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ABSTRACT
Recent attacks against cyber-physical systems (CPSes) show that

traditional reliance on isolation for security is insufficient. This

paper develops efficient assessment and mitigation of an attack’s

impact as a system’s built-in mechanisms. We focus on a general

class of attacks, which we call time delay attack, that delays the
transmissions of control data packets in a linear CPS control system.

Our attack impact assessment, which is based on a joint stability-

safety criterion, consists of (i) a machine learning (ML) based safety

classification, and (ii) a tandem stability-safety classification that ex-

ploits a basic relationship between stability and safety, namely that

an unstable systemmust be unsafe whereas a stable systemmay not

be safe. The ML addresses a state explosion problem in the safety

classification, whereas the tandem structure reduces false negatives

in detecting unsafety arising from imperfect ML. We apply our ap-

proach to assess the impact of the attack on power grid automatic

generation control, and accordingly develop a two-tiered mitigation

that tunes the control gain automatically to restore safety where

necessary and shed load only if the tuning is insufficient. Extensive

simulations based on a 37-bus system model are conducted to eval-

uate the effectiveness of our assessment and mitigation approaches.

CCS CONCEPTS
• Security and privacy → Systems security; • Computer sys-
tems organization→Embedded and cyber-physical systems;
• Computing methodologies→ Machine learning.
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1 INTRODUCTION
By integrating modern information and communication technolo-

gies (ICTs), critical systems (e.g., power grids and advanced manu-

facturing facilities) are transforming into cyber-physical systems

(CPSes). However, whereas ICTs can improve system performance,

it also incurs cybersecurity risks. To date, the security of these sys-

tems has largely relied on isolation from public networks through

air gaps and firewalls. However, the isolation is questionable, due

to insiders [30] and stepping stone attacks [35]. For instance, the

Dragonfly attack against power grids [1] compromised a third-party

virtual private network (VPN) software vendor, and then used the

result as a stepping stone for intruding into the grids. Once attack-

ers breach the isolation, they can launch powerful data integrity

attacks similar to Stuxnet [36]. They can also build a botnet that

exploits proliferating industrial Internet-of-Things (IoT) devices to

launch distributed denial-of-service attacks. A prominent example

is the 2016 Dyn attack launched from a massive Mirai-infected IoT

botnet [2].

Motivated by the above security incidents, this paper studies

the assessment and mitigation of the impact of an important and

general class of attacks, which we call the delay attack, on a CPS

that employs closed-loop control [6, 7, 12]. The attack maliciously

delays transmissions of control packets without tampering with the

data content. Since CPS control often has stringent timeliness re-

quirements, the attack can undermine system performance severely

and even cause catastrophic safety incidents. Compared with data

tampering that needs to break non-trivial cryptographic protection,

the delay attack can be implemented more simply using compro-

mised routers or jamming communication channels through an IoT

botnet to increase the communication latency. Hence, it is an impor-

tant threat that requires immediate attention. However, whereas

the attack can be readily detected by trustworthy synchronization

of the clocks of coordinating CPS devices [21, 30] and subsequent

verification of packet timestamps, assessing and mitigating its im-

pact in real time are challenging due to the complexity of typical

real-world cyber-physical control systems.

https://doi.org/10.1145/3302509.3311042
https://doi.org/10.1145/3302509.3311042
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In this paper, we propose a joint stability-safety criterion for

assessing and mitigating an attack’s impact using a data-driven

method. Stability and safety concern a system’s ability to keep its

state fluctuations bounded and moreover within a prescribed range,
respectively, in the presence of exogenous disturbances that are of
bounded magnitudes. As disturbances (e.g., sensor noises and system
input changes) are inevitable, stability is a basic requirement that

must be met by any CPS. Otherwise, the system may experience

unacceptable state divergence following a disturbance. Besides

stability, however, CPS must further operate within its engineered

safety limits. For instance, a 60Hz power grid must maintain its

frequency within a range of about 59.5Hz to 60.5Hz; otherwise,

generators/loads may trip automatically causing blackouts. Thus,

real-time knowledge of the system’s stability and safety is critical.

Based on this knowledge, if a delay attack is assessed to destabilize

the system or push it into an unsafe region, attack mitigation must

be initiated to regain the system’s stability and safety.

This paper considers linear time-invariant (LTI) systems that

can characterize a wide range of real-world cyber-physical sys-

tems. From control theory, an LTI system’s stability depends on

the system model only. Accordingly, analytical solutions for LTI

system stability have been proposed [24–26, 33, 34]. Differently,

the safety of a system depends on its future transient trajectory,

which presents various challenges. Simulating the transient tra-

jectory of a complex system may be too slow for detecting and

reacting to its impending unsafety. An alternative approach is to

run offline simulations comprehensively to understand the sys-

tem’s safety proactively [29], ahead of actual operations. However,

as the trajectory depends on the initial system state, enumerating

all the possible states in a continuous value domain is generally

impossible. For instance, for an n-bus power system, whose system

state dimension is n, its total number of discretized states ismn
,

wherem is the number of quantization steps for the state variable

corresponding to each bus. The value of n for practical systems

can be in the hundreds, making the enumeration computationally

infeasible.

