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Abstract—Fine-grained real-time metering is a fundamental
service of wireless energy auditing networks, where metering
data is transmitted from embedded power meters to gateways for
centralized processing, storage, and forwarding. Due to limited
meter capability and wireless bandwidth, the increasing sampling
rates and network scales needed to support new energy auditing
applications pose significant challenges to metering data fidelity
and secrecy. This paper exploits the compression and encryption
properties of compressive sensing (CS) to design a joint data
compression and encryption (JICE) approach that addresses these
two challenges simultaneously. Compared with a conventional
signal processing pipeline that compresses and encrypts data
sequentially, JICE reduces computation and storage complexities
due to its simple design. It thus leaves more processor time and
available buffer space for handling lossy wireless transmissions.
Moreover, JICE features a machine-learning-based reconfigu-
ration mechanism that adapts its signal representation basis
to changing power patterns autonomously. On a smart plug
platform, we implemented JICE and several baseline approaches
including downsampling, lossless compression, and the pipeline
approach. Extensive testbed experiments show that JICE achieves
higher data delivery ratios and lower recovery distortions under
a range of realistic settings. In particular, JICE increases the
number of meters supported by a gateway by 50%, compared
with the pipeline approach, while keeping a distortion rate lower
than 5%.

I. INTRODUCTION

In emerging smart grids, wireless energy auditing network
(WEAN) [1]–[4], which consists of a network of wireless
power meters, is a fundamental service to enable various new
features such as demand response, usage disaggregation, power
quality monitoring, and efficiency diagnosis. These wireless
power meters, embedded in smart appliances, switches, and
plugs, are designed to support continuous measurements of
various physical quantities (e.g., voltage and current) at high
frequencies [1]. However, due to their limited computation
and storage capabilities as well as the need to simultaneously
support multiple real-time energy auditing applications and
enable post-event investigations, it is desirable to transmit the
raw metering data to central nodes such as backend servers
for advanced processing and long-term storage. This data-
collection-over-the-air architecture creates two fundamental
requirements. First, data fidelity at the central nodes must
be preserved to assure the quality of the aforementioned new
functionality in smart grids. Second, data secrecy during the
wireless transmissions must be ensured to protect customers’
privacy from malicious eavesdroppers, since the power mea-
surements can easily reveal customers’ sensitive information
such as their daily routines. Moreover, recent studies show that
an adversary can infer much fine-grained information such as

the TV channel being watched [5] and the web page being
browsed [6] based on unencrypted power readings. Indeed,
public concern for privacy has derailed planned mandatory
deployments of smart meters [7]. Thus, for WEANs to gain
acceptance by consumers and utility, efficient technologies
must be devised to address the two requirements.

Higher sampling rates for power signals capture more
operating characteristics of appliances, which is desirable
for energy auditing. For instance, to capture routine power
activities in harmonics analysis, power meters with wireline
communication often sample at 1.6 kHz or higher [8]. How-
ever, the highest sampling rate adopted by current WEAN
prototypes is just 4Hz [1]. Moreover, a recent study [3] finds
that a WEAN using one smart plug per occupant in a typical
commercial office, resulting in 455 plugs deployed totally, can
cover only 10% of the appliances. Thus, both the sampling
rate and network size need to be increased to improve the
spatiotemporal granularity of energy auditing beyond the state
of the art. However, the goals impose significant challenges
for the capability-limited power meters to meet data fidelity
and secrecy requirements. First, a large volume of measure-
ments from individual meters will quickly congest wireless
channels. The resulting poor end-to-end data delivery ratio will
undermine data fidelity. The problem can be worsened if the
wireless channels used by the meters are subject to interference
with other wireless communications such as WiFi commonly
found in buildings. Second, encryption must be used to achieve
data secrecy, but it often incurs severe computational overhead
at the meters. Indeed, due to the problem, some off-the-shelf
smart meters do not encrypt their measurements at all [9]. A
conventional solution that pipelines a compressor and a cipher
to reduce transmission volume and ensure secrecy will be too
slow at the meters. The resulting long processing delays can
jeopardize the data fidelity, when some of the measurements
have to be dropped to maintain real-time performance.

