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ABSTRACT

The Internet of Things (IoT) will be a main data generation in-

frastructure for achieving better system intelligence. This paper

considers the design and implementation of a practical privacy-

preserving collaborative learning scheme, in which a curious learn-

ing coordinator trains a better machine learning model based on

the data samples contributed by a number of IoT objects, while

the con�dentiality of the raw forms of the training data is pro-

tected against the coordinator. Existing distributed machine learn-

ing and data encryption approaches incur signi�cant computation

and communication overhead, rendering them ill-suited for resource-

constrained IoT objects. We study an approach that applies inde-

pendent Gaussian random projection at each IoT object to obfus-

cate data and trains a deep neural network at the coordinator based

on the projected data from the IoT objects. This approach intro-

duces light computation overhead to the IoT objects and moves

most workload to the coordinator that can have su�cient comput-

ing resources. Although the independent projections performed by

the IoT objects address the potential collusion between the curious

coordinator and some compromised IoT objects, they signi�cantly

increase the complexity of the projected data. In this paper, we

leverage the superior learning capability of deep learning in captur-

ing sophisticated patterns to maintain good learning performance.

Extensive comparative evaluation shows that this approach out-

performs other lightweight approaches that apply additive noisi�-

cation for di�erential privacy and/or support vector machines for

learning in the applications with light data pattern complexities.

CCS CONCEPTS

•Computer systemsorganization→ Sensornetworks; •Com-

putingmethodologies→ Supervised learning; • Security and

privacy → Domain-speci�c security and privacy architectures.
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1 INTRODUCTION

The recent research advances of machine learning have led to per-

formance breakthroughs of various tasks such as image classi�ca-

tion, speech recognition, and language understanding. The drasti-

cally increasing amount of data generated by the Internet of Things

(IoT) will further foster machine learning performance and enable

new applications in various domains. In particular, the collabora-

tive learning, which builds a machine learning model (e.g., a super-

vised classi�er) based on the training data contributed by many

participants, is a desirable and empowering paradigm for smarter

IoT systems. By leveraging on the much increased volume of train-

ing data and coverage of data patterns, collaborative learning will

approach the intelligence of a crowd and improve the learning per-

formance beyond that achieved by any single participant alone.

Moreover, a resource-rich learning coordinator (e.g., a desktop-class

edge device or a cloud computing service) allows the execution of

advanced, compute-intensive machine learning algorithms to cap-

ture deeper structures in the aggregated data, whereas the partici-

pants (e.g., IoT objects) are often resource-constrained and incom-

petent for intensive computation. By contributing training data,

the individual participants will enjoy the improved machine intel-

ligence in return.

However, the data contributed by the participants may contain

privacy-sensitive information. On Internet, various online services

(e.g., webmail and social networking) generally collect and ana-

lyze the user data in the raw forms. In this scheme, the users risk

privacy leak due to potential inadvertent actions by the service

providers and/or targeted cyber-attacks from the external. This

risk has been evidenced by several recent large-scale user privacy

leak incidents [7, 34, 38]. Data anonymization can mitigate the con-

cern; but it is inadequate for privacy preservation, because cross

correlations among di�erent databases may be used to re-identify

https://doi.org/10.1145/3302505.3310070
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data [33]. Moreover, the correlations between di�erent properties

of anonymous individuals (e.g., race, income, political views, etc.)

can be exploited to identify an interested user group to target for

advertisement and advocacy. In the coming era of IoT with many

smart objects penetrating into our private space and time, the cur-

rent raw data collection approach will only raise large privacy con-

cerns and may potentially violate relevant laws such as the recent

General Data Protection Regulation in European Union. Therefore,

to be successful, the IoT-driven collaborative learning applications

must be privacy-preserving.

Privacy-preserving collaborative learning (PPCL) has received

increasing research recently under the enterprise settings, where

the participants are entities with rich computing resources. The

existing approaches can be broadly classi�ed into two categories.

The �rst category of approaches [9, 23, 31, 36, 40] follows the dis-

tributed machine learning (DML) scheme, such that the partici-

pants do not need to transmit the training data to the coordinator.

The recently proposed federated learning [31] is a type of DML. In

the second category of approaches [12, 19, 22], each participant ap-

plies the homomorphic encryption on the data before being trans-

mitted to the coordinator such that the training and inference can

be performed on ciphertexts. However, for resource-constrained

IoT objects, these DML and data encryption approaches incur sig-

ni�cant and even prohibited compute overhead. The DML will re-

quire the participants to execute machine learning algorithms to

train local models, which is often too compute-intensive for IoT

objects. Moreover, the iterative communication rounds of DML in-

troduce large communication overhead. Currently, the homomor-

phic encryption algorithms are still too compute-intensive to be

realistic for resource-constrained devices (cf. §6). Therefore, these

existing approaches are ill-suited or unpractical for the resource-

constrained smart objects beneath the IoT edge.

In this paper, we study the design and implementation of a PPCL

approach that is lightweight for resource-constrained participants,

while keeping privacy-preserving against a honest-but-curious learn-

ing coordinator. The coordinator can be a cloud server or a resource-

rich edge device, e.g., access points, base stations, network routers,

etc. We propose to apply (1) multiplicative Gaussian random pro-

jection (GRP) at the resource-constrained IoT objects to obfuscate

the contributed training data and (2) deep learning at the coordina-

tor to address the much increased complexity of the data patterns

due to the GRP. Speci�cally, each participant uses a private, time-

invariant but randomly generated Gaussian matrix to project each

plaintext training data vector and transmits the result to the coor-

dinator. GRP gives several privacy preservation properties of (1)

the computational di�culty for the coordinator to reconstruct the

plaintext without knowing the Gaussian matrix [30, 37], and (2)

quanti�able plaintext reconstruction error bounds even if the co-

ordinator obtains the Gaussian matrix [30]. From a system perspec-

tive, GRP is computationally lightweight and does not increase the

data volume. Thus, GRP is a practical privacy protection method

suitable for resource-constrained IoT objects. Regarding GRP’s im-

pact on the design of the machine learning algorithms, the ran-

dom projection can be viewed as a process of mapping the original

data vectors to some domain in which the data vectors in di�erent

classes are less separatable. If the original data vectors are readily

separatable (that is, they are features), the inverse of the Gauss-

ian matrix can be considered as a linear feature extraction matrix.

With the deep learning’s unsupervised feature learning capability,

this inverse matrix can be implicitly captured by the trained deep

model. Thus, we conjecture that the randomly projected training

samples can still be used by the coordinator to build the deepmodel

for classi�cation.

To achieve robustness of the privacy preservation against the

collusion between any single participant and the curious learning

coordinator, each participant should generate its ownGaussianma-

trix independently. However, this presents a main challenge on the

PPCL system’s scalability with respect to the number of partici-

pants (denoted by N ). Speci�cally, assuming that the training data

samples for each class are horizontally distributed among the par-

ticipants, the number of data patterns for a class will increase from

one in the plaintext domain to N in the projection data domain.

This increased pattern complexity is to be addressed by the strong

learning capability of deep learning. Thus, in the proposed PPCL

approach, most of the computational workload is o�oaded to the

resourceful coordinator at the edge or in the cloud, unlike the exist-

ing DML and homomorphic encryption approaches that introduce

signi�cant or prohibitive compute overhead to the smart objects

beneath the IoT edge.

To understand the e�ectiveness of the GRP approach and its

scalability with the number of participants and the pattern com-

plexity of the training data, we conduct extensive evaluation to

compareGRPwith several other lightweight PPCL approaches. The

evaluation is based on two example applicationswith low andmod-

erate pattern complexities, i.e., handwritten digit recognition and

spam e-mail detection. The baseline approaches include various

combinations between (1) multiplicative GRP versus additive nois-

i�cation for di�erential privacy (DP) at the participants, and (2)

deep neural networks (DNNs), including the multilayer percep-

tron (MLP) and convolutional neural network (CNN), versus sup-

port vector machines (SVMs) at the coordinator. The results show

that, for the two example applications, the proposed GRP-DNN ap-

proach can support up to hundreds of participants without sac-

ri�cing the learning performance much, whereas the GRP-SVM

approach may fail to capture the projected data patterns and the

performance of the DP-DNN approach is susceptible to additive

noisi�cation. The results of this paper suggest that GRP-DNN is a

practical PPCL approach for resource-constrained IoT objects ob-

serving data with low- or moderate-complexity patterns.

We also implement GRP-DNN, Crowd-ML [23] (a federated learn-

ing approach based on shallow learning), and CryptoNets [19] (a

homomorphic encryption approach) on a testbed of 14 IoT devices.