To address the above challenges, we propose a novel delay-attack

impact assessment that features (i) a machine learning (ML) based

safety classification, and (ii) a tandem stability-safety classification

structure. First, to avoid the exponential complexity of enumerating

all the system states, we adopt a Monte Carlo method to randomly

sample the state space and run offline transient simulations to

generate safety labels for the samples. These samples and their

labels are used to train an ML model that can classify the safety of a

live system based on its real-time conditions. The ML-based online

safety classification is made fast enough to ensure the timeliness

of the impact assessment. Second, we leverage a basic relationship

between stability and safety to design the tandem structure, so

that it classifies the system’s stability first and then its safety only

if stability is indicated. As the stability classification is simpler,

faster, and more accurate than the safety assessment, the tandem

structure can reduce (i) false negatives in the unsafety detection due

to the ML’s inaccuracy, and (ii) overall execution time for the attack

impact assessment since the safety classification can be skipped for

a system determined to be unstable.

This paper applies the proposed assessment approach to a real-

world CPS, namely automatic generation control (AGC) [17], which

is a critical component of power grids whose complexity is rep-

resentative of real-world CPS control problems. The goal of the

AGC is to maintain the grid frequency at a standard nominal value

(e.g., 60Hz) in the presence of load changes as primary exogenous

disturbances. As the AGC’s control signals are transmitted over

communication networks, the delay attack is an important concern.

We report extensive simulations using PowerWorld [4], an industry-

strength power system simulator used by actual grid operators. The

results show that the AGC’s stability depends on the delay and

the total load only, whereas its safety additionally depends on the

load changes and detailed distribution of the load among the load

buses. The boundary of the stable region can be obtained easily via

a small set of offline simulations, while a joint application of the

Monte Carlo method and the extreme learning machine (ELM) [16]

is used to learn the safety boundary to manage the aforementioned

state explosion problem with respect to the number of buses and

possible load distributions. We also use the achieved stability-safety

classification to develop a two-tier mitigation of the attack’s impact.

The mitigation regains the stability and safety of the AGCwhenever

needed, by tuning the AGC gain whenever possible and resorting

to shedding load whenever the gain tuning is insufficient.

The rest of this paper is organized as follows. §2 reviews re-

lated work. §3 presents preliminaries and a motivating example.

§4 overviews our approach. §5 and §6 present the attack impact

assessment and mitigation approaches, respectively. §7 presents

extensive evaluation results. §8 concludes.

2 RELATEDWORK
Power system stability and safety classifications are often studied

separately in the literature. In [33], Lyapunov stability theory and

linear matrix inequalities are used to estimate delay margins. In [8],

the stability of a system is classified based on its energy accumu-

lated during a certain time period. Traditional safety classification

methods often analyze post-contingency power flows [20]. They

use active power [5, 20] or composite indices based on various

physical parameters [5] to classify the safety. However, the high

computational overhead of these approaches makes them unsuit-

able for real-time classification [13, 31].

To reduce the computational overhead of real-time classification,

recent studies apply ML (e.g., decision tree [15], support vector

machine (SVM) [31], and artificial neural network (ANN) [13, 27]) to

classify a power system’s stability [15, 31] and safety with respect to

certain contingencies [27], based on measured physical conditions

of the system. In [31], a trained SVM classifies the power system’s

stability by using phasor measurement unit data. The SVM must

be retrained if the system condition has changed significantly. The

ANN model in [27] takes the system loading as input to rank the

severity of the contingency in question, in terms of a composite

performance index. However, all these studies do not address the

emergent concern of cybersecurity.

Power grid cybersecurity has received increasing research. Chen

et al. [7] study the impact on voltage and angle transient stability

of data tampering attacks against voltage support devices. They

do not address attack mitigation. An analytical solution has been

proposed [26] for computing delaymargins for the stability of a load

frequency control system. However, their approach can only deal
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with small (e.g., one- or two-area) systems. Zhang et al. [34] propose

closed-form expressions for evaluating delay-dependent stability in

power grids for the load frequency control. Similarly, this approach

is limited to small systems (e.g., less than three generation units in

each control area) due to the limitations of current solvers.

Existing research on the cybersecurity of AGC has mainly fo-

cused on false data injection (FDI) attacks [10, 11, 28], where the

attacker tampers with sensor and/or control data in the AGC con-

trol loop. Specifically, reachability analysis has been used [10, 11]

to analyze the safety impacts of cyber-attacks against a two-area

system. Rather than qualitative reachability analysis, a quantitative

analysis of the minimum time until the system is unsafe has also

been applied [28]. FDI attacks rely on an adversary’s non-trivial

ability to corrupt data. In contrast, this paper considers the easier

and thus arguably more important attack of maliciously delaying

data packets between communicating system components. There

are existing studies (e.g., [22, 32]) analyzing the impact of the delay

attack on AGC’s stability. The studies [24, 25] develop methods to

estimate the amount of time delay introduced by the attacker as well

as propose delay-tolerant control algorithm [24] and use redundant

communication channels [25] to counteract the attack. All these

studies [22, 24, 25, 32] consider system stability only. Differently,

we assess the impact of the delay attack on both the system stability

and safety; we also leverage a basic relationship between stability

and safety to design the tandem structure. Note that, as shown in

this paper, the safety assessment is more challenging than stability

assessment. Based on the joint stability-safety criterion, our attack

impact mitigation strategy aims at restoring system safety, rather

than system stability only.

3 STABILITY AND SAFETY UNDER DELAY
ATTACK

This section defines stability and safety, as well as our threat model.

Then, we use a simple control system to illustrate the impacts of

the delay attack on the stability and safety.