This paper proposes a joint compression and encryption
(JICE) approach based on compressive sensing (CS) [10] to
achieve data fidelity and secrecy simultaneously. CS theory
shows that a compressible signal can be represented by a small
number of linear projections of the original signal and recov-
ered with high probability. The much reduced transmission
volume due to compression helps in turn to reduce channel
contention and hence improve data fidelity. CS requires only
a simple multiplication between a random matrix and a vector
of the original signal, which can be efficiently implemented on
capability-limited meters. Moreover, recent studies [11], [12]
show that the cryptanalysis of recovering the original signal
from a CS-compressed signal is computationally hard without
knowing the true random matrix. Thus, CS provides a form978-1-4673-7331-9/15/$31.00 c© 2015 IEEE



of encryption if the random matrix is established as a shared
secret between the transmitter and the receiver. Because of
these advantages, CS is a promising approach to achieving
simultaneously the dual functions of data compression and
encryption on capability-limited wireless meters. In particular,
compared with the conventional pipeline approach, the CS-
based JICE leaves more processor time and available buffer
space for handling lossy wireless transmissions.

This paper presents the design of JICE in WEANs and
quantifies the advantages of JICE over other plausible solutions
through extensive benchmarking and testbed experiments. The
major contributions of this paper include:

• As CS design is application-specific, we address all
the key design elements systematically for WEANs,
which include signal sparsity, representation basis,
and measurement matrix, based on real power data
traces. The results show that, in contrast to the choice
of the measurement matrix, the choice of the repre-
sentation basis can significantly affect the recovery
performance.

• We develop a novel machine-learning-based approach
that identifies the best representation basis and re-
configures a JICE system autonomously, to adapt to
changing power consumption patterns. Specifically, a
computation-intensive learning algorithm is executed
at a resourceful gateway, while a lightweight classifi-
cation algorithm is executed at each capability-limited
power meter to select the representation basis based
on the learned model and observed power pattern.

• Although an adversary cannot easily recover the mea-
surement data without the random matrix used in the
CS, we identify a vulnerability of CS that can leak
important statistics information about the measure-
ment data. To solve the vulnerability, we propose a
lightweight perturbation approach that adds a random
noise signal to the original power signal. We design
the noise signal to be sparse in a transform domain,
to avoid adverse impact on the CS recovery.

• On a smart plug platform, we implement JICE and
several baseline approaches including downsampling,
lossless compression, and a pipeline approach that
applies a compressor and a cipher sequentially. Ex-
tensive benchmarking and testbed experiments show
that JICE reduces the computational overhead and
achieves higher data delivery ratios and lower recovery
distortions under various realistic settings with sam-
pling rates from 8Hz to 64Hz. In particular, when the
sampling rate is 8Hz, the number of meters supported
by a gateway is increased by 50%, compared with the
pipeline approach, while keeping a data distortion rate
lower than 5%.

In summary, JICE pushes the Pareto-optimal frontier of the
sensor-sampling-rate versus network-size trade-offs under the
data fidelity and secrecy requirements, beyond the state of the
art including commonly used signal processing pipelines.

This paper is organized as follows. Section II reviews
related work. Section III describes CS theory and our prob-
lem statement. Sections IV and V design JICE and discuss

its secrecy properties, respectively. Section VI presents im-
plementation details and benchmarking results. Section VII
presents testbed experiment results. Section VIII concludes and
discusses the applicability of JICE to other applications.

II. RELATED WORK

Pervasive sensing is a key element of smart grid tech-
nologies. It is estimated that by 2019 more than 100 million
wireless sensors will be installed in non-residential buildings,
with wireless power meters taking up a major sector [13].
Thus, WEAN has received much research interest in recent
years. Early studies have focused on hardware design of the
wireless meters [2], as well as networking issues in small-
scale deployments [1]. A recent research project [3] deployed
455 meters in a commercial building. Although it is recog-
nized [2] that high sampling rates (multiple to tens of Hz)
are important for load disaggregation, all the existing pilot
deployments [1]–[3] adopt low sampling rates such as one
sample per minute [2]. Data compression to save wireless
bandwidth is therefore not critical in these projects. Moreover,
they do not address data encryption for privacy in their design.