Experiments show that, compared with GRP-DNN, Crowd-ML in-

curs 350x compute overhead and 3.5x communication overhead to

each IoT device. Deep federated learning will only incur more com-

pute overhead. CryptoNets incurs 2.6 million times higher com-

pute overhead to the IoT device, compared with GRP.

The remainder of this paper is organized as follows. §2 intro-

duces the background and preliminaries. §3 reviews related work.

§4 states the problem and overviews our approach. §5 presents the

learning performance evaluation for various lightweight PPCL ap-

proaches. §6 presents the benchmark results of GRP-DNN, Crowd-

ML, and CryptoNets on the testbed. §7 concludes this paper.
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2 BACKGROUND AND PRELIMINARIES

2.1 Supervised Collaborative Learning

Supervisedmachine learning has two phases, i.e., the learning phase

and the classi�cation phase. We now formally describe the collab-

orative learning scheme. The trained classi�er, denoted by h(x|θ ),
can classify a d-dimensional data vector x ∈ Rd to be one of a

�nite number of classes represented by a set C. The learning pro-

cess determines the parameter θ based on the training data. Let

N denote the number of participants of the collaborative learning.

Let Di denote a set of Mi training data samples generated by the

participant i , i.e.,Di = {(xi,j ,yi,j ) |j ∈ [1,Mi ],yi,j ∈ C}, where xi,j
is the training data vector and yi,j is the corresponding class label.

For a training data sample (x,y), denote by l (h(x|θ ),y) the loss

function. The collaborative learning solves the following problem

to determine the optimal classi�er parameter denoted by θ∗:

θ
∗
= argmin

θ

N
∑

i=1

1

Mi

Mi
∑

j=1

l
(

h
(

xi,j |θ
)

,yi,j
)

+ λ‖θ ‖2, (1)

where the λ‖θ ‖2 is a regularization term. With θ
∗, the classi�ca-

tion for a test data sample x is to compute h(x|θ∗).
A simple approach is to collect all the plaintext training data to

the coordinator and solve Eq. (1). However, this approach raises the

concern of privacy breach, as the raw training data are generally

privacy-sensitive. The problem of solving Eq. (1) without threat-

ening the participants’ privacy contained in Di , i = 1, . . . ,N , is

called PPCL. Existing approaches to PPCL will be reviewed in §3.

2.2 Random Gaussian Projection (GRP)

This section reviews two properties of GRP. Let R ∈ Rk×d rep-

resent a random Gaussian matrix, i.e., each element in R is drawn

independently from the normal distributionN (0,σ2 ). GRP has the

following two properties [30]:

Property 1. For data vectors x1, x2 and their projections y1 =
1√
kσ

Rx1, y2 =
1√
kσ

Rx2, the dot product and Euclidean distance

between y1 and y2 are unbiased estimates of those between x1 and

x2, i.e., E
[

y
⊺

1 y2
]

= x
⊺

1 x2 and E
[

‖y1 − y2‖22
]

= ‖x1 − x2‖22 . The
estimation error bounds areVar[y

⊺

1 y2] ≤
2
k
andVar

[

‖y1 − y2‖22
]

≤
32
k
.

Property 2. Given a Gaussian matrix instance R ∈ Rk×d where

k < d and the projection y = 1√
kσ

Rx, the minimum norm estimate

of x, denoted by x̂, is an unbiased estimate of x, i.e., E [x̂] = x. The es-

timation error for the ith element of x isVar[xi ] =
2
k
x2i +

1
k

∑

j,j,i x
2
j .

Based on Property 1, the study [30] shows that a trained SVM

classi�er can be transferred to classify the projected data. In a re-

cent study [45], a randomprojection layer that can be implemented

by GRP is added to an MLP for dimension reduction. Such design

is also based on Property 1. However, the studies [30, 45] do not

address collaborative learning and privacy.

The estimation error given by Property 2will be used in the later

sections of this paper to measure the degree of privacy protection

provided by our proposed approach.

3 RELATED WORK

Existing PPCL approaches can be classi�ed into two categories, i.e.,

distributed machine learning (§3.1) and training data encryption or

obfuscation (§3.2). §3.3 reviews other related work.

3.1 Distributed Machine Learning (DML)

DML approaches exploit the computing capability of the partic-

ipants to solve Eq. (1) using some variant of stochastic gradient

descent (SGD) in a distributed manner. During the learning pro-

cess, the training data samples are not transmitted. The studies

[23, 31, 32, 40] share the similar idea of exchanging gradients and

classi�er parameters among the participants, which is coordinated

by the coordinator. Speci�cally, in the Crowd-ML approach [23],

a participant checks out the global classi�er parameters θ from

the coordinator and computes the gradients using its own training

data. Then, the participants transmit the gradients to the coordina-

tor that will update θ . In [40], each participant trains a local deep

model using SGD and uploads a selected portion of gradients to

the coordinator for combining. Then, each participant downloads

a selected portion of the global gradients to update its local deep

model. As the exchanged gradients and classi�er parameters may

still contain privacy, the approaches [23, 40] add random noises to

the exchanged values for di�erential privacy [17]. In the federated

learning scheme [31], the coordinator periodically pulls the deep

models trained by the participants locally based on their training

data and returns an average deep model to the participants. In [32],

the participant adds random noises to the deep model parameters

before being sent to the coordinator for privacy protection in the

federated learning process.

However, the above DML approaches have the following limi-

tations. First, the local training introduces computation overhead

to the participants. Training a DNN locally may be infeasible for

resource-constrained IoT objects. Second, DML approaches often

require many iterations for the learning algorithm to converge,

which may incur a high volume of data tra�c between each partic-

ipant and the coordinator. In §6, we will show this by comparing

the Crowd-ML [23] and our proposed approach. Third, as shown

recently in [24], generative adversarial networks can generate pro-

totypical training data samples based on the exchanged gradients

andmodel parameters, weakening the privacy preservation claimed

in [31, 40]. In [36] and [9], homomorphic encryption and secure

aggregation have been applied to enhance the privacy preserva-

tion of the approach in [40] and the federated learning in [31], re-

spectively.With these enhancements, only the encrypted gradients

[36] and aggregate model update [9] are revealed to the honest-but-

curious coordinator.However, these privacy enhancements further

increase the computation overhead of each participant, making it

more unsuitable for resource-constrained IoT objects.

3.2 Training Data Encryption/Obfuscation

Di�erent from the DML approaches that transmit classi�er’s pa-

rameters, the approaches [22, 29, 39] transmit the encrypted or

obfuscated training data to the coordinator to solve Eq. (1). The

approach proposed in this paper also belongs to this category. In

the following, we review each of [22, 29, 39] and then discuss our

new design to overcome their shortcomings.
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In [22], homomorphic encryption is integrated with a Linear

Means classi�er and Fisher’s Linear Discriminant classi�er. During

both the training and classi�cation phases, the participant trans-

mits the homomorphically encrypted data vector to the coordina-

tor. However, homomorphic encryption results in intensive com-

putation and increased volume of data transmissions (cf. §6). Thus,

although the homomorphic encryption approach provides prov-

able con�dentiality protection, it is ine�cient and unrealizable on

many resource-constrained IoT platforms.

To reduce the computation and communication overheads, Liu

et al. [29] propose a data obfuscation approach based on random

projection. Speci�cally, the participant i independently generates

a random matrix Ri and transmits the obfuscated training dataset

{(Rixi,j ,yi,j ) |j ∈ [1,Mi ]} to the coordinator. However, di�erent

from Property 1 in §2.2 that requires the same projection matrix,

the approach [29] uses distinct projection matrices for di�erent

participants and thus no longer preserves the Euclidean distance,

i.e., ‖Ruxu,p − Rvxv,q ‖ , ‖xu,p − xv,q ‖. This will result in poor

training performance for distance-based classi�ers, such ask-nearest

neighbors and SVM. To address this issue, the study [29] designs

a regression phase before the learning phase. Speci�cally, the co-

ordinator sends a number of public data vectors {zk |k = 1,2, . . .}
to all participants and the participant i returns the projected data

{Rizk |k = 1,2, . . .}. Based on the original and projected public data
vectors, a regress function fuv (·, ·) for each participant pair (u,v )

is learned such that fuv (Ruxu,p ,Rvxv,q ) ≃ ‖xu,p − xv,q ‖. As a re-
sult, the distance-based classi�ers can be trained in the domain of

obfuscated data by using the learned regress functions to compute

distances during the training phase.

However, the approach [29] has two shortcomings. First, it is

only applicable to distance-based classi�ers. These conventional

classi�ers do not scale well with the volume of the training data

and the complexity of the data patterns [42]. It is desirable to sup-

port the DNNs that give the state-of-the-art learning performance

in a range of applications. Second, obfuscating the public data vec-

tors and returning the results may incur known-plaintext attacks

and engenders a clear privacy breaching concern. For instance, a

proactively curious coordinator may use a public data vector zk =

[1,0,0, . . . ,0]⊺ to extract the �rst column of Ri . Other columns of

Ri can be similarly extracted by using speci�c public data vectors.