3.1 System Model and Definitions of Stability
and Safety

We consider a discrete-time CPS control system. Time is divided

into slots. A controller collects measurements by the sensors in a

plant and sends control commands to the actuators, which may

change the state of the plant to maintain it at a given setpoint. The

system is subjected to various disturbances, such as measurement

noises, actuation biases, setpoint changes, etc. We adopt a bounded-

input, bounded-output (BIBO) stability criterion:

Definition 1. A system isBIBO-stable if its state remains bounded
while it experiences bounded disturbances.

We note that there are other stability definitions, e.g., asymptotic

stability [23]. A system is asymptotically stable if for any positive ϵ ,
there exists a positive δ such that for any initial state of the system

x (0), the system’s asymptotic equilibrium limt→∞ x (t ) satisfies
| |x (t )−limt→∞ x (t ) | | < ϵ ,∀t ≥ 0, where | |x (0)−limt→∞ x (t ) | | < δ .
An asymptotically stable system is also BIBO-stable. Thus, BIBO

stability is more basic and it is widely adopted in research on CPS

control. For instance, the IEEE/CIGRE joint task force defines power

system stability based on the BIBO concept [18]. In this paper, by

stability we mean BIBO stability unless otherwise stated. Stability

is a mandatory property for CPS design and operations. We adopt

the following safety definition.

Definition 2. A system is safe if its state remains within a speci-
fied range while it experiences disturbances of magnitudes no larger
than specified values.

Safety is naturally a key concern of system operators, because

devices are designed to function properly only within specified

ranges. Crossing these ranges may damage the devices or cause sys-

tem failures. From Definitions 1 and 2, note that stability describes

a qualitative “bounded” nature of the system state, whereas safety

additionally imposes a quantitative range of the bounds. Thus, sta-
bility is a more basic requirement in that an unstable system must

be unsafe, but a stable system may not be safe. This relationship

between the two different properties of a system will be exploited

in §5 to improve the performance (e.g., accuracy and timeliness) of

the attack impact assessment for both the properties.

3.2 Threat Model
The delay attack is formally described as follows. Letw[t] denote
packetized control data generated and transmitted by the controller

in the t th time slot. The transmissions of the packets are maliciously

delayed by τ time slots. Thus, in the [t + τ ]th time slot, the data

w[t] arrives at the actuator. Note that τ is an integer since the ac-

tuator operates in discrete time. The delay attack does not tamper

with the content of the transmitted data. As §1 discusses, it can

be launched through a compromised router or by jamming com-

munication channels using an industrial IoT botnet. Note that the

delay τ can also include the natural communication latency. In this

paper, we assume that τ is a constant during the attack process. The

results of this paper provide a baseline for understanding the more

complicated situation where the attacker introduces time-varying

delays. The extension of our study to address time-varying delay is

left to future work.

In this paper, we assume that the clocks of the controller and the

actuator are synchronized. Thus, if the controller adds a timestamp

t to the transmitted dataw[t], the actuator can easily measure the

delay τ introduced by the attack. The measured τ is used as an

input to the attack impact assessment and mitigation. We note that

secure clock synchronization techniques [30] can be used to ensure

trustworthy measurements of τ .

3.3 Illustration of Stability and Safety with a
Simple Control System under Delay Attack

We use the feedback control system in Fig. 1 to illustrate the impacts

of the attack on stability and safety. The results provide important

observations that motivate the design of the attack impact assess-

ment and mitigation approaches. In the absence of the attack, the

system dynamics is

x[t + 1] = Ax[t] + B(u[t] + d[t]), (1)

y[t] = Cx[t], u[t] = K(r[t] − y[t]),

where x, y, d, r, and u are the system state, sensor measurement,

disturbance, setpoint, and control signal, respectively; A, B, and C
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K P

d[t]
++

−
e[t]r[t] y[t]

Delay
u[t]

τ

Figure 1: A closed-loop control system.

are system-specificmatrices;K is amatrix characterizing the control

law. Thus, the system employs proportional control. Note that the

attack impact assessment and mitigation developed later in this

paper do not depend on the control law. In particular, the AGC case

study presented in this paper employs proportional-integral (PI)

control. In another case study of power plant control, proportional

integral derivative (PID) control is employed. This second case

study is omitted in this paper due to space constraints and can

be found in [3]. We consider the delay attack on u, as illustrated
in Fig. 1. Because of the attack, the u in Eq. (1) will be a delayed

version u[t −τ ], which is given by u[t −τ ] = K(r[t −τ ]−y[t −τ ] =
K(r[t − τ ] − Cx[t − τ ]). Thus, Eq. (1) becomes

x[t + 1] = Ax[t] − BKCx[t − τ ] + BKr[t − τ ] + Bd[t]. (2)

By the result in [9], a necessary and sufficient condition for the

stability of the discrete time-delay system is that the eigenvalue of

the maximal left solvent ofM (X), whereM (X) = Xτ+1 −XτA − B̃,
X ∈ Cn×n and B̃ = −BKC, i.e., the eigenvalue of the solution

for M (X) = 0, is less than 1. From the expression of M (X), the
eigenvalue of the maximal left solvent only corresponds to the

delay length τ and the system specific matrices. In the following,

we will use one numerical example to explore the system stability

and safety. The numeric results in the rest of this section are based

on the following settings: A = [−1 − 3; 3 − 5], B = [2 − 1; 1 0],

C = [0.8 2.4; 1.6 0.8], K = 2. Moreover, we measure time in units

of slot, which can be translated to actual time in a real system.