CS-based data collection protocols that exploit the spatial
sparsity of sensor readings have been developed for wireless
sensor networks, in the media access control [14] and network
[15] layers. These protocols leverage the compression nature
of CS to reduce communication cost. In [14], multiple sensors
simultaneously transmit their readings amplified by random
factors to a sink node over an analog wireless channel,
resulting in a projection of all the readings at the sink. From
the multiple projections, the sink can recover the readings.
In [15], sensors multiply their readings by random vectors and
aggregate the vectors in the network, resulting in balanced
energy consumption of the sensors. Recent studies have ap-
plied CS to various sensing systems including acoustic ranging
[16], video background subtraction [17], and soil moisture
monitoring [18]. By exploiting the temporal sparsity of a
single sensor’s data, they apply CS to schedule the sleep of
the sensors [18], and reduce transmission volume [16] and
computation overhead [17]. In contrast, this paper aims to
exploit the low computation and storage complexity of CS to
jointly compress and encrypt temporally sparse power signals
on embedded wireless power meters. Moreover, none of the
earlier studies aim to reconfigure CS to adapt to changing
signal patterns, but we do.

It is observed in [11] that CS implements a form of
encryption if the measurement matrix is a secret. As the mutual
information between the input and output of CS is non-zero
[12], like many other ciphers, CS cannot achieve Shannon’s
perfect secrecy. Nonetheless, it is shown that recovering the
original signal without the true measurement matrix is compu-
tationally difficult [12], [19]. A signal recovered with a wrong
measurement matrix is less sparse than the original signal
[12]. However, the cryptanalysis that exhaustively searches
for a measurement matrix to minimize the sparsity of a
candidate recovery is often intractable. Similarly, it is shown
that brute force and structured attacks to estimate a Gaussian
measurement matrix is practically infeasible [19]. Such secrecy
property of CS is used to establish secret communication in
asymmetric channels through secure measurement matrices
[20]. Although previous studies [12], [19] established the



difficulty of signal recovery without the measurement matrix,
this paper identifies a vulnerability of CS to leaking statistics
of the original signal and proposes an approach to solving the
vulnerability.

III. BACKGROUND AND APPROACH OVERVIEW

A. Preliminaries

This section briefly reviews CS theory [10]. Let N denote
the length of the input signal. Suppose Ψ is an orthonormal
representation basis Ψ = [ψ1ψ2 · · ·ψN ] ∈ R

N×N , where ψi

is the ith column of Ψ. The coefficient sequence of a time-
domain signal x ∈ R

N×1 on the basis Ψ is denoted as x̂,
i.e., x = Ψx̂. The signals x and x̂ are k-sparse if x̂ has k
non-zeros. Let y ∈ R

M×1 denote the output signal and Φ ∈
R

M×N denote the measurement matrix, where M < N . The
measurement process of CS is y = Φx. In this paper, the
compression ratio, denoted by γ, is defined as γ = N/M . By
denoting A = ΦΨ, we have y = Ax̂. The matrix A complies
with the restricted isometry property (RIP) of order k if there
exists a constant δk such that (1 − δk)‖x̂‖ℓ2 ≤ ‖Ax̂‖ℓ2 ≤
(1+δk)‖x̂‖ℓ2 , for any k-sparse signal x̂, where ‖·‖ℓ2 represents
the ℓ2-norm. Let x′ and x̂′ denote the recovered signal and
its transform, respectively. If x is k-sparse and A complies
with RIP of order k, the original signal x can be recovered as
x′ = Ψx̂′, where x̂′ is given by x̂′ = argmin

ẑ∈RN×1 ‖ẑ‖ℓ1 ,
subject to that y = Aẑ.