Even without using these speci�c public data vectors, in general,

the private random projection matrix Ri can be estimated using

regression analysis based on a number of public data vectors and

the corresponding projections.

The study [39] also uses randomprojection to obfuscate the data

vector x in training and executing a Sparse Representation Classi-

�er. However, all participants use the same random projection ma-

trix, rendering the system vulnerable to the collusion between any

single participant and the coordinator.

Di�erent from [39], each participant in our approach uses its

own private random project matrix, rendering the collusion futile.

Di�erent from [29], our approach uses DNNs and leverages on the

deep learning capability to avoid the regression phase that is vul-

nerable to the known-plaintext attacks. Di�erent from [22] that is

too compute-intensive for IoT objects, our approach uses GRP that

introduces light computation overhead only.

...
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coordinator

training data samples

Figure 1: A collaborative learning system.

3.3 Other Related Work

In CryptoNets [19], the computation of each neuron in a neural net-

work trained using plaintext data is performed in the domain of ho-

momorphic encryption. During the classi�cation phase, the partici-

pant sends the homomorphically encrypted data to the coordinator

for classi�cation. The work [12] extends [19] to support more hid-

den layers. However, these studies [12, 19] address privacy-preserving

classi�cation outsourcing (i.e., o�oading the classi�cation compu-

tation to a honest-but-curious entity), rather than the collabora-

tive learning addressed in this paper. The training in [12, 19] is

performed based on plaintext data. Moreover, the homomorphic

encryption is too computation intensive for resource-constrained

IoT devices, which will be shown in §6.

The di�erentially private machine learning (DPML) [5, 14, 41]

builds a classi�er that cannot be used to infer the training data.

The training of the classi�er is based on plaintext data. For DNNs,

DPML can be achieved by perturbing the gradients in each iter-

ation of the SGD with additive noises [5, 41]. DPML and PPCL

address di�erent problems, i.e., PPCL preserves the privacy of the

training data against the honest-but-curious coordinatorwho builds

the classi�er, whereas DPML trusts the classi�er builder and pre-

serves the privacy of the training data against the curious user of

the classi�er. Thus, in DPML, the plaintext training dataset is avail-

able to the classi�er builder; di�erently, in PPCL, only encrypted or

obfuscated training data is made available to the classi�er builder

(i.e., the learning coordinator).

4 PROBLEM STATEMENT AND APPROACH

In this section, we state the PPCL problem in §4.1 and present the

proposed GRP approach in §4.2. §4.3 provides two illustrating ex-

amples for insights into understanding the e�ect of GRP on train-

ing DNN-based classi�ers. §4.4 discusses two other alternative ap-

proaches for lightweight PPCL and their limitations.

4.1 Problem Statement

This section states the problem addressed in this paper. §4.1.1 de-

�nes the system model; §4.1.2 de�nes the threat and privacy mod-

els; §4.1.3 discusses several relevant issues.

4.1.1 System model. In this paper, we consider a PPCL system

withN resource-constrained participants and an honest-but-curious

coordinator with su�cient computation power. Fig. 1 illustrates

the system. During the learning phase, the participants contribute

training data samples to build a supervised classi�er. As discussed

in §2.1, the training dataset Di contributed by the participant i

consists of Mi data vectors {xi,j |j ∈ [1,Mi ]} and the correspond-

ing class labels {yi,j |j ∈ [1,Mi ]}. As the learning process is often



On Lightweight Privacy-Preserving Collaborative Learning for IoT Objects IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

compute-intensive, most of the learning computation should be ac-

complished by the coordinator. In this paper, we focus on address-

ing the problem of building an e�ective supervised classi�er while

protecting certain privacy contained in the data vectors.

4.1.2 Threat and privacy models. The privacy concern regarding

the data vectors is primarily due to that the data vectors may con-

tain information beyond the classi�cation objective in question.

For example, consider a PPCL system for training a classi�er to rec-

ognize human body activity (e.g., sitting, walking, climbing stairs,

etc). The recognition is based on various body signals (e.g., motion,

heart rate, breath rate, etc) that are captured by wearable sensors.

However, the raw body signals can also be used to infer health sta-

tuses of the participants and even pinpoint the patients of certain

diseases. In this paper, we adopt the following threat and privacy

models.

Threat model: It consists of the following two aspects:

• Honest-but-curious coordinator: We assume that the coordi-

natorwill honestly coordinate the collaborative learning pro-

cess, aiming to train the best supervised classi�er. Thus, it

will neither tamper with any data collected from or trans-

mitted to the participants. However, the coordinator is curi-

ous about the participants’ privacy contained in the training

data vectors.

• Potential collusion between participants and coordinator: We

assume that the participants are not trustworthy in that they

may collude with the coordinator in �nding out other par-

ticipants’ privacy contained in the data vectors. The collud-

ing participants are also honest, i.e., they will faithfully con-

tribute their training data to improve the supervised classi-

�er. The design of the PPCL system should keep the privacy

preservation for a participant when any or all other partici-

pants are colluding with the coordinator.

Privacy model: The raw form of each data vector is the partic-

ipant’s privacy to be protected. The error in estimating the data

raw form by the coordinator can be used as a metric to measure

the degree of privacy protection. Data form con�dentiality is an

immediate and basic privacy requirement in many applications.

4.1.3 Several other issues. In the following, we discuss three is-

sues that are related to privacy protection:

• Trainingdata anonymization:Weaim to support anonymiza-

tion of the training data. That is, the coordinator should not

expect to know the participant’s identity for any received

training data sample. Moreover, the coordinator cannot de-

terminewhether any two training data samples are from the

same participant. To achieve the above strong anonymity,

the training data samples can be transmitted in separate

sessions via an anonymous communication network [16].

Moreover, the transmissions of the data samples from all

participants can be interleaved randomly, such that the co-

ordinator cannot associate the data samples from the same

participant by their arrival times. Note that the training data

anonymization requirement is not mandatory, because the

anonymous communication may incur large overhead for

some resource-constrained IoT objects. However, the design

of our PPCL approach will not leverage the participants’

identities to support data anonymization.

• Label privacy: The class labels {yi,j |j ∈ [1,Mi ]} may also

contain information about the participant. In this paper, we

do not consider label privacy because the participant will-

ingly contributes the labeled data vectors and should have

no expectation of privacy regarding labels. In practice, sev-

eral means can be taken to mitigate the concern of label pri-

vacy leak. First, the training data anonymization mitigates

the concern during the learning phase. Second, during the

classi�cation phase, if the participant has su�cient process-

ing capability to perform the classi�cation computation, the

coordinator may send the trained model to the participant

for local execution. Existing studies have enabled the execu-

tion of deep models on personal and low-end devices [25,

47]. Low-power inference chips (e.g., Google’s Edge TPU

[21]) will further enhance low-end devices’ capabilities in

executing classi�cation models. Note that the studies [25,

47] and the inference chips are not to support the much

more compute-intensive training.

• Other privacymodels:Di�erential privacy [17] aim to achieve

indistinguishability of di�erent data vectors is another widely

used quanti�able privacy de�nition. However, as discussed

in §4.4 and evaluated in §5, the additive noisi�cation imple-

mentation of di�erential privacy is ill-suited for PPCL.

4.2 Gaussian Random Projection Approach

Existing DML and homomorphic encryption approaches incur sig-

ni�cant computation and communication overhead due to themany

computation/communication rounds and data volume swell. In §6,

we will provide benchmark results to show this. Thus, these ap-

proaches are not promising for resource-constrained participants.

This section describes a GRP-based approach that is computation-

ally lightweight and communication e�cient for the participants.

The overview of our approach is presented as follows.

At the system initialization, each participant i independently

generates a random Gaussian matrix Ri ∈ Rk×d , where d is the

dimension of the data vector. During the learning phase, the par-

ticipant i keeps Ri secret and uses it to project all the training data

vectors. The participant i transmits the projected training dataset

Di = {Rixi,j ,yi,j |j ∈ [1,Mi ],yi,j ∈ C} to the coordinator. After

collecting all projected training datasets Di , i = 1, . . . ,N , the co-

ordinator applies deep learning algorithms to train the classi�er

h(·|θ∗). During the classi�cation phase, the participant i still uses

Ri to project the test data vector x and obtains the classi�cation re-

sult h(Rix|θ∗). As discussed in §4.1, the classi�cation computation

can be carried out at the participant or the coordinator, depending

onwhether the participant is capable of executing the trained deep

model. In our approach, each participant independently generates

its random projection matrix to counteract the collusion between

participants and coordinator. Now, we explain the two key compo-

nents of our approach: GRP and deep learning on projected data.