3.3.1 Impacts of delay on stability and safety. We run time-domain

simulations to understand the system’s stability and safety under

different delays. The system output y over time under different

settings is shown in Fig. 2. Both the delay against u and the step-

change disturbance d of magnitude of 1.5 are introduced at t =
50. In Figs. 2(a) and 2(b), where τ = 2 and τ = 3, the system

is convergent and divergent, respectively. The system becomes

unstable when we increase the delay to 3 time slots. The safety

classification depends on the safe range definition. For example, if

we define the safe deviation range of y’s components to be [−1, 1],

the system in Fig. 2(a) is safe. However, if the safe range is defined

to be [−0.4, 0.4], the system is unsafe. Thus, even if the system is

stable, it can be either safe or unsafe, depending on the given safety

conditions and the system’s state trajectory.

3.3.2 Impacts of disturbance on stability and safety. Since stability
is determined by the eigenvalue of the maximal left solvent ofM (X)
only, it is not affected by the disturbance d, so that A and B̃ do not

include d. In contrast, as safety depends on the trajectory of y,
which depends on d, the magnitude of d can significantly affect

the safety. We now illustrate this observation using Fig. 2(c) that

has the same setting as Fig. 2(a) except that the disturbances in

Fig. 2(a) and Fig. 2(c) are 1.5 and 30, respectively. Fig. 2(c) shows

larger output deviations, which may violate the safety requirement.
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Figure 2: The system output y under different settings.

3.3.3 Impacts of initial state on stability and safety. As the eigen-
value of the maximal left solvent ofM (X) does not depend on the

initial system state, the stability does not depend on the initial state.

In contrast, since the initial state affects the system trajectory, it

affects the system’s safety. For instance, Fig. 2(d) has the same set-

ting as Fig. 2(a) except that they have different initial states. The

system remains convergent in this case, which generally implies a

stable system. However, the output deviation is doubled compared

with that of Fig. 2(a), and the larger deviation may violate safety.

In summary, we have these two observations: (i) the delay τ
affects both stability and safety, (ii) the safety depends on the dis-

turbance and the system’s initial state, while the stability does not.

These observations will guide the design of the proposed tandem

stability-safety assessment method.

4 OBJECTIVE AND APPROACH OVERVIEW
4.1 Objective and Challenges
We aim to develop delay attack impact assessment and mitigation

for CPS control. The input for the assessment includes the measured

delay τ and the measurements of sensors monitoring the system

state. If the system is classified unsafe (i.e., it will enter an unsafe

region), mitigation actions should be initiated to regain safety.

We face the following main challenges. First, although we can ob-

tain an analytic stability condition for the simple system in Fig. 1(a),

it is challenging to obtain similar conditions for real-world com-

plex systems. Second, the safety classification needs the system’s

trajectory such as those shown in Fig. 2. Although we can use a

high-fidelity simulator to predict the trajectory, the transient simu-

lations for complex systems can be too slow for real-time online

prediction and control. For instance, a transient simulation for the

37-bus power grid shown in Fig. 4 takes 138 s on a 28-core comput-

ing server, while the grid under attack takes less than two minutes

to cross its safe range (cf. Table 2). Thus, the system will have well
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Stability classification Safety classification MitigationStableDelay detected Unsafe

Unstable

EndSafe

Figure 3: Attack impact assessment andmitigation pipeline.

entered the unsafe region by the time the transient simulation com-

pletes. Third, as locating and removing an ongoing cyber-attack

often takes significant time, before the attack is removed, it is criti-

cal to tolerate the attack and mitigate its impact by adapting tunable

system parameters and settings. However, a model that character-

izes the effects of the new parameters and settings on the safety

will be needed to determine their suitable values. It is similarly

challenging to obtain this model for complex systems.

4.2 Approach Overview
This section overviews our approach. In every time slot, if the mea-

sured total delay τ in transmitting sensor measurements and control

commands exceeds a threshold (e.g., the typical communication

delay), we execute the attack impact assessment and mitigation

pipeline shown in Fig. 3. First, we classify the system’s stability. If

the system is unstable, which implies that it is unsafe, we initiate

mitigation to restore safety; otherwise, we classify the system’s

safety. If and only if the system is classified unsafe, we initiate

mitigation. We now discuss the design of the stability and safety

classification, as well as themitigation, that addresses the challenges

described in §4.1.

First, since it is difficult to analyze the stability and safety of

complex systems, we use a simulation-based approach. We assume

that a high-fidelity simulator that can accurately characterize the

system dynamics is available. This assumption agrees with practice.

For instance, power grid operators generally maintain high-fidelity

simulators of their systems to guide design and operations. Using

the simulator, we can explore key factors that affect the system’s

stability and safety.

Second, since the transient simulations, though accurate, are

generally too slow for online use, we conduct offline simulations to

generate extensive data with appropriate stability and safety labels.

The labeled data will be used to characterize the stability and safety

boundaries. However, the dependence of safety on the system’s

initial state, as illustrated in §3.3.3, leads to state explosion if we

were to enumerate all the initial states during the generation phase

of training data. To deal with this issue, we apply a Monte Carlo

method to generate the training data and train an ML model to

characterize the safety boundary. The ML model can also be used

to guide the search for suitable mitigation actions.