It has been shown [10], [21] that A complies with RIP
of order k if Φ is composed of M rows that are randomly
selected from an orthonormal basis Φ∗ ∈ R

N×N and

M ≥ C · µ2(Φ∗,Ψ) · k · logN, (1)

where µ(Φ∗,Ψ) is the coherence between the two orthonormal
matrices Φ∗ and Ψ [10], [21]. The coherence is formally given
by µ(Φ∗,Ψ) =

√
N ·max1≤i,j≤N |φ∗i · ψj | ∈ [1,

√
N ], where

φ∗i and ψj are the ith row and jth column of Φ∗ and Ψ,
respectively. In other words, the coherence measures the largest
correlation between any row of Φ∗ and any column of Ψ.
In this paper, we adopt the normalized coherence defined as
µ̄(Φ∗,Ψ) = µ(Φ∗,Ψ)/

√
N ∈ [1/

√
N, 1].

B. Background and Problem Statement

A wireless power meter embedded in smart appliances,
switches, and plugs typically consists of a power sensor, a
microcontroller unit (MCU), a non-volatile memory, and a
Zigbee radio. These meters may draw power from batteries or
a power grid. To increase hardware reliability and minimize
impact on the power grid, these meters often use low-power
hardware components with limited computation, storage, and
communication capabilities. For instance, the TI MSP430F1xx,
a widely adopted MCU family for these meters [2], [22],
has an 8MHz clock rate and 10KB RAM capacity only. As
discussed in Section I, to enable various advanced energy
auditing applications, it is desirable to transmit the metering
data to a gateway such as a smart meter or a Zigbee access
point, while meeting the data fidelity and secrecy requirements.

As power signals are often temporally correlated and hence
compressible, data compression can be applied to reduce trans-
mission volume and alleviate the channel contention. More-
over, it allows more retransmission attempts for lost packets,
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Fig. 1. Overview of JICE.

given a transmission deadline that ensures real-time metering.
Various ciphers [23] can be employed to ensure data secrecy.
However, system designers face strong challenges in pipelining
existing compressors and ciphers, as they incur significant
computation and storage overhead at the capability-limited
meters. For instance, without careful design, the execution time
of these algorithms could jeopardize the timeliness of metering
easily. As discussed in Section I, CS is a promising approach
that jointly achieves fidelity and secrecy while keeping a
simple system design of low computation complexity. In this
paper, we aim to answer the following basic questions. First,
how to design the key elements of CS including representation
basis and measurement matrix for WEANs (Section IV)?
Second, what are the secrecy vulnerabilities (if any) of CS
as a form of encryption (Section V)? Third, can CS bring
substantial benefits such as reduced packet losses and recovery
errors, compared with other plausible approaches (Sections VI
and VII)?

C. Overview of JICE

An overview of JICE is illustrated in Fig. 1. A wireless
power meter first perturbs the original power signal x by
adding a perturbation vector p to fix a secrecy vulnerability
of CS identified in this paper (see Section V). It then com-
presses the perturbed signal by multiplying it by the random
measurement matrix Φ. Meanwhile, it extracts a feature vector
consisting of three simple statistics of x, and uses a decision
table to choose the most efficient representation basis Ψ
among a number of candidate bases. This design is motivated
by a key observation, from our extensive empirical results,
that the representation basis can significantly affect recovery
performance. The meter sends the CS-compressed signal and
the choice of Ψ to the gateway, which recovers x using p, Φ,
and the chosen Ψ. The gateway may run advanced electricity
analytics based on the recovered data and/or forward the data
to backend servers through secure wireline links. It also runs a
decision table training algorithm periodically based on recently
recovered data, and sends the updated decision table to the
meter, such that the system can adapt well to changing power
characteristics. In JICE, the perturbation vector p and the
measurement matrix Φ are shared secrets between the meter
and the gateway, to ensure the secrecy of the data transmissions
over air. Moreover, they should be different across the meters,
such that leak of the secret of a single meter (e.g., by extracting
from the memory of a physically captured meter) will not
reveal the secrets of other meters. The details for establishing
these shared secrets will be discussed in Section V.

IV. COMPRESSIVE SENSING FOR POWER SIGNALS

This section analyzes the sparsity of power signals, which
is essential to the design of JICE. We then design the rep-
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resentation basis Ψ and the measurement matrix Φ. There is
no systematic way of selecting Ψ and Φ; it is usually done
through a trial-and-error approach. This paper similarly adopts
such an approach, with guidance by CS theory to make the
process more scientific. Finally, we develop a novel machine-
learning-based algorithm for the power meters to choose the
most efficient representation basis.