4.2.1 Gaussian random projection. In this work, we adopt Gauss-

ian matrices. Speci�cally, each element of Ri is sampled indepen-

dently from the standard normal distribution [6]. The rationale of

choosing Gaussian matrices will be explained in §4.3.2. We set the
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row dimension of Ri smaller than or equal to its column dimen-

sion, i.e., k ≤ d . Thus, the GRP can also compress the data vector.

We de�ne the compression ratio as ρ = d/k . The understanding

regarding the admission of compression into the training data pro-

jection is as follows. From the compressive sensing theory [11], a

sparse signal can be represented by a small number of linear pro-

jections of the original signal and recovered faithfully. Therefore,

in the compressively projected data vector, the feature information

still exists, provided that the adopted compression ratio is within

an analytic bound [11]. In §5, we will evaluate the impact of the

compression ratio ρ on the learning performance.

With GRP, if Ri is kept con�dential to the coordinator, it is com-

putationally di�cult (practically impossible) for the coordinator

to generate a meaningful reconstruction of the original data vec-

tor from the projected data vector [30, 37]. Thus, GRP protects the

form of the original data. In the worst case where the coordinator

obtains Ri , the estimation error given by Property 2 in §2.2 can be

used as a measure of privacy protection. Random projection has

been used as a lightweight approach to protect data form con�-

dentiality in various contexts [28, 43, 44, 46].

4.2.2 Deep learning on projected data. Feature extraction is a crit-

ical step of supervised learning. With the traditional shallow learn-

ing, the classi�cation system designer needs to handcraft the fea-

ture. The emerging deep learning method [26] automates the de-

sign of feature extraction by unsupervised feature learning, which

is often based on a neural network consisting of a large number of

parameters. Thus, the deep model is often a tandem of the feature

extraction stage and the classi�cation stage. For example, a convo-

lutional neural network (CNN) for image classi�cation consists of

convolutional layers and dense layers, which are often considered

performing the feature extraction and classi�cation, respectively.

Our approach leverages on the unsupervised feature learning ca-

pability of deep learning to address the data distortion introduced

by the GRP. We now illustrate this using a simple example system,

in which there is only one participant and the projection matrix R

is a square invertible matrix. Moreover, wemake the following two

assumptions to simplify our discussion. First, we assume that a lin-

ear transformΨ ∈ Rf ×d gives e�ective features of the data vectors,

where f is the feature dimension. That is, f = Ψx is an e�ective

representation of the data vector x for classi�cation. Second, we as-

sume that Ψ can be learned in the form of a neural network by the

unsupervised feature learning. Now, we discuss the impact of the

random projection on the unsupervised feature learning. After the

projection, the data vector becomes Rx. Moreover, the linear trans-

form ΨR−1 will be an e�ective feature extraction method, since

f =
(

ΨR−1
)

(Rx). It is reasonable to expect that the unsupervised

feature learning can also build a neural network to capture the lin-

ear transform ΨR−1, similar to the unsupervised feature learning

to capture the Ψ based on the plaintext training data x. As a result,

the deep model trained using the projected data can still classify

future projected data vectors. In §4.3, we will use a numerical ex-

ample to illustrate this.

The above discussion based on linear features provides a ba-

sis for us to understand how the unsupervised feature learning

helps address the distortion caused by the GRP. In practice, e�ec-

tive feature extractions are generally non-linear mappings. Neu-

ral network-based deep learning has shown strong capability in

capturing sophisticated features beyond the above ideal linear fea-

tures. In this paper, based on multiple datasets, we will investigate

the e�ectiveness of deep learning to address the distortion caused

by the GRP.

As discussed earlier, each participant independently generates

a Gaussian matrix to counteract the potential collusion between

participants and the coordinator. However, this introduces a chal-

lenge to deep learning, because the pattern for a class of projected

data vectors from N participants will be a composite ofN di�erent

patterns. Thus, intuitively, a deeper neural network and a larger

volume of training data will be needed to well capture the data

patterns with increased complexity due to the participants’ inde-

pendence in generating their projectionmatrices. We note that, the

participants’ independence also engenders the following possible

situation that undermines the learning performance and leads to

classi�cation errors: Ruxu = Rvxv , where xu and xv are gener-

ated by participants u and v and belong to di�erent classes. How-

ever, for high-dimensional data vectors, the probability of the above

situation is low. The more complex data patterns due to the inde-

pendent projection matrix generation will be the major challenge.

In this paper, we conduct extensive experiments to assess howwell

deep learning can scale with the number of participants, compared

with the traditional learning approaches.

4.3 Illustrating Examples

We use two examples to illustrate the intuitions discussed in §4.2.

4.3.1 A 2-dimensional example. We consider a PPCL system with

four participants (i.e., N = 4) to build a two-class classi�er. The

original data vectors in the two classes follow two 2-dimensional

Gaussian distributionswithmeans of [−2,−2]⊺ and [2,2]⊺, and the
same covariance matrix of [1,0; 0,1]. Fig. 2(a) shows the plaintext

data vectors generated by the four participants. From the �gure,

the plaintext data vectors of the two classes can be easily separated

using a simple hyperplane. Each participant independently gener-

ates a Gaussian random matrix. Figs. 2(b)-2(e) show the projected

data vectors of each participant.We can see that the patterns of the

projected data vectors are di�erent across the participants. Fig. 2(f)

shows the mixed projected data vectors received from all partici-

pants. Compared with Fig. 2(a), the pattern of the mixed projected

data from all participants is highly complex. Moreover, no simple

hyperplane can well divide the two classes.

We also generate two other sets of the random projection ma-

trices for all participants. Figs. 2(g) and 2(h) show the mixes of

all participants’ projected data vectors with the two sets of ran-

dom projection matrices, respectively. Similarly, the pattern of the

mixed projected data from all participants is highly complex.

We construct a classi�er based on an MLP with two hidden lay-

ers of 30 and 40 recti�ed linear units (ReLUs), respectively. The in-

put layer admits a 2-dimensional data vector, whereas the output

layer consists of two ReLUs. The �nal classi�cation result is gen-

erated using a softmax function based on the output layer’s ReLU

values. Moreover, we construct an SVM classi�er as a baseline ap-

proach. We use LIBSVM [13] to implement the classi�er. The SVM
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(a) Original data (b) Participant 1 (c) Participant 2 (d) Participant 3 (e) Participant 4 (f) Coordinator (g) Coordinator (h) Coordinator

Figure 2: Two-dimensional example. Original data vectors and projected data vectors (red: class 0; blue: class 1). The ranges for

the x and y axes are [−10,10].

classi�er uses radial basis function (RBF) kernel with two con�g-

urable parameters C and λ. During the training phase, we apply

grid search to determine the optimal settings for C and λ.

First, we use disjoint subsets of the original data shown in Fig. 2(a)

to train and test the MLP and SVM classi�ers. Both classi�ers can

achieve 99% test accuracy. This shows that the MLP and the SVM

are properly designed for the 2-dimensional data vectors.

Then, we use disjoint subsets of the randomly projected data

shown in Fig. 2(f) to train and test the MLP and SVM classi�ers.

Moreover, we also increase the number of participants in the PPCL

system. Fig. 3 shows the test accuracy versus the number of par-

ticipants. We can see that the MLP classi�er always outperforms

the SVM classi�er. Moreover, the test accuracy decreases with the

number of participants. This is because, with more participants,

the pattern of the projected data becomes more complex, introduc-

ing challenges to both MLP and SVM. The test accuracy di�erence

between MLP and SVM increases from 2% to 7%, when the number

of participants increases from 4 to 20. This result is also consistent

with the understanding that deep learning is more e�ective in cap-

turing complex patterns than traditional learning.

4.3.2 A 10-dimensional example. Now, we use another example

system to understand the e�ect of deep learning’s unsupervised

feature learning capability in addressing the data distortion caused

by the random projection. This example is a PPCL system with

only one participant (i.e., N = 1). The original data vectors in two

classes follow two 10-dimensional Gaussian distributions, with the

[−2,−2, . . . ,−2]⊺ and [2,2, . . . ,2]⊺ as the respective mean vectors,

and the 10-dimensional identity matrix as their identical covari-

ance matrix.