Third, the ML model may err occasionally in the safety classi-

fication. On the other hand, as observed from the case studies in

§3.3 and §5, the stability classification is simpler, faster, and more

accurate. Thus, we apply the stability classification first in the over-

all assessment, so that we can condition the safety classification

on the more reliable and faster stability classification result. This

conditional sequential strategy reduces the overall classification

errors and runtime overheads.

The detailed design of the components shown in Fig. 3 is system

specific. However, we believe that the basic design paradigm is

applicable to a wide range of CPSes. In the rest of this paper, we

will apply it to the domain of AGC, which is a fundamental control

system used in real-world power grids, and design accordingly the

domain-specific components. Note that we will focus on the AGC

case study in this paper. We have also applied our approach to

another case study of power plant control, which is omitted in this

paper due to space constraints and can be found in [3].

5 STABILITY-SAFETY ASSESSMENT FOR AGC
Since AGC involves long-range communications and its malfunc-

tion can cause grid-wide failures and infrastructure damage, it can

be an attractive target for attackers. In §5.1, we present necessary

background of the AGC for our discussions. §5.2 presents extensive

simulations to understand the AGC’s stability and safety under

the delay attack. §5.3 applies the proposed tandem stability-safety

assessment to the AGC.

5.1 Background of AGC
AGC maintains the grid frequency at a nominal value (e.g., 60Hz)

by adjusting setpoints of generators. It also maintains the net power

interchanges among neighboring areas at scheduled values [17].

Here, an area is a part of the grid and it is usually operated by

a utility. Two areas are connected by tie-lines. Fig. 4 illustrates a
three-area 37-bus system

1
, where dotted lines represent the tie-

lines. As illustrated in Fig. 5, the AGC, located in the grid control

center, receives over a communication network measurements of

the deviations of the grid frequency (from the standard frequency)

and the ith area’s power export from their respective setpoints

(which are denoted by ∆ωi and ∆PEi ), and it computes the area
control error (ACE) as ACEi = αi · ∆PEi + βi · ∆ωi , where αi and
βi are two constants. The control center sends ACEi to the area’s

power plants over the communication network. Each plant applies

a PI controller with a gain of k to generate a reference signal for

its generator. Specifically, the reference signal is −k
∫
ACEi (t )dt .

The above process is repeated every AGC cycle, which is often two

to four seconds. The sensor measurements and ACE are transmit-

ted in long-range communication networks that are susceptible to

cybersecurity threats. In this paper, we focus on the delay attack

against transmissions of ACE signals. However, our approach can

be readily applied to delay attacks on sensor measurements, or both

ACE signals and sensor measurements.

5.2 AGC’s Stability and Safety under Delay
Attack

This section presents two extensive simulation studies to investi-

gate how the following factors may affect the AGC’s stability and

safety: (i) the grid’s total load, (ii) the distribution of the load among

the load buses, (iii) the change of load, and (iv) the communication

delay. We note that the load distribution determines the power

system’s state, which is often defined as the union of all the buses’

voltage phasors. Thus, the total load can be considered a statistic of

the system’s initial state. The load change is the primary exogenous

1
We use the 37-bus system as a case study throughout this paper. It is a test system [14].

Its scale corresponds to a small-/mid-scale grid in real life. According to our rough

count based on a grid topology database (http://bit.ly/2vRH5Nd), a major fraction of

130 national grids consist of fewer than 37 buses.
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Figure 5: Overview of AGC.

disturbance to the AGC. The simulations are conducted using Pow-

erWorld, an industry-strength high-fidelity power system simulator,

based on the system model in Fig. 4. The main simulation settings

are: the length of a time slot is 1 s; the length of an AGC cycle is 4 s;

each simulation lasts for 300 s; the delay attack on the ACE signal

is launched at t = 120 s; the load change occurs at t = 140 s.

5.2.1 AGC’s stability. The stability is assessed by checking the

system’s convergence. We have the following observations.

AGC’s stability depends on the total load: Fig. 6 shows the

AGC’s stability under different total loads and delays, where a

blue/red point means that the system is stable/unstable, respectively.

A total of 7,900 combinations of the total load and delay are tested.

We can see that the total load affects the maximum delay that the

system can tolerate to keep stable. For instance, when the total

load is 600MW, the maximum tolerable delay is 6 s. When the total

load is 1000MW, the maximum tolerable delay is 2 s only. Fig. 6

also shows a clear cut boundary between the stable and unstable

regions.

AGC’s stability is independent of the detailed load distribu-
tion:We fix the total load at 795MW and distribute it among the

load buses randomly. Simulations using 1,000 random load distribu-

tions show that the maximum tolerable delay is always 2 s. Under

other settings of the total load, the maximum tolerable delay is also

a constant over the different load distributions. This gives strong

empirical evidence that the AGC’s stability is independent of the

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Total load (GW)

0
1
2
3
4
5
6
7
8
9

10
11

D
e

la
y

 (
s
)

Stable

Unstable

Stability Boudary

Figure 6: AGC’s stability under dif-
ferent total loads and delays.

Table 1: Max tolerable
delay.
Load Total load

change 715 795 874

−10% 5 3 3

−5% 5 3 3

0 5 3 3

5% 5 3 3

10% 5 3 3

a
The delays are in seconds.

b
Total Loads are in MW.

load distribution. The observation is consistent with the standard

practice of analytical modeling of AGC, which considers the total

load only but not the load distribution [17].

AGC’s stability is independent of load change: Table 1 shows
the maximum tolerable delay under different settings of the total

load and the load change as percentage of the total load. The load

change consists of step changes at all the load buses at t = 140 s.