A. Power Consumption Traces

This section presents the details of a data set of real power
traces collected on one floor of an office building for 18
hours. Based on this data set, we design JICE in the following
subsections. The floor has multiple rooms and open areas,
which draw power from a total of 39 branches at a main
power panel. We install current transducers on the main power
panel to measure the power consumption per branch at one
Hz. Different appliances have different power consumption
patterns. After a comprehensive inspection, the power signals
can be generally classified into five categories: duty-cycled,
periodic, fluctuating, spiky, and silent. Fig. 2 shows examples
for the different types. Many heating/cooling appliances duty-
cycle to achieve the desired temperatures. Fig. 2(a) shows the
duty-cycled power consumption in a pantry with a refrigerator
and a water dispenser. Fig. 2(b) shows the periodic power
consumption of a projector in a boardroom. Computers can
generate complex power consumption patterns. Fig. 2(c) shows
the power trace of an office room, where the fluctuations of
about 40 watts are caused by a desktop computer. Fig. 2(d)
shows the power trace of a server room, with power spikes
caused by a bursty workload of the servers. Fig. 2(e) shows
the power consumption of the boardroom when only ceiling
lights are on, where the fluctuations are within one watt.

B. Design of Representation Basis Ψ

The sparsity of signal x or x̂, denoted by ρ, is defined as
ρ = k/N . CS theory assumes that x̂ contains N−k zeros (i.e.,
k-sparse). However, in practice, x̂ typically contains small val-
ues rather than zeros. A common approach is to approximate x̂
by x̂(k), which is obtained by keeping the k largest coefficients
of x̂ only and setting the others to zeros [14]. As a result,
the setting of k (or ρ) affects the approximation accuracy and
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the design of CS (e.g., the choice of compression ratio). By
denoting x(k) = Ψx̂(k), the distortion of x(k) is defined as

ǫ(x(k),x) =
‖x(k) − x‖ℓ2

‖x‖ℓ2
. (2)

Under the above definition, x is approximately k-sparse, where
k is the minimum of l subject to ǫ(x(l),x) ≤ ǫ0 and ǫ0 is a
small fixed threshold. The ρ is defined as the approximate
sparsity of x. In the rest of this paper, we mean approximate
sparsity when we say sparsity, and ǫ0 is set to 1%.

From Eq. (1), it is desirable to choose a representation basis
to efficiently sparsify the signal to achieve a better compression
ratio. This paper considers three commonly adopted represen-
tation bases [15], [18], although JICE can easily encompass
other bases. The adjacent difference transform (ADT) [18]
computes the difference between two adjacent samples and can
sparsify a steady signal that occasionally has transient changes.
The discrete cosine transform (DCT) expresses the signal by
a weighted sum of cosine functions of different frequencies,
and hence can efficiently sparsify signals with periodic compo-
nents. The discrete wavelet transform can compactly represent
the signal with both temporal correlation and periodicity. In
this paper, we consider the Haar wavelet transform (HWT),
which is commonly used with CS [18]. Let ΨA, ΨD, and
ΨH denote the representation bases for ADT, DCT, and HWT,
respectively. Their definitions can be found in [18], [24], [25].

We separately evaluate the sparsity of power signals for
the different categories under different representation bases.
The results are shown in Fig. 3. We can see that all the
three transforms can reduce the signal sparsity with respect
to the original signal. Moreover, we can see that the most
efficient representation bases that minimize ρ for different
categories of signals are different. For instance, consistent
with intuition, ADT and DCT are most efficient for the duty-
cycled and periodic signals, respectively. Fig. 3 also shows the
overall results when all the types of signals are used. HWT
outperforms the other two transforms in an average sense.
Thus, ΨH is a preferable default basis without prior knowledge
of the signal structures of power readings.

