1 / 24

Collaborative Target Detection in Wireless Sensor Networks with Reactive Mobility

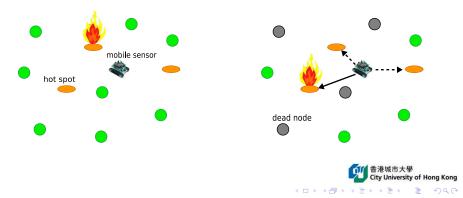
Rui Tan¹ Guoliang Xing¹ Jianping Wang¹ Hing Cheung So²

> ¹Department of Computer Science City University of Hong Kong

²Department of Electronic Engineering City University of Hong Kong

1. Motivation

- 2. Preliminaries
- 3. Problem Formulation
- 4. Near-optimal Solution
- 5. Performance Evaluation


Challenges for Mission-critical Sensing Applications

- Stringent QoS requirements
 - Target detection/tracking, security surveillance
 - High detection probability
 - Low false alarm rate
 - Bounded detection delay
- Unpredictable network dynamics
 - · Coverage holes caused by death of nodes
- Changing physical environments
 - Different spatial distribution of events

Exploit Mobility in Target Detection

- · Sense better signal by moving sensors closer to targets
- Adapt to the changes of network condition and physical environments
- **Example: fire detection**

Mobile Sensor Platforms

Robomote @ USC

Koala @ NASA GRC

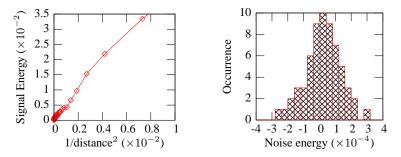
PackBot @ iRobot.com

Challenges

- Low movement speed (0.1 ~ 2m/s)
 - Increase detection latency
- High manufacturing cost
 - A small number of mobile sensors available
- High energy consumption
 - Locomotion consumes much higher power than wireless
 communication

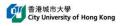
Overview of Our Approach

- Data-fusion based target detection
 - Explore the collaboration between mobile and static sensors
- Near-optimal sensor movement scheduling algorithm
 - Reduce moving distance of sensors
 - Satisfy QoS requirements:
 - · Low false alarm rate
 - High detection probability
 - Bounded detection delay
- Performance evaluation using real data traces


1. Motivation

2. Preliminaries

- 3. Problem Formulation
- 4. Near-optimal Solution
- 5. Performance Evaluation


Signl Energy Model and Noise Model

Plotted using real data traces from DARPA SensIT experiments

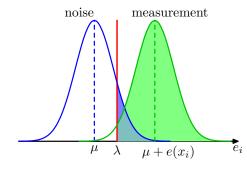
$$e(x) = rac{ ext{initial target energy}}{x^2}$$
 noise $\sim N(\mu, \sigma^2)$

Measurement = e(x) + noise

Single-sensor Detection Model

• Local decision of sensor i

$$= \left\{ \begin{array}{ll} 1 & \text{if } \mathbf{e}_i \geq \lambda \\ \mathbf{0} & \text{if } \mathbf{e}_i < \lambda \end{array} \right.$$


• The false alarm rate of sensor *i*

$$P_F^i = \mathsf{Q}\left(\frac{\lambda - \mu}{\sigma}\right)$$

• The detection probability

$$P_D^i = \mathsf{Q}\left(rac{\lambda - \mu - \boldsymbol{e}(\boldsymbol{x}_i)}{\sigma}
ight)$$

CCDF:
$$Q(x) = 1 - \int_{-\infty}^{x} \phi(t) dt$$

• closer to the target, higher P_D

Decision Fusion Model

• System detection decision

Majority Rule: $\begin{cases} 1 & \text{if more than } n/2 \text{ sensors decide 1} \\ 0 & \text{otherwise} \end{cases}$

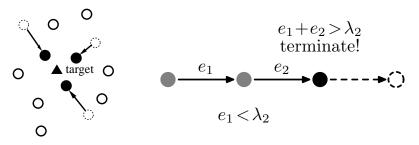
• The system false alarm rate

$$P_F = \mathsf{Q}\left(\frac{\frac{n}{2} - \sum_{i=1}^{n} P_F^i}{\sqrt{\sum_{i=1}^{n} P_F^i + \sum_{i=1}^{n} (P_F^i)^2}}\right)$$

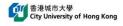
• The system detection probability

$$P_{D} = Q\left(\frac{\frac{n}{2} - \sum_{i=1}^{n} P_{D}^{i}}{\sqrt{\sum_{i=1}^{n} P_{D}^{i} + \sum_{i=1}^{n} (P_{D}^{i})^{2}}}\right)$$

- 1. Motivation
- 2. Preliminaries
- 3. Problem Formulation
- 4. Near-optimal Solution
- 5. Performance Evaluation