The step change is realistic given increasing adoption of demand

response and distributed renewable energy sources that can trigger

sudden changes in load. From the table, for each tested total load

setting, the AGC’s stability is unaffected by the change. This result

is consistent with our discussions in §3.3.2. Moreover, with less

total load, the system can tolerate longer delays, which is consistent

with the results in Fig. 6.

5.2.2 AGC’s safety. We impose the following two safety require-

ments. First, the grid frequency deviation must be within [-0.5Hz,

0.5Hz]. In real systems, if the deviation exceeds this safe range,

disruptive remedial actions such as load shedding will be automati-

cally initiated to protect the grid from infrastructural damage [17].

Second, the power flows must be within capacities of the trans-

mission lines. Otherwise, the lines will trip due to overheating. In

our simulations, we adopt the default line capacities of the 37-bus

system.

Table 2: Time to cross the safe range vs. delay and load
change.

Delay (s)

0 1 2 3

L
o
a
d

c
h
a
n
g
e

(
M
W
)

-80 105.45 105.45 105.7 105.8

-40 ∞ ∞ ∞ 276.1

0 ∞ ∞ ∞ 944.3

40 148.6 148.6 148.6 148.6

80 146.1 146.1 146.1 146.1

∗
The time values are in seconds;∞ means the system is safe.

AGC’s safety depends on load change: The total load is 800MW.

Table 2 shows the time from the launch of the delay attack to the

breach of the safety requirement under different delays and load

changes. The symbol ∞ means that the safety limits are never

crossed, i.e., the system is safe. From the table, the AGC’s safety is

affected by the load change, which is consistent with our discussion

in §3.3.2. For instance, when the load change is 5% of the total load

(i.e., 40MW), the system will be unsafe, regardless of the delay.

When the load change is small, the system will be safe if the delay

is also small. Thus, the load change and delay jointly affect the

safety.
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Figure 8: AGC’s safety under different load distributions. (a)
Infinite line capacity; (b) Finite line capacity.

AGC’s safety depends on total load: Fig. 7 shows the minimum

delays that lead to unsafety under different total loads and load

changes. Each grid point represents such a minimum delay obtained

by running a set of simulations under different delays. Note that, to

simplify the illustration, we relax the transmission line capacities to

infinite, such that the load distribution does not affect the safety. The

next set of experiments will show the impact of the load distribution

on the safety under finite line capacities. In Fig. 7, the surface formed

by the grid points that represent the obtained minimum delays

leading to unsafety divides the space into safe and unsafe regions,

which are below and above the surface, respectively. The result

shows that the total load, the load change, and the delay jointly

affect the AGC’s safety.

AGC’s safety depends on load distribution: We fix the total

load at 800MW and distribute it among the load buses randomly.

Fig. 8(a) and Fig. 8(b) show the classification of the AGC’s safety

given different delays in 30 cases of the load distributions, when the

line capacities are set to be infinite and finite, respectively. Although

the line capacities are finite in practice, we present the infinite case

to help understand the affecting factors of the AGC’s safety. Under

infinite line capacities, the AGC’s safety depends on the frequency

deviation only. The deviation depends on the total load, rather than

the load distribution. Thus, in Fig. 8(a), the safety is independent of

the load distribution. In contrast, since power flows depend on the

load distribution, under finite line capacities, the load distribution

will affect the AGC’s safety. In Fig. 8(b), for a given delay, the system

may be safe or unsafe depending on the load distribution.

5.2.3 Summary. The above experiments show that the AGC’s sta-

bility depends on the total load and the delay, while its safety

additionally depends on the load change and the load distribution.

This observation is mostly consistent with that for the barebone

control system in §3.3, except that the AGC’s stability depends on

the total load, a statistics of the system state. This can be explained

from the fact that AGC is a nonlinear system, although its control-

theoretic analysis is often based on a linearization at the system’s

current condition as characterized by the total load [17]. Thus, the

AGC’s stability condition is also affected by the total load. However,

this minor deviation will not impede the application of the tandem

stability-safety assessment, since the scalar total load will not lead

to a state explosion problem.

5.3 Stability-Safety Assessment for AGC under
Delay Attack

This section applies the proposed tandem stability-safety assess-

ment to AGC. From Fig. 6, since the AGC’s stability has a clear

cut boundary in the two-dimensional space formed by the total

load and the delay, it can be classified quickly at run time based on

the boundary a priori obtained through extensive offline transient

simulations. We call this classification approach boundary-based
stability classification. Specifically, if the system’s current operating

point (i.e., total load and delay) is below the boundary, such as

that shown in Fig. 6, the system is stable; otherwise, it is unstable.

This classification avoids running a time-consuming online tran-

sient simulation based on the system’s current operating point. In

particular, due to the limited dimension of the stability space (i.e.,

two), we can achieve any granularity in enumerating operating

points within any specified range. As a result, the boundary-based

approach achieves perfect classification accuracy asymptotically as

the enumerating granularity goes to zero.

In contrast, AGC’s safety additionally depends on the load dis-

tribution vector, which has exponential complexity with respect to

the number of load buses that is often tens to hundreds. To avoid

the exponential complexity, we use a Monte Carlo method to ran-

domly sample the operating points in a discretized state space and

generate extensive offline simulation results with determined safety

labels to train an ELM [16] to characterize the AGC’s safety. The

ELM is a single hidden layer feedforward neural network with a

training algorithm much faster than conventional gradient-based

learning algorithms. At run time, the trained ELM classifies the

AGC’s safety based on the current operating point (i.e., total load,

load change, load distribution, and delay). In §7, we will compare

the performance of the ELM with a baseline approach that also uses

the training data to classify safety.

