
address specified job priority and job soft deadlines are also
interesting topics for future research.

VII. DISCUSSIONS

Our approach requires a training phase, which is a one-time
overhead but brings continued benefits of reduced computing
power and processor temperatures. The training data can be
readily obtained in today’s data centers: the core utilization
and temperatures can be recorded by various monitoring tools;
the server power consumption can be recorded by smart racks
and servers’ built-in power meters. To adapt to the change of
job patterns and servers’ power/heat models due to aging, the
DRL-based job allocator can be re-trained periodically.

VIII. CONCLUSION

This paper applies DRL to allocate compute-intensive jobs
to the servers in a data center. We first build a system
state prediction model based on LSTM networks and then
use the model to train the DRL-based job allocator. Our
training approach avoids potential computing service quality
degradation and server overheating. For a supercomputing data
center with 1,152 processors, we build the LSTM networks
and use real job arrival records over 8 months to train and
test the DRL-based job allocator. Results show that with our
allocator, the simulated data center saves computing power by
nearly 10% and reduces processor temperatures by more than
3°C while maintaining job processing throughput.

ACKNOWLEDGMENT

This work is funded by National Research Foundation
(NRF) via the Green Data Centre Research (GDCR) and the
Green Buildings Innovation Cluster (GBIC), administered by
Info-communications Media Development Authority (IMDA)
and Building and Construction Authority (BCA) respectively.

[1]

[2]
[3]

[4]
[5]

[7]

[8]

[9]
(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

E. O’Shaughnessy, C. Liu, and J. Heeter, “Status and trends in the u.s.
voluntary green power market (2015 data),” National Renewable Energy
Laboratory, Tech. Rep. NREL/TP-6A20-67147, Oct 2016. [Online].
Available: https://www.nrel.gov/docs/fy170sti/67147.pdf

(2018) Singapore is top data center hub in SE Asia: report. [Online].
Available: https://bit.ly/2LEeV2B

A. Shehabi, S. Smith, D. Sartor, R. Brown, M. Herrlin, J. Koomey,
E. Masanet, N. Horner, 1. Azevedo, and W. Lintner, “United
States data center energy usage report,” Lawrence Berkeley National
Laboratory, Tech. Rep. LBNL-1005775, Jun 2016. [Online]. Available:
https://www.osti.gov/servlets/purl/1372902/

A. Sullivan. (2018) ENERGY STAR ™for data centers. [Online].
Available: https://bit.ly/2LdVUoC

Datacenter Dynamics. (2018) Aliyun cools new china data center using
lake water. [Online]. Available: https://bit.ly/2O0ceifo

Google Data Centers. (2018) Efficiency: How we do it. [Online].
Available: https://bit.ly/2084KSz

S. Greenberg, E. Mills, B. Tschudi, P. Rumsey, and B. Myatt, “Best
practices for data centers: Lessons learned from benchmarking 22 data
centers,” The ACEEE Summer Study on Energy Efficiency in Buildings,
vol. 3, pp. 76-87, 2006.

N. El-Sayed, I. A. Stefanovici, G. Amvrosiadis, A. A. Hwang, and
B. Schroeder, “Temperature management in data centers: Why some
(might) like it hot,” in The 12th ACM SIGMETRICS/PERFORMANCE
Joint International Conference on Measurement and Modeling of Com-
puter Systems, 2012, pp. 163-174.

JEDEC. (2018) Arrhenius equation (for reliability). [Online]. Available:
https://bit.ly/2VjetJi

M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Efficient
datacenter resource utilization through cloud resource overcommitment,”
in The 34th Annual IEEE International Conference on Computer Com-
munications (INFOCOM), 2015.

F. Farahnakian, P. Liljeberg, and J. Plosila, “Energy-efficient virtual ma-
chines consolidation in cloud data centers using reinforcement learning,”
in The 22nd Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), 2014.

Q. Tang, S. K. Gupta, and G. Varsamopoulos, “Thermal-aware task
scheduling for data centers through minimizing heat recirculation,” in
IEEE International Conference on Cluster Computing, 2007.