C. Design of Measurement Matrix Φ

From Eq. (1), to achieve better compression ratios, Φ and
Ψ should be chosen to jointly reduce the signal sparsity and
coherence. In this paper, we consider three random measure-
ment matrices that have been shown to comply with RIP [26],
[27] and employed in various applications [18]:
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Gaussian matrix ΦG: Each element of ΦG is drawn from the
normal distribution N (0, 1

M
), where M satisfies Eq. (1).

Rademacher matrix ΦR: Each element of ΦR is either 1√
M

or − 1√
M

with a probability of 0.5, where M satisfies Eq. (1).

Binary matrix ΦB: Each column of ΦB has S ones and (M−
S) zeros. The positions of ones are uniformly distributed. ΦB

complies with an extended RIP where the ℓ2-norm in the RIP
definition in Section III-A is replaced with the ℓ1-norm [27].

We conduct extensive empirical studies on the performance
of combinations of the above three measurement matrices
and the three representation bases described in Section IV-B.
The compression ratio and distortion of the recovered signal
are two important but competing performance metrics for
signal compression. In this paper, the distortion is assessed by
ǫ(x′,x), where x′ is the recovered signal and ǫ(·, ·) is defined
in Eq. (2). We first evaluate the distortion for the duty-cycled
signals collected in the pantry under different combinations
of Φ and Ψ. The result in Fig. 4 shows that ADT obtains
the smallest distortion across all the bases, which is consistent
with Fig. 3. Table I lists the normalized coherence for different
combinations of Φ and Ψ. Note that as ΨA and ΦB are not
orthonormal, the coherence involving them is undefined. ΦR

shows smaller coherence than ΦG, but the difference is not
significant. A similar trend can be found in Fig. 4, where the
choice of Φ barely affects the reconstruction error.

Next, we evaluate the distortions for different combinations
of Φ and Ψ over all the types of signal except for duty-
cycled. We assume no prior knowledge of the structure of
power readings. Fig. 5(a) shows the distortions based on
different combinations of Φ and Ψ. From the figure, we can
see that HWT yields a lower distortion than ADT and DCT,
but the difference in distortion is not significant compared to
duty-cycled. It also shows that the choice of measurement
matrix has negligible impact on the distortion. This result
applies for a range of compression ratios. Fig. 5(b) shows
the distortion of HWT under different measurement matrices

TABLE II. THRESHOLD-BASED DECISION TABLE.

rac>T1? (T1=0.095) N N N N Y Y Y Y
rsc>T2? (T2=0.059) N N Y Y N N Y Y
σ > T3? (T3=51) N Y N Y N Y N Y

choice for Ψ ΨD ΨA ΨH ΨA ΨH ΨH ΨH ΨH

versus compression ratios. While the distortion increases with
γ, it is similar among the measurement matrices. In summary,
we have the following important insights on choosing Φ and Ψ.
The Φ does not significantly affect the performance of JICE.
If the signal structure is known, the optimal choice of Ψ can
improve greatly the performance; otherwise, HWT yields a
marginal performance gain over ADT and DCT on average.

D. Autonomous and Dynamic Configuration for Ψ

Motivated by the observation in Section IV-C, we design
a machine-learning-based lightweight approach to identifying
the most efficient Ψ for each signal block. Our approach is
based on a three-dimensional feature vector f = [rac, rsc, σ]
for each block, where rac is the rate of average crossings, rsc
is the rate of sharp changes, and σ is the standard deviation.
These metrics are related to the signal structure. Specifically,
rac is the ratio of times when the signal crosses its average
value to the block size, which is related to the periodicity of
the signal. rsc is the ratio of the number of sharp changes to
the block size, which is related to the presence of duty-cycling
appliances. The formal definitions of rac and rsc are omitted
here due to space constraints and can be found in [28]. σ
indicates the level of dispersion in power consumption. These
metrics can be efficiently computed by meters.