Target Detection with Mobile Sensors

- Long distance movement can
 - quickly deplete the battery of a mobile node
 - disrupt the network topology
- Problem formulation: minimize the moving distance of sensors subject to
 - $P_F \leq \alpha$, e.g., 5%
 - *P*_D ≥ β, e.g., 95%
 - Average detection delay \leq *D*, *e.g.*, 15s


A Two-phase Detection Approach

- 1st phase: each sensor makes local decision by $e_0 \ge \lambda_1$
 - If the system decision is 1, the 2nd phase is initiated
- 2nd phase: mobile sensors move and periodically sense
 - A sensor terminates the detection and decides 1 if

$$\mathbf{e}_1 + \mathbf{e}_2 + \cdots + \mathbf{e}_j \geq \lambda_2$$

Make final detection decision

< D > < A > < B</p>

Advantages of Reactive Mobility

- Sensors move reacting to positive decision in the 1st phase
- Avoid unnecessary movement by consensus check in the 1st phase
 - Reduce the probability of movement when the target is absent
- Terminate moving once enough signal energy is obtained
 - If a loud target appears, mobile sensors can terminate movement quickly

Problem Formulation

Objective: Find the two detection thresholds λ_1 , λ_2 and a movement schedule to minimize the expected moving distance:

$$P_a \cdot P_{D1} \cdot \mathcal{L}_1 + (1 - P_a) \cdot P_{F1} \cdot \mathcal{L}_0$$

correct detection false alarm

- P_a : the probability that a target appears
- *L*₀(*L*₁): the expected moving distance when the target is absent (present)

A B > A B >

Constraints:

- $P_{F1} \cdot P_{F2} \leq \alpha$
- $P_{D1} \cdot P_{D2} \ge \beta$

- 1. Motivation
- 2. Preliminaries
- 3. Problem Formulation
- 4. Near-optimal Solution
- 5. Performance Evaluation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Structure of Optimal Solution

- **Theorem 1:** Total moving distance decreases with the system detection probability in the 2nd phase, *i.e.*, *P*_{D2}
- Linear approximation using the 1st order Taylor expansion

$$Q^{-1}(P_{D2}) = \frac{\frac{n}{2} - \sum_{i=1}^{n} P_{D2}^{i}}{\sqrt{\sum_{i=1}^{n} P_{D2}^{i} - \sum_{i=1}^{n} (P_{D2}^{i})^{2}}}$$
$$\simeq -\frac{2}{\sqrt{n}} \sum_{i=1}^{n} P_{D2}^{i} + \text{constant}$$

 P_{D2} increases with $\sum_{i=1}^{n} P_{D2}^{i}$ with high probability

- Simplified problem formulation
 - Maximize $\sum_{i=1}^{n} P_{D2}^{i}$ subject to the constraints:

$$P_{F1} \cdot P_{F2} \le \alpha \qquad P_{D1} \cdot P_{D2} \ge \beta$$

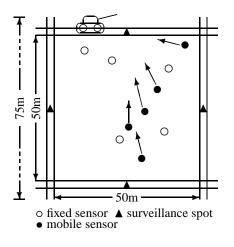
The Structure of Optimal Solution (Cont.)


- Combination of sensor movement is exponential
 - Finding maximized $\sum_{i=1}^{n} P_{D2}^{i}$ is exponential
- **Theorem 2:** In the optimal solution, each mobile sensor move in parallel and consecutively
- Implication
 - $\sum_{i=1}^{n} P_{D2}^{i}$ can be maximized by Dynamic Programming

Dynamic Programming: An Example

- Two sensors: A and B
- Budget: two sensor moves
- Suppose:

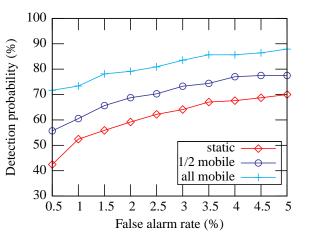
 $\begin{array}{l} P^A_D(0)=0.40, P^A_D(1)=0.50, P^A_D(2)=0.60\\ P^B_D(0)=0.46, P^B_D(1)=0.60, P^B_D(2)=0.67 \end{array} \end{array}$


- 1. Motivation
- 2. Preliminaries
- 3. Problem Formulation
- 4. Near-optimal Solution
- 5. Performance Evaluation

ity of Hong Kong

Simulation Settings

- Data: public dataset of DARPA SensIT experiment
- Targets: Amphibious Assault Vehicles (AAVs)
- Sensors are randomly deployed in a 50m×50m field



A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Impact of The Number of Mobile Sensors

 Total 12 sensors

 10% to 35% performance improvement by 6 mobile sensors

Conclusions

- Propose a two-phase detection approach
 - · Reactive mobility
 - Collaboration between static and mobile sensors
- · Develop a near-optimal movement scheduling algorithm
- · Provide insights into detection system design
 - Efficient movement schedule of a small number of mobile sensors significantly boost the detection performance

23/24

24 / 24

Thanks!