M. Polverini, A. Cianfrani, S. Ren, and A. V. Vasilakos, “Thermal-aware
scheduling of batch jobs in geographically distributed data centers.”
IEEE Transactions on Cloud Computing, vol. 2, no. 1, pp. 71-84, 2014.
R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

Z. Peng, D. Cui, J. Zuo, Q. Li, B. Xu, and W. Lin, “Random task
scheduling scheme based on reinforcement learning in cloud comput-
ing,” Cluster Computing, vol. 18, no. 4, pp. 1595-1607, 2015.

J. J. Jheng, F. H. Tseng, H. C. Chao, and L. D. Chou, “A novel vm
workload prediction using grey forecasting model in cloud data center,”
in International Conference on Information Networking, 2014.

Q. Tang, S. K. S. Gupta, and G. Varsamopoulos, “Energy-efficient
thermal-aware task scheduling for homogeneous high-performance com-
puting data centers: A cyber-physical approach,” IEEE Transactions on
Parallel and Distributed Systems, vol. 19, no. 11, pp. 1458-1472, 2008.

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

T. Mukherjee, A. Banerjee, G. Varsamopoulos, S. K. Gupta, and
S. Rungta, “Spatio-temporal thermal-aware job scheduling to minimize
energy consumption in virtualized heterogeneous data centers,” Com-
puter Networks, vol. 53, no. 17, pp. 2888-2904, 2009.

L. Wang, S. U. Khan, and J. Dayal, “Thermal aware workload place-
ment with task-temperature profiles in a data center,” The Journal of
Supercomputing, vol. 61, no. 3, pp. 780-803, 2012.

T. T. Tran, M. Padmanabhan, P. Y. Zhang, H. Li, D. G. Down, and
J. C. Beck, “Multi-stage resource-aware scheduling for data centers with
heterogeneous servers,” Journal of Scheduling, no. 12, pp. 1-17, 2017.
M. W. Convolbo, J. Chou, C. H. Hsu, and Y. C. Chung, “Geodis: towards
the optimization of data locality-aware job scheduling in geo-distributed
data centers,” Computing, no. 12, pp. 1-26, 2017.

C. Gu, C. Liu, J. Zhang, H. Huang, and X. Jia, “Green scheduling for
cloud data centers using renewable resources,” in The 34th Annual IEEE
International Conference on Computer Communications (INFOCOM),
2015.

Q. Tang, S. K. S. Gupta, D. Stanzione, and P. Cayton, “Thermal-
aware task scheduling to minimize energy usage of blade server based
datacenters,” in The 2nd IEEE International Symposium on Dependable,
Autonomic and Secure Computing, 2015.

L. Cupertino, G. Da Costa, A. Oleksiak, W. Pia, J.-M. Pierson, J. Salom,
L. Siso, P. Stolf, H. Sun, and T. Zilio, “Energy-efficient, thermal-aware
modeling and simulation of data centers: the coolemall approach and
evaluation results,” Ad Hoc Networks, vol. 25, pp. 535-553, 2015.

N. Liu, Z. Li, J. Xu, Z. Xu, S. Lin, Q. Qiu, J. Tang, and Y. Wang,
“A hierarchical framework of cloud resource allocation and power
management using deep reinforcement learning,” in The 37th IEEE
International Conference on Distributed Computing Systems (ICDCS),
2017.

H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource manage-
ment with deep reinforcement learning,” in The 15th ACM Workshop on
Hot Topics in Networks (HotNets), 2016.

M. T. Chaudhry, T. C. Ling, A. Manzoor, S. A. Hussain, and J. Kim,
“Thermal-aware scheduling in green data centers,” ACM Computing
Surveys (CSUR), vol. 47, no. 3, p. 39, 2015.

J. Chen, R. Tan, Y. Wang, G. Xing, X. Wang, X. Wang, B. Punch, and
D. Colbry, “A high-fidelity temperature distribution forecasting system
for data centers,” in The 33rd IEEE Real-Time Systems Symposium
(RTSS), 2012.

F. A. Gers, J. Schmidhuber, and F. A. Cummins, “Learning to forget:
Continual prediction with Istm,” Neural Computation, vol. 12, pp. 2451—
2471, 2000.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

(2018) PyTorch. [Online]. Available: https://pytorch.org/

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, p. 529, 2015.
S. Zhang and R. S. Sutton, “A deeper look at experience replay,” arXiv
preprint arXiv:1712.01275, 2017.

E. F. Camacho and C. B. Alba, Model predictive control.
Science & Business Media, 2013.

Springer