In our discussions in §4.2.2, we assume that the projection ma-

trix R is invertible and the unsupervised feature learning tend to

captureΨR−1. As learning algorithms are based on numerical com-

putation on the training data, an ill-conditioned matrix R will im-

pede e�cient �tting of ΨR−1. We verify this intuition by assessing

the learning performance of the single-participant PPCL system us-

ing di�erent R matrices with varying condition numbers. Speci�-

cally, by following amethod described in [8], the participant gener-

ates a random square matrix R that has a certain condition number

value. The condition number is de�ned as ‖R‖F ‖R+‖F [35], where

R+ denotes the pseudoinverse of R and ‖ · ‖F represents the Frobe-

nius norm. Fig. 4 shows the test accuracy of the MLP and SVM

classi�ers trained using data projected by R versus the condition

number of R. Note that a larger condition number means that the

matrix is more ill-conditioned. We can see that the test accuracy

decreases with the condition number, consistent with the intuition.
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The study [15] analyzes the distribution of the condition num-

bers of Gaussian random matrices. The results show that a Gauss-

ian randommatrix is well-conditioned with a high probability. For

instance, it is shown in [15] that for a 10× 5 Gaussian random ma-

trix, the probability that its condition number is larger than 100 is

less than 6 × 10−7. This is a basis for our choice of using Gaussian
random matrices to project data.

4.4 Alternative Approaches and Limitations

This section discusses two alternative approaches to PPCL and

their limitations. These two alternatives will be used as the base-

line approaches in our comparative performance evaluation in §5.

4.4.1 Non-collaborative learning. If the data anonymity require-

ment is not enforced, the coordinator can train a separate deep

model based on the projected data vectors contributed by each par-

ticipant. This alternative approach can address the challenge of the

complex mixed patterns due to di�erent random projection matri-

ces adopted by di�erent participants as illustrated in §4.3. How-

ever, it loses the advantages of collaborative learning, i.e., the in-

creased data volume and pattern coverage. From our evaluation in

§5, compared with our proposed approach, despite that this non-

collaborative learning approach additionally uses the participant

identity information, it yields inferior average accuracy.

4.4.2 Di�erential privacy. Di�erential privacy (DP) [17] is a rigor-

ous information-theoretic approach to prevent leak of individual

records by statistical queries on a database of these records. The

ϵ-DP [17] is formally de�ned as follows: A randomized algorithm

A : D → Rt gives ϵ-DP if for all adjacent datasets D1 ∈ D and

D2 ∈ D di�ering on at most one element, and all S ⊆ Ranдe (A),
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Pr(A (D1 ) ∈ S ) ≤ exp(ϵ ) · Pr(A (D2 ) ∈ S ). The ϵ , a positive real

number, is a measure of privacy loss, i.e., a smaller ϵ implies better

privacy. When ϵ is very small, Pr(A (D1 ) ∈ S ) ≃ Pr(A (D2 ) ∈ S )

for all S ⊆ Ranдe (A), which means that the query results A (D1 )

and A (D2 ) are almost indistinguishable based on any “test cri-

terion” of S . The indistinguishability between the query results

A (D1 ) and A (D2 ) decreases with ϵ . The study [18] develops an

approach of adding Laplacian noises to implement ϵ-DP. Speci�-

cally, for all function F : D → Rt , the randomized algorithm

A (D) = F (D) + [n1,n2, . . . ,nt ]
⊺ gives ϵ-DP, where each ni is

drawn independently from a Laplace distribution Lap(S (F )/ϵ ) and

S (F ) denotes the global sensitivity of F . Note that Lap(λ) denotes

a zero-mean Laplace distribution with a probability density func-

tion of f (x |λ) = 1
2λ
e
|x |
λ ; the global sensitivity is

S (F ) = max
∀D′∈D,∀D′′∈D

| |F (D′) − F (D′′) | |1.

Essentially, ϵ-DP gives quanti�able indistinguishability of the

query results based on di�erent datasets. The ϵ-DP framework has

been applied in various privacy preservation problems in machine

learning. As discussed in §3.1, the DML approaches to PPCL [23,

40] add random noises to the parameters exchanged between the

participants and the coordinator to achieve ϵ-DP. The original pa-

rameters can be viewed as deterministic query results of the train-

ing data. Adding random noises to the parameters ensures certain

levels of indistinguishability between the noise-added parameters

based on di�erent training datasets. The achieved ϵ-DP mitigates

the privacy concern that the curious coordinator may use the re-

ceived parameters to infer the existence of particular data vectors

in the training dataset. However, these DML approaches [23, 40] in-

cur signi�cant overhead to resource-constrained participants. For

PPCL based on resource-constrained participants, an approach to

achieving ϵ-DP is to add a Laplacian noise vector to the original

data vector x and then transmit the noise-added data vector to the

coordinator for building the classi�er. By doing so, certain levels

of indistinguishability between the noise-added data vectors based

on di�erent original data vectors are achieved.

Additive noisi�cation and multiplicative GRP preserve di�erent

forms of privacy. Compared with protecting indistinguishability

under the DP framework, we believe that protecting the con�den-

tiality of the raw data form, which can be achieved by GRP, is a

more immediate and basic privacy requirement in many applica-

tions. The additive noisi�cation, though achieving ϵ-DP, falls short

of protecting the con�dentiality of the raw data form. Speci�cally,

under the ϵ-DP framework based on zero-mean Laplacian noises,

a noise-added data vector can be considered an unbiased estimate

of the original data vector with an estimation variance related to

ϵ . Thus, the coordinator always has a meaningful (i.e., unbiased)

estimate of the raw data. According to Property 2 in §2.2, this only

happens to the GRP approach in the worst (and unrealistic) case

that the projectionmatrix is revealed to the coordinator; other than

the worst case, the coordinator cannot have a meaningful estimate

of the raw data form. In the image classi�cation case studies in

§5, we will show that when ϵ is small (i.e., good DP), the contents

of the noise-added images can still be interpreted. In contrast, the

projected images cannot be interpreted visually at all.

Applying ϵ-DP to PPCL with resource-constrained participants

also introduces the following two challenges.

Non-trivial computation overhead: From the DP theory, an indepen-

dent random noise vector should be generated and added to ev-

ery data vector x. However, random number generation is often

a costly operation due to the use of various mathematical func-

tions. The continuous generation of Laplacian noises will incur

non-trivial computationoverhead for the resource-constrained par-

ticipants. Di�erently, in our approach, the random projection ma-

trix generation is a one-o� overhead. The projection to compute

Rx is a lightweight operation consisting of multiplications and ad-

ditions only. Our previous work [43] has implemented the projec-

tion operation on an MSP430-based platform. Moreover, the pro-

jection can be sped up if a parallel computing chip (e.g., Google’s

Edge TPU [21]) is available.

Learning performance degradation: As discussed in §4.2.2, the pro-

jection matrix can be implicitly learned by the deep learning algo-

rithms. Di�erently, the additive Laplacian noises to ensure ϵ-DP

can be considered neither a pattern nor an embedding that can

be learned by learning algorithms. Thus, the Laplacian noises will

only negatively a�ect the learning performance. Our evaluation in

§5 shows that the Laplacian noises for achieving moderate ϵ-DP

signi�cantly degrade the learning performance.

From the above discussions and the evaluation results in §5,

adding Laplacian noises to the training data forϵ-DP is not a promis-

ing approach to PPCL with resource-constrained participants.

5 PERFORMANCE EVALUATION

In this section, we extensively compare the accuracy achieved by

various approaches. The computation and communication over-

head of these approaches will be pro�led in §6 based on their im-

plementations on a testbed.

5.1 Evaluation Methodology and Datasets

We conduct extensive evaluation to compare several approaches:

• GRP-DNN:This is the proposed approach consisting ofGRP

at the participants and collaborative learning based on a

DNN at the coordinator. The design or choice of the DNN

model will be application speci�c. The DNN models and

training algorithms are implemented based on PyTorch [2].

• GRP-SVM: This baseline approach applies GRP at the par-

ticipants and trains an SVM-based classi�er at the coordina-

tor. The SVM-based classi�er is implemented using LIBSVM

[13]. The classi�er uses RBF kernel with two con�gurable

parameters C and λ. During the training phase, we apply

grid search to determine the best settings for C and λ. This

grid search is often lengthy in time (e.g., several days).

• GRP-NCL:This is the non-collaborative learning (NCL) base-

line approach described in §4.4.1. It runs GRP at the par-

ticipants and trains a separate DNN for each participant at

the coordinator. Compared with other approaches, this ap-

proach additionally requires the identity of the participant

for each training sample.

• ϵ-DP-DNN:As described in §4.4.2, this approach implements

ϵ-DP by adding Laplacian noise vectors to the data vectors
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(a) Original images

(b) Projected images in GRP-DNN

(c) Noise-added images in ϵ -DP-DNN (ϵ = 50)

(d) Noise-added images in ϵ -DP-DNN (ϵ = 10)

Figure 5: Example images from MNIST dataset.

and performs collaborative deep learning based on a DNN

at the coordinator.