We present the following numeric results to show the effective-

ness of the ELM-based safety assessment. The training and testing

data sets consist of 11,000 and 7,000 operating points and their

safety labels, respectively. We use the false positive (FP) and false

negative (FN) rates as the accuracy metrics, which are the percent-

ages of safe (resp., unsafe) cases that are wrongly classified to be

unsafe (resp., safe). The green and red curves in Fig. 9(a) show the

ELM’s FP and FN rates versus the number of hidden nodes in the

ELM. The two rates are generally below 5%. In §7.3, we will discuss

how to deal with the FPs and FNs. When the number of hidden
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nodes is 300, both the two rates reach their knee points. Thus, 300

is a satisfactory setting, since using more hidden nodes does not

improve the accuracy much, but it increases the testing time as

shown by the red curve in Fig. 9(b). Under the setting of 300, the

testing time is around 0.03ms only on an Intel i7 2.2GHz CPU. This

time is short compared with the time horizon of a power grid’s fault

clearing (e.g., 200ms for lightning strike overcurrent clearing). The

testing time can be further reduced significantly by using hardware

acceleration.
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Figure 9: FP, FN rates, and testing time versus the number of
hidden nodes in ELM. (a) FP and FN rates. (b) Testing time.

Lastly, we show the benefits of the tandem stability-safety as-

sessment. First, as the boundary-based stability classification gives

asymptotically perfect accuracy, it helps reduce FNs of the ELM-

based safety classification. The blue and black curves in Fig. 9(a)

show the FP and FN rates of the tandem stability-safety assess-

ment. FN rate is reduced by up to 1%. Second, the blue curve in

Fig. 9(b) shows the testing time of the boundary-based stability

classification, which is 11 microseconds only, 3 times shorter than

that of the ELM’s testing time with 300 hidden nodes. Thus, under

the tandem approach, any instability will be detected by the fast

stability classification, which improves the timeliness of the needed

mitigation (cf. §6). In §7.3, we will evaluate the impact of an FP and

describe an approach to further reduce the FN rate.

6 MITIGATING IMPACT OF ATTACK
AGAINST AGC

This section presents an approach to mitigating the delay attack

impact on AGC. As the total load is an important determining factor

for both stability and safety, a feasible approach is to shed load to

restore safety. However, clearly, load shedding will affect customers

adversely, sometimes severely. Hence, it should be avoided if pos-

sible. This section proposes a two-tier approach that firstly tunes

the AGC gain as a first-line defense, and resorts to shedding load

only when the gain tuning is insufficient. This section studies the

impact of the gain on the AGC’s stability and safety first in §6.1.

Then, it presents the two-tier approach in §6.2.

6.1 Impact of AGC Gain on Stability and Safety
As discussed in §5.1, each power plant applies a PI controller with a

gain of k to the received ACE to produce a reference signal for the

plant’s generator. We conduct simulations based on the 37-bus sys-

tem model to investigate the impact of k on the AGC’s stability and

safety. The curves and surfaces in Figs. 10(a) and (b) show the stabil-

ity and safety boundaries, respectively, under different settings of k .
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Figure 10: System stability and safety boundaries under dif-
ferent k settings.
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Figure 11: Two-tier delay attack impact mitigation.

By reducing k , we can expand the stable and safe regions. However,

from control theory, a smaller k will result in slower convergence

when there is a load change. Hence, we have a trade-off between

(i) AGC’s tolerance to the delay in terms of stability and safety, and

(ii) AGC’s convergence speed in response to a load change. As AGC

generally also needs to meet some required convergence speed,

there exists in practice a minimum allowable setting for k [17],

which is denoted as kmin. Multiple ELMs are trained to characterize

the safety boundaries under different settings of k . This ELM bank
will be used in §6.2 to find a k to restore safety where needed.

6.2 Two-Tier Delay Attack Impact Mitigation
Fig. 11 illustrates the integrated stability-safety assessment and

attack impact mitigation. When a system is classified unstable or

unsafe, the two-tier mitigation is activated. No mitigation is needed

only when the system is classified safe. The two-tier mitigation

works as follows. First, within the range from kmin to the current

setting of k , we search for the maximum setting of k that can restore

safety using the ELM bank discussed in §6.1. If such a k setting

is found, it is piggybacked onto the next ACE signal that will be

sent to generators. Otherwise, load shedding should be applied. We

use the ELM bank to find the minimum amount of load that needs

to be shed to restore safety under the setting kmin. This minimum

amount is denoted by ∆Lmin. The grid operator sheds ∆Lmin load

and piggybacks the kmin to the next ACE signal that will be sent

to generators. The shedding amount can be shared among load

buses equally or using existing scheduling algorithms addressing

other grid operation optimization objectives and constraints [19].

Once a generator receives the new AGC gain, it updates its setting

accordingly.
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7 PERFORMANCE EVALUATION
This section evaluates several key aspects of our attack impact

assessment and mitigation designed for the AGC of the 37-bus

system shown in Fig. 4.