The objective is to determine the most efficient Ψ based
on f . As it is difficult to discover the statistical distributions
for f , statistical classifiers (e.g., Bayesian) are not applicable.
Moreover, the classification based on complex decision bound-
aries of these classifiers will impose substantial computational
overhead for meters, potentially negating the benefit brought
by choosing Ψ dynamically. In our approach, we adopt a
threshold-based decision table to determine Ψ from f , which is
a look-up table according to the results of comparing rac, rsc,
and σ with three thresholds (T1, T2, and T3). Table II shows
such a table. The thresholds T1, T2, T3, and the last row of
the decision table are obtained by a training algorithm based
on a training data set. The details of the training algorithm
are omitted here due to space constraints and can be found in
[28]. Table II also includes the training results based on half
of the data set described in Section IV-A. Table III reports
the feature vectors for the signals shown in Fig. 2 and the Ψ
chosen according to the decision table in Table II, which are
the same as the optimal results. We note that the most efficient
Ψ may not be consistent with the results shown in Fig. 3 (e.g.,
spiky and silent), which consider sparsity only. Fig. 6 plots the
distortions under fixed Ψ and dynamic Ψ approaches, based
on the other half of the data set. It also shows the distortions
under the ground-truth optimal Ψ. Compared with fixed Ψ, a
dynamic Ψ can reduce the distortion effectively for 15 blocks
out of totally 90 blocks. For one block only, our approach
chooses a Ψ that is not necessarily the optimal one.

We now discuss a few practical issues for the above
dynamic Ψ approach. First, unlike many training-based ap-
proaches, our approach needs no ground-truth labels for the



TABLE III. STRUCTURE FEATURES AND CHOSEN REPRESENTATION

BASES FOR THE SIGNALS SHOWN IN FIG. 2.

duty-cycled period fluctuating spiky silent

rac 0.00586 0.01758 0.04297 0.39844 0.00391
rsc 0.02051 0.04004 0.62402 0.19629 0.03516
σ 247.5 31.4 30.3 5.1 0.3
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training data, since the most efficient Ψ can be identified
autonomously by the training algorithm, simply by comparing
the distortion under different representation bases. Thus, the
training can be fully automated. Second, the decision table
can be updated periodically (e.g., hourly) by the gateway
using the training algorithm and the recently reconstructed
signals as training data, such that the WEAN can adapt to
changing characteristics or usage patterns of appliances. The
updated decision table has to be transmitted to the meter,
but this introduces little overhead (14-byte payload in our
implementation). In JICE, the gateway computes different
decision tables for different meters based on their own data.

V. DATA SECRECY OF COMPRESSIVE SENSING

In this section, we first discuss the secrecy properties of
CS, which reveal a vulnerability of leaking statistics. We then
propose a perturbation approach to solving the vulnerability.

A. Adversary Model and Leak of Statistics under CS

The adversary model in this paper is that an eavesdropper
can capture the wireless communications between a power
meter and the gateway, from which the eavedropper aims to
recover the original power signals. With the CS-compressed
signals only, recovering the original signals is computationally
hard, as long as the random measurement matrix Φ is kept
secret [12], [19]. A symmetric secret key shared by the meter
and the gateway can be used as the seed to generate Φ, where
the symmetric key can be hard-coded or established using
existing code libraries for key exchange (e.g., [29]) that are
often based on public-key cryptography. We note that, although
establishment of the symmetric key may introduce some over-
head due to the complexity of public-key cryptography, it is a
one-time procedure during system initialization only. Different
symmetric keys can be established for different meters. As
such, the leak of a single meter’s key (e.g., by extracting from
the memory of a physically captured meter) will not reveal
the keys of other meters. A fixed Φ can be estimated by the
adversary using regression techniques if she is able to launch
known-plaintext attacks. In WEANs, known-plaintext attacks
will need physical access to the power wires or retrofit to
the meters, making them difficult and detectable. Nevertheless,
the meter and the gateway can generate a new Φ every few
blocks using the symmetric key, such that the adversary cannot
accumulate enough data for the regression. Note that the

generation of Rademacher and binary matrices requires little
overhead. In our implementation of JICE (cf. Section VI), a
new Φ is generated every block.