• ϵ-DP-SVM:This approach implements ϵ-DP by adding Lapla-

cian noise vectors to the data vectors and performs collabo-

rative learning based on SVM at the coordinator.

• CNN, SVM, MLP, ResNet-152: These are the plain learn-

ing approaches based on the CNN, SVM, MLP, and ResNet-

152 models, respectively. They do not protect any privacy.

The performance evaluation is performed based on two datasets,

i.e., MNIST [27] and spambase [4]. The MNIST dataset consists of

60,000 training samples and 10,000 testing samples. Each sample is

a 28×28 grayscale image showing a handwritten digits from 0 to 9.

Fig. 5(a) shows an instance of each digit. The spambase dataset con-

sists of 4,601 samples. Each sample consists of (i) a 57-dimensional

feature vector that is extracted from an e-mail message and (ii) a

class label indicating whether the e-mail message is an unsolicited

commercial e-mail. The details of the feature vector can be found

in [4]. As the data volume of this spambase dataset is limited, we

apply data augmentation to the spambase by adding zero-mean

Gaussian noises, resulting in 40,000 training samples and 400 test-

ing samples. We choose these two datasets because the small sizes

of the data vectors are commensurate with the limited computing

and transmission capabilities of IoT end devices.

Training a spam detector based on user-contributed samples

(e.g., e-mails) may cause privacy concerns. Thus, our proposed ap-

proach well �ts in this case. The choice of the vision-based charac-

ter recognition task with the MNIST dataset allows us to leverage

on the learning capabilities of the deep models that are often de-

signed for image classi�cation. Moreover, by using images as the

data vectors, the e�ect of the distortion caused by noise adding or

random projection can be visualized for intuitive understanding.

Although the character recognition task is not privacy-sensitive,

its results will provide understanding on other image classi�cation-

based privacy-sensitive applications, such as collaboratively train-

ing a mood classi�er using the photos in the album of the users’

smartphones.

For a PPCL systemwithN participants, we divide both the train-

ing and testing samples into N disjoint sets evenly. Each set is

⇒
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Figure 6: CNN with a projected MNIST image as input.
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error bars for GRP-NCL represent min and max.

assigned to a participant. Under GRP-DNN, GRP-SVM, and GRP-

NCL, each participant independently generates its random Gauss-

ian matrix as described in §4.2.1 and uses the matrix to project

its plaintext data vectors. The deep models and SVM are trained

by the coordinator based on the projected or noise-added training

data vectors from the participants. The trained deep models and

SVM are used to classify the projected or noise-added testing data

vectors to measure the test accuracy as the evaluation results.

5.2 Evaluation Results with MNIST Dataset

We design a CNN that is used in the GRP-DNN, GRP-NCL, and

ϵ-DP-DNN approaches. The CNN consists of two convolutional

layers and three dense layers of ReLUs. We apply max pooling af-

ter each convolutional layer to reduce the dimension of data after

convolution. The max pooling controls over�tting e�ectively and

improves the CNN’s robustness to small spatial distortions in the

input image. The last dense layer has ten ReLUs corresponding to

the ten classes of MNIST. A softmax function is used to make the

classi�cation decision based on the outputs of the last dense layer.

Fig. 6 illustrates the design of the CNN. Note that, without random

projection, the CNN and the SVM with grid search for kernel pa-

rameters can achieve test accuracy of 98.7% and 98.52%. This shows

that the CNN and SVM can well capture the patterns of MNIST.

First, we evaluate the impact of the number of participants N

on the learning performance of GRP-DNN, GRP-NCL, and GRP-

SVM. Fig. 7 shows the results. The two horizontal lines in Fig. 7

represent the test accuracy of the plain CNN and SVMwithout any

privacy protection. The two lines overlap. When N increases from

40 to 400, the test accuracy of GRP-DNN decreases from 96.87%

to 86.18%. If N is no greater than 280, GRP-DNN can maintain
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a test accuracy greater than 90%. The drop of accuracy with in-

creased N is consistent with the understanding that distinct ran-

dom projection matrices increase the pattern complexity of the ag-

gregated data. However, for MNIST data with light pattern com-

plexities, the GRP-DNN approach can support up to 280 IoT ob-

jects for a satisfactory classi�cation accuracy of 90%. Under the

GRP-NCL approach, the deep models corresponding to the partic-

ipants have di�erent test accuracy values. The histogram and er-

ror bars in Fig. 7 represent the average, minimum, and maximum

of the test accuracy values across all trained deep models. Under

each setting of N , the maximum test accuracy is 100%. However,

the average test accuracy is consistently lower than that of GRP-

DNN. This shows that, the GRP-NCL that needs to compromise

data anonymity yields inferior average learning performance com-

pared with GRP-DNN. This result shows the advantage of collab-

orative learning. Lastly, the GRP-SVM approach gives poor test

accuracy around 17.5%. This is because no e�cient RBF kernels

can be found to create proper hyperplanes for classi�cation. This

suggests that DNNs are more e�cient to cope with the distortions

caused by projections.

Second, we evaluate the impact of GRP’s data compression on

the learning performance. Fig. 8 shows the results when N = 100.

When the compression ratio increases from 1 (i.e., no compression)

to 2.33 (i.e., 43% of data volume is retained), the test accuracy of

GRP-DNN decreases from 95.52% to 92.85% only. From our discus-

sion in §4.2.1, the good tolerance of GRP-DNN against data com-

pression is due to the high sparsity of the MNIST images. In con-

trast, the GRP-SVM approach performs poorly under all compres-

sion ratio settings.

Then, we evaluate the impact of adding Laplacian noises to im-

plement ϵ-DP on the learning performance. Fig. 9 shows the test

accuracy of ϵ-DP-DNN versus the privacy loss level ϵ . When ϵ =

100 (small Laplacian noises and large di�erential privacy loss), the

ϵ-DP-DNN achieves a test accuracy of 86.6%, lower than those

achieved by GRP-DNN when N is up to 400. When ϵ = 10, the per-

formance of ϵ-DP-DNN drops to 11.4%, close to the performance of

random guessing. For comparison, we visualize the projected and

noise-added images with two ϵ settings in Fig. 5. From Fig. 5(b),

we cannot visually interpret the projected images. However, from

Figs. 5(c) and 5(d), the noise-added images are easily interpreted

when ϵ is down to 10. Note that in our evaluation, we use the
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Figure 10: Impact of the number of participants (spambase).

The error bars for GRP-NCL represent min and max.

same CNN model as shown in Fig. 6 for the GRP-DNN, GRP-NCL,

and ϵ-DP-DNN approaches. We do not spend special e�orts to im-

prove the CNN design in favor of any approach; we only make

sure the CNN fed with the original MNIST images achieves satis-

factory performance. The poor performance of ϵ-DP-DNN is con-

sistent with the understanding that the performance of deep learn-

ing can be susceptible to small perturbations to the data vectors

[48]. There are also systematic approaches to generating adver-

sary examples with small di�erences from the training samples to

yield wrong classi�cation results [10, 20]. Special cares are needed

in the deep model design to improve robustness against human-

indiscernible perturbations [48]. Signi�cant noises, which are re-

quired to achieve good DP protection, are still open challenges

to deep learning. Thus, under the ϵ-DP framework, it is challeng-

ing to achieve a desirable trade-o� between the privacy protection

strength and learning performance.

We discussed in §4.4.2 that the additive noisi�cation for ϵ-DP is

ine�ective in achieving a good trade-o� between learning perfor-

mance and protecting the con�dentiality of the raw forms of the

training data. Now, we compare the results of GRP-DNN (N = 1,

k = d − 1) and ϵ-DP-DNN. We consider the worst case for GRP-

DNN, i.e., the projection matrix R is revealed to the curious coor-

dinator. From Property 2 in §2.2, the minimum norm estimate of

the original data vector by the coordinator will have a per-element

variance of about 410 for any MNIST image. Under this setting,

GRP-DNN can achieve a test accuracy of 94.82%. To achieve the

same per-element variance of 410, the ϵ value adopted by the ϵ-

DP-DNN should be 18.89. Under this ϵ setting, the test accuracy of

ϵ-DP-DNN is 12.86% only.

Fig. 9 also shows the test accuracy of the ϵ-DP-SVM approach.

It performs poorly when ϵ ≤ 100. Only when the added noises are

very small under the settings of ϵ = 400 and ϵ = 500, this approach

can achieve good test accuracy.

5.3 Evaluation Results with Spambase Dataset

We design a 5-layer MLP classi�er to detect spams. The numbers

of ReLUs in the �ve layers are 57, 100, 50, 10, and 2, respectively. A

softmax function is used lastly to make the �nal detection decision.