7.1 Effectiveness of ELM-Based Safety
Classification

We compare the proposed ELM-based approach with a data-driven

baseline approach. Specifically, the baseline finds a system oper-

ating point within the ELM’s training data that has the smallest

Euclidean distance to the system’s current operating point, and

yields the found operating point’s safety label. Fig. 12 shows the

classification error rates of our ELM-based and the baseline ap-

proaches under different settings of training data volume. Consis-

tent with intuition, the error rate decreases with the volume of

training data. The ELM-based approach gives lower error rates.

Moreover, the running time for the ELM-based approach is up to

6,000 times shorter than that of the baseline approach.
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Figure 12: Comparison between ELM-based and data-driven
baseline approaches.

7.2 Effectiveness of Attack Mitigation
We conduct two simulations to show the effectiveness of our two-

tier attack mitigation. The system’s total load is 1000MW. The

initial setting for k is 10. The safety requirement for the grid fre-

quency deviation is [−0.5Hz,0.5Hz]. The attacker delays the ACE

signal by 4 s from t = 120 s. The attack impact assessment classifies

the system safe until a step load change is introduced at t = 140 s.

In Fig. 13(a), the load change is 5% of the total load. At this moment,

the system is classified unsafe. The red curve in Fig. 13(a) shows

the system’s trajectory if no mitigation is applied. It confirms the

assessment result. The mitigation approach starts searching for a k
setting to regain safety. By decreasing k from 10 to kmin = 5, the

system is classified safe under the attack. The thick green curve

in Fig. 13(a) shows the system’s trajectory after the new setting

k = 5 is applied. We can see that the system becomes safe after

the mitigation. In Fig. 13(b), the load change is 8% of the total load.

Because of the increased load change, tuning k to kmin = 5 is insuf-

ficient and shedding 10% of load is needed to restore safety. The

thick green curve in Fig. 13(b) shows the system’s trajectory after

load shedding and reconfiguring k . The system is safe after the

mitigation. The effects of different mitigation approaches on the

customers are different. In Fig. 13(b), as tuning k to kmin still cannot

mitigate the attack impact, we have to shed some of the customer

loads, which results in lower utility to the owners. In Fig. 13(a), as

the mitigation is achieved by adjusting the AGC parameters only,

no customers will be affected.
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Figure 13: Attack impact mitigation examples. (a) Tuning k
only; (b) Tuning k and shedding load.

7.3 False Positives and Negatives in Safety
Classification

While the ML deals with the state explosion problem, it results in

FPs and FNs. An FP will trigger the attack mitigation. Fig. 14(a)

shows the system’s trajectory after the mitigation wrongly trig-

gered by a safety classification FP caused by a load change that

is 0.5% of the total load, where the ACE signal is delayed by 2 s

from t = 120 s. As the mitigation applies a small adjustment only

(i.e., decrease k from 10 to 8), the frequency deviation has a slightly

longer settling time. Moreover, Fig. 14(b) shows another scenario

of the system’s trajectory after the mitigation wrongly triggered by

a safety classification FP caused by a load change that is 0.5% of the

total load, where the ACE signal is delayed by 5 s from t = 120 s.

The mitigation sheds 8% of the total load after decreasing k from 10

to 5; the frequency deviation can even have a shorter settling time.

This is because the mitigation speeds up the system to diminish the

small fluctuations due to the delay. Therefore, as FPs mostly occur

for marginally safe operating conditions, the triggered mitigation

is generally of small strength. The weak mitigation can lead to a

slight settling time increase. Sometimes, it can even help decrease

the settling time, which mitigates the concern for FPs.
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Figure 14: Mitigation is wrongly triggered. (a) By a safety
classification false positive and k is tuned; (b) By a safety
classification false positive and load shedding is conducted.

In contrast, the system may become unsafe due to FNs. We

discuss a sliding window approach as illustrated in Fig. 15(a) to

reduce the FNs. In this approach, the load change is defined as the

difference between the current load and the load in the previous

time window. As a result, a step load change will be assessed for

multiple times. For instance, in Fig. 15(a), the time window is two

time slots and the step load change will be assessed twice at t = t3
and t = t4. Due to random temporal fluctuations of the load, the

probability that an unsafety can be detected in at least one of the

multiple assessments will increase, thus reducing the FN rate. By
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Figure 15: (a) Sliding window approach. The time window is
set as two time slots and the step load changewill be assessed
twice at t = t3 and t = t4. (b) FN rate vs. window size. The win-
dow size increases from 1 to 5 and the standard deviations
of three different random load fluctuations are illustrated.

increasing the window size, a load change will be assessed for more

times. Fig. 15(b) shows the FN rate versus the window size under

different random load fluctuations’ standard deviations (σ ). The
FN rate decreases with the window size. Thus, this approach can

effectively reduce the FN rate. The concern for increased FP rate

due to this approach is minor since the FPs cause little impact on

the system as illustrated earlier.

8 CONCLUSION
This paper presented an efficient delay attack impact assessment

approach that applies a stability classifier and an ML-based safety

classifier sequentially. The ML addresses the state explosion prob-

lem in the safety classification due to the dependence of the system’s

safety on the multi-dimensional system state. The tandem stability-

safety design improves the accuracy of the unsafety detection and

speeds up the overall assessment.We applied our approach to power

grid AGC, and developed a two-tier attack impact mitigation that

tunes the control gain as a first-line defense and resorts to shedding

load only if the gain tuning is insufficient to regain safety. Simula-

tions based on a 37-bus system model verified and illustrated the

effectiveness of our assessment and mitigation approaches.
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