Dropout is used during training to suppress over�tting. Without

random projection, the MLP and the SVM with grid research for

kernel parameters can achieve test accuracy of 96.52% and 96.25%,

respectively. This shows that the MLP and SVM can well capture

the patterns of spambase.
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We evaluate the impact of the number of participants N on

the learning performance of GRP-DNN, GRP-NCL, and GRP-SVM.

Fig. 10 shows the results. The two horizontal lines in Fig. 10 rep-

resent the test accuracy of the plain MLP and SVM without any

privacy protection. When N increases from 1 to 200, the test accu-

racy of GRP-DNN decreases from 96% to 83.25%. If N is no greater

100, GRP-DNN can maintain a test accuracy of about 90%. The av-

erage test accuracy of GRP-NCL is about 5% lower than that of the

GRP-DNN, because GRP-NCL misses the advantages of collabora-

tive learning. The test accuracy of the GRP-SVM is about 1.25%

to 2.75% lower than that of the GRP-DNN. Thus, the GRP-SVM

performs satisfactorily for this spambase dataset. The reasons are

two-fold. First, in this spambase dataset, the classi�ers operate on

the e-mail features, rather than the raw data. Second, the RBF ker-

nel is e�ective in capturing the features. In fact, the nature of this

spambase dataset is similar to that of the 2-dimensional and 10-

dimensional generated feature datasets used in §4.3, on which the

GRP-DNN and GRP-SVM perform similarly.

5.4 Summary and Discussion

We have several observations from the results in §5.2 and §5.3:

• Compared with SVM, deep learning can better adapt to the

complexity introduced by the multiplicative projections.

• Although theGRP-NCL approach additionally uses the iden-

tities of the participants, it gives inferior performance com-

pared with the collaborative GRP-DNN. This shows the ad-

vantage of collaborative learning evenwith the privacy preser-

vation requirement.

• Compared with GRP-DNN, the additive noisi�cation for ϵ-

DP achieves inferior trade-o� between learning performance

and protecting con�dentiality of raw forms of training data.

• GRP-DNN shows promising scalability with the number of

participants observing low-complexity data patterns. For the

MNIST and spambase datasets, the GRP-DNN can well sup-

port 100 participants with a few percents test accuracy drop.

For large-scale PPCL systems involving more participants,

we envision a two-tier system architecture as follows. The

participants are divided into groups. At the �rst tier, our

GRP-DNN is applied within each group; at the second tier,

the DML approach is applied among the group coordinators.

6 IMPLEMENTATION AND BENCHMARK

In this section, we measure the overhead of two PPCL approaches

(i.e., our GRP-DNN and Crowd-ML [23]) and a privacy-preserving

classi�cation outsourcing approach (i.e., CryptoNets [19]) on a testbed

of 14 Raspberry Pi 2 Model B nodes [3] and a powerful workstation

computer. The Raspberry Pi nodes act as PPCL participants and the

workstation acts as the coordinator. They are interconnected using

a 24-port network switch. We benchmark these approaches using

the MNIST dataset. The training and testing samples are evenly

allocated to the participants, resulting in 4,285 training samples

and 714 testing samples on each participant. The implementations

of the three approaches (GRP-DNN, Crowd-ML, CryptoNets) on

the same platform, i.e., Raspberry Pi, allow fair comparisons. The

Table 1: The overhead of various approaches.

Overhead GRP-DNN Crowd-ML CryptoNets

T
ra
in
in
g Participant comm. vol. 33.6MB 117.2MB n/a

Participant compute time 0.96 s 367.24 s n/a

Coordinator compute time 928.34 s 1.04 s n/a

T
es
ti
n
g Participant comm. vol. 5.6MB n/a 15.0MB

Participant compute time 0.16 s 4.67 s 116 hours

Coordinator compute time 40.88 s n/a

n/a represents “not applicable.”

participant part of our GRP-DNN can be implemented on mote-

class platforms. Our previous work [43] has implemented Gauss-

ian matrix generation and GRP on the MSP430-based Kmote plat-

form. However, it is di�cult/impossible to implement Crowd-ML

and CryptoNets on mote-class platforms.

We implement ourGRP-DNN approach on the testbed. The com-

pression ratio ρ = 1 (i.e., no compression). Table 1 shows the bench-

mark results. During the training phase, each GRP-DNN partici-

pant needs to transmit a total of 33.6MB projected data. A partic-

ipant can complete projecting all the 4,285 training images within

0.96 s. The coordinator needs 928.34 s to train the CNN. In ourGRP-

DNN implementation, the testing phase is performed on the coor-

dinator. During the testing phase, each participant completes pro-

jecting all the 714 testing images within 0.16 s and transmits a total

of 5.6MB data to the coordinator. The coordinator needs 40.88 s

to classify all projected testing images from the participants. Note

that GPU acceleration is not used in this benchmark for GRP-DNN

during both the training and testing phases.

The Crowd-ML [23] is a DML approach. In Crowd-ML, a partici-

pant checks out the global classi�er parameters from the coordina-

tor and computes the gradients using its own training data. Then,

the participants transmit the gradients to the coordinator that will

update the global classi�er parameters. Thus, during the training

phase, the participants and the coordinator repeatedly exchange

parameters. We apply an existing implementation of Crowd-ML

[1] on our testbed. Our measurement shows that, during the train-

ing phase, each participant needs to upload and download a total

of 117.2MB data, which is 3.5x of our GRP-DNN. The participant

compute time is more than 350x of that under GRP-DNN. Despite

the larger volume of data exchanges, Crowd-ML achieves 91.28%

test accuracy only, which is lower than the 95.58% test accuracy

achieved by GRP-DNN. This is because Crowd-ML uses a simple

multiclass logistic classi�er, which is inferior compared with the

CNN used by GRP-DNN in terms of learning performance. Note

that during the testing phase of Crowd-ML, the participants exe-

cute their local classi�ers. Thus, they do not need to transmit the

testing samples to the coordinator for classi�cation.

CryptoNets [19] uses homomorphic encryption algorithm to en-

crypt a testing sample during the classi�cation phase and transmits

the encrypted sample to the coordinator. Then, the coordinator

uses a neural network trained with plaintext data to classify the en-

crypted testing sample. We have implemented the homomorphic

encryption part of CrytoNets that runs on the Raspberry Pis. The

volume of the 714 encrypted testing images is 15MB, almost 3x of

the data volume generated by random projection. In particular, a

Raspberry Pi node takes about 10 minutes and a total of 116 hours
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to encrypt an image and all the testing images, respectively. This is

2.6 million times slower than the random projection computation.

This result clearly shows that the high computation complexity

of the homomorphic encryption makes CryptoNets ill-suited for

resource-constrained devices.

7 CONCLUSION

This paper proposes a practical privacy-preserving collaborative

learning approach, in which the resource-constrained learning par-

ticipants apply independent Gaussian projections on their training

data vectors and the coordinator applies deep learning to train a

classi�er based on the projected data vectors. Our approach pro-

tects the con�dentiality of the raw forms of the training data against

the honest-but-curious coordinator. Evaluation using two datasets

shows that our approach outperforms various baselines and ex-

hibits promising scalability with respect to the number of partic-

ipants observing low-complexity data patterns. Benchmark on a

testbed shows the practicality and e�ciency of our approach.

ACKNOWLEDGMENTS

This research was funded by a Start-up Grant at Nanyang Techno-

logical University. We acknowledge the support of NVIDIA Corpo-

rationwith the donation of twoGPUs used in this research.We also

acknowledge Dr. Yi Li for constructive discussions and Zhenyu Yan

for managing the computation resources used in this paper.

REFERENCES
[1] 2018. Crowd-ML. https://github.com/jihunhamm/Crowd-ML.
[2] 2018. PyTorch. https://pytorch.org/.
[3] 2018. Raspberry Pi 2 Model B. https://bit.ly/1b75SRj.
[4] 2018. Spambase data set. https://archive.ics.uci.edu/ml/datasets/spambase.
[5] M. Abadi, A. Chu, I. Goodfellow, H. McMahan, I. Mironov, K. Talwar, and L.

Zhang. 2016. Deep learning with di�erential privacy. In Proc. CCS. ACM, 308–
318.

[6] Nir Ailon and Bernard Chazelle. 2009. The fast Johnson–Lindenstrauss trans-
form and approximate nearest neighbors. SIAM Journal on computing 39, 1
(2009), 302–322.

[7] Jonathan Berr. 2018. Equifax breach exposed data for 143 million consumers.
https://cbsn.ws/2Qc8VOg.

[8] Michel Bierlaire, Ph L Toint, and Daniel Tuyttens. 1991. On iterative algorithms
for linear least squares problems with bound constraints. Linear Algebra Appl.
143 (1991), 111–143.

[9] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Prac-
tical secure aggregation for privacy preserving machine learning. In Proc. CCS.
ACM, 1175–1191.

[10] Avishek Joey Bose and Parham Aarabi. 2018. Adversarial Attacks on Face Detec-
tors using Neural Net based Constrained Optimization. In Proc. Intl. Workshop
Multimedia Signal Process.

[11] Emmanuel J Candès andMichael BWakin. 2008. An introduction to compressive
sampling. IEEE Signal Process. Mag. 25, 2 (2008), 21–30.

[12] Hervé Chabanne, Amaury deWargny, JonathanMilgram, Constance Morel, and
Emmanuel Prou�. 2017. Privacy-Preserving Classi�cation on Deep Neural Net-
work. IACR Cryptology ePrint Archive 2017 (2017), 35.

[13] Chih-Chung Chang and Chih-Jen Lin. 2018. LIBSVM – a library for support
vector machines. https://www.csie.ntu.edu.tw/~cjlin/libsvm/.

[14] Kamalika Chaudhuri and Claire Monteleoni. 2009. Privacy-preserving logistic
regression. In Proc. NIPS. 289–296.

[15] Zizhong Chen and Jack J Dongarra. 2005. Condition numbers of Gaussian ran-
dom matrices. SIAM J. Matrix Anal. Appl. 27, 3 (2005), 603–620.

[16] George Danezis and Claudia Diaz. 2008. A survey of anonymous communication
channels. Technical Report. Microsoft Research. MSR-TR-2008-35.

[17] C. Dwork. 2006. Di�erential privacy. In Proc. ICALP.
[18] C. Dwork, F. McSherry, K. Nissim, and A. Smith. 2006. Calibrating noise to

sensitivity in private data analysis. Conf. Theory of Cryptography (2006), 265–
284.

[19] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael
Naehrig, and John Wernsing. 2016. Cryptonets: Applying neural networks to
encrypted data with high throughput and accuracy. In Proc. ICML. 201–210.

[20] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
Harnessing Adversarial Examples. In Proc. ICLR.

[21] Google Cloud. 2018. Edge TPU. https://cloud.google.com/edge-tpu/.
[22] Thore Graepel, Kristin Lauter, and Michael Naehrig. 2012. ML con�dential: Ma-

chine learning on encrypted data. In Proc. Intl. Conf. Inf. Security & Cryptology.
Springer, 1–21.

[23] J. Hamm, A. Champion, G. Chen, M. Belkin, and D. Xuan. 2015. Crowd-ML: A
Privacy-Preserving Learning Framework for a Crowd of Smart Devices. In Proc.
ICDCS. IEEE, 11–20.

[24] B. Hitaj, G. Ateniese, and F. Perez-Cruz. 2017. Deep Models Under the GAN:
Information Leakage fromCollaborativeDeep Learning. In Proc. CCS. ACM, 603–
618.

[25] Loc N Huynh, Youngki Lee, and Rajesh Krishna Balan. 2017. Deepmon: Mobile
gpu-based deep learning framework for continuous vision applications. In Proc.
MobiSys. ACM, 82–95.

[26] Yann LeCun, Yoshua Bengio, and Geo�rey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436–444.

[27] Yann LeCun, Corinna Corts, and Christopher J.C. Burges. 2018. The MNIST
Database of Handwritten Digits. http://yann.lecun.com/exdb/mnist/.

[28] Shancang Li, Li Da Xu, and Xinheng Wang. 2013. Compressed sensing signal
and data acquisition in wireless sensor networks and internet of things. IEEE
Trans. Ind. Informat. 9, 4 (2013), 2177–2186.

[29] Bin Liu, Yurong Jiang, Fei Sha, and Ramesh Govindan. 2012. Cloud-enabled
privacy-preserving collaborative learning for mobile sensing. In Proc. SenSys.
ACM, 57–70.

[30] Kun Liu, Hillol Kargupta, and Jessica Ryan. 2006. Random projection-based
multiplicative data perturbation for privacy preserving distributed data mining.
IEEE Trans. knowl. Data Eng. 18, 1 (2006), 92–106.

[31] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agüera y Arcas. 2017. Communication-e�cient learning of deep net-
works from decentralized data. In AISTATS.

[32] H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. 2018. Learn-
ing Di�erentially Private Recurrent Language Models. In Proc. ICLR.

[33] Arvind Narayanan and Vitaly Shmatikov. 2006. How to break anonymity of the
net�ix prize dataset. arXiv preprint cs/0610105 (2006).

[34] Lindsey O’Donnell. 2018. Zero-Day Flash Exploit Targeting Middle East.
https://threatpost.com/zero-day-�ash-exploit-targeting-middle-east/132659/.

[35] Christopher C Paige and Michael A Saunders. 1982. LSQR: An algorithm for
sparse linear equations and sparse least squares. ACM Trans. Math. Software 8,
1 (1982), 43–71.

[36] L. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai. 2018. Privacy-Preserving
Deep Learning via Additively Homomorphic Encryption. IEEE Trans. Inf. Foren-
sics Security 13, 5 (2018).

[37] Yaron Rachlin and Dror Baron. 2008. The secrecy of compressed sensing mea-
surements. In Proc. Allerton. IEEE, 813–817.

[38] Reuters. 2018. Facebook critics want regulation, investigation after data misuse.
https://reut.rs/2GwKF8p.

[39] Yiran Shen, Chengwen Luo, Dan Yin, Hongkai Wen, Rus Daniela, and Wen Hu.
2018. Privacy-preserving sparse representation classi�cation in cloud-enabled
mobile applications. Comput. Netw. 133 (2018), 59–72.

[40] R. Shokri and V. Shmatikov. 2015. Privacy-preserving deep learning. In Proc.
CCS. ACM, 1310–1321.

[41] Shuang Song, Kamalika Chaudhuri, and Anand D Sarwate. 2013. Stochastic gra-
dient descent with di�erentially private updates. In Proc. GlobalSIP. IEEE, 245–
248.

[42] Johan AK Suykens. 2003. Advances in learning theory: methods, models, and ap-
plications. Vol. 190. IOS Press.

[43] Rui Tan, Sheng-Yuan Chiu, Hoang Hai Nguyen, David KY Yau, and Deokwoo
Jung. 2017. A Joint Data Compression and Encryption Approach for Wireless
Energy Auditing Networks. ACM Trans. Sensor Networks 13, 2 (2017), 9.

[44] Cong Wang, Bingsheng Zhang, Kui Ren, and Janet M Roveda. 2013. Privacy-
assured outsourcing of image reconstruction service in cloud. IEEE Trans. Emerg.
Topics Comput. 1, 1 (2013), 166–177.

[45] Piotr IwoWójcik and Marcin Kurdziel. 2018. Training neural networks on high-
dimensional data using random projection. Pattern Anal. Appl. (2018), 1–11.

[46] Wanli Xue, Chenwen Luo, Guohao Lan, Rajib Rana, Wen Hu, and Aruna Senevi-
ratne. 2017. Kryptein: a compressive-sensing-based encryption scheme for the
internet of things. In Proc. IPSN. IEEE, 169–180.

[47] Shuochao Yao, Yiran Zhao, Aston Zhang, Lu Su, and Tarek Abdelzaher. 2017.
DeepIoT: Compressing deep neural network structures for sensing systemswith
a compressor-critic framework. In Proc. SenSys. ACM, 4:1–4:14.

[48] Stephan Zheng, Yang Song, Thomas Leung, and IanGoodfellow. 2016. Improving
the robustness of deep neural networks via stability training. In Proc. CVPR. IEEE,
4480–4488.

https://github.com/jihunhamm/Crowd-ML
https://pytorch.org/
https://bit.ly/1b75SRj
https://archive.ics.uci.edu/ml/datasets/spambase
https://cbsn.ws/2Qc8VOg
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://cloud.google.com/edge-tpu/
http://yann.lecun.com/exdb/mnist/
https://threatpost.com/zero-day-flash-exploit-targeting-middle-east/132659/
https://reut.rs/2GwKF8p

	Abstract
	1 Introduction
	2 Background and Preliminaries
	2.1 Supervised Collaborative Learning
	2.2 Random Gaussian Projection (GRP)

	3 Related Work
	3.1 Distributed Machine Learning (DML)
	3.2 Training Data Encryption/Obfuscation
	3.3 Other Related Work

	4 Problem Statement and Approach
	4.1 Problem Statement
	4.2 Gaussian Random Projection Approach
	4.3 Illustrating Examples
	4.4 Alternative Approaches and Limitations

	5 Performance Evaluation
	5.1 Evaluation Methodology and Datasets
	5.2 Evaluation Results with MNIST Dataset
	5.3 Evaluation Results with Spambase Dataset
	5.4 Summary and Discussion

	6 implementation and Benchmark
	7 Conclusion
	Acknowledgments
	References