Although CS prevents the recovery of the original signal
under the adversary model defined, we identify the following
vulnerability of CS in leaking statistics of the original signal.
We first discuss the cases where Gaussian and Rademacher
matrices are adopted. By denoting yi as the ith entry of y,

we have yi =
∑N

j=1 φi,jxj , where xj is the jth entry of
x and φi,j is the (i, j)th element of ΦG or ΦR. For both
ΦG and ΦR, the variance of φi,j is Var[φi,j ] = 1

M
. As

each φi,j is independent and identically distributed, we have

Var[yi] = 1
M

∑N
j=1 x

2
j = 1

M
‖x‖2ℓ2 . Given y, the unbiased

sample variance of yi for any i, denoted by s2y , is given

by s2y = 1
M−1

∑M
i=1(yi − ȳ)2, where ȳ = 1

M

∑M
i=1 yi. As

Var[yi] ≃ s2y , we can derive ‖x‖ℓ2 ≃
√

m
m−1

∑m
i=1(yi − ȳ)2.

In other words, the ℓ2-norm of the original signal can be
accurately estimated from the compressed signal. Based on the
estimated ‖x‖ℓ2 , the adversary can further estimate bounds for
the mean and standard deviation of x (denoted by x̄ and σx
respectively). As xi ≥ 0, x̄ = 1

N
‖x‖ℓ1 . As ‖x‖ℓ2 ≤ ‖x‖ℓ1 ≤√

N‖x‖ℓ2 , we have 1
N
‖x‖ℓ2 ≤ x̄ ≤ 1√

N
‖x‖ℓ2 . Moreover, as

σx =
√

1
N
‖x‖2ℓ2 − x̄2, we have σx ≤

√
N−1
N

·‖x‖ℓ2 . Note that

x̄ and σx represent important privacy information of the user.

We next discuss the case when the binary matrix is adopted.

In this case, it is easy to verify that x̄ =
∑

M
i=1

yi

N ·S , since each
column of ΦB contains S ones. Thus, the CS based on ΦB

leaks the exact mean of the power consumption. Table IV
shows an example of the leak of statistics. We can see that,
when ΦG is used, the ℓ2-norm of the original signal can be
accurately estimated. The estimated upper bound of x̄ is close
to x̄. When ΦB is used, the x̄ can be exactly estimated.

B. Perturbation

To solve the vulnerability, we propose to perturb the
power signal. In JICE, the meter and gateway have a shared
secret key denoted by kp ∈ R. Define a perturbation vector
p̂ = [kp, 0, . . . , 0]

T ∈ R
N×1. Its time-domain counterpart

is p = Ψp̂ = kpψ1, which can be pre-computed by the
meter. The meter computes the sum of x and p to produce the
perturbed signal denoted by x̃, i.e., x̃ = x+p. The meter then
applies CS to x̃ and transmits. As the sparsity of x̃, denoted
by ρx̃, is at most ρ + 1/N , the extra distortion caused by
the perturbation is almost negligible. Moreover, for DCT and
HWT, the first transform coefficient corresponds to the lowest
frequency component, which is typically non-zero. Therefore,
the perturbation will not change the signal sparsity. As shown
in Table IV that applies two settings for kp, the perturbation
does not lead to significant increases of distortion. As the
gateway also knows p, it can remove p from the reconstructed
signal to obtain the original signal. When ΦG or ΦR is used,
the adversary can estimate ‖x+p‖ℓ2 = ‖x̂+ p̂‖ℓ2 , but cannot
estimate ‖x̂‖ℓ2 since p̂ contains an arbitrary number kp. When

ΦB is used, the adversary can estimate x̄+
kp

N

∑N
j=1 ψ1,j . As∑N

j=1 ψ1,j 6= 0 and kp is an arbitrary number, the adversary
cannot estimate x̄. From the example shown in Table IV,
with perturbation, the adversary’s estimates for ‖x‖ℓ2 and



TABLE IV. AN EXAMPLE OF PERTURBATION.

Gaussian binary
ℓ2-norm x̄ σx x̄

true value 13689 426.8 28.56 426.8
estimate (no perturb) 14445 [14.1, 451.4] ≤451.1 426.8
estimate (kp=5×103) 19773 [19.3, 617.9] ≤617.6 601.3
estimate (kp=5×105) 544336 [531.5, 17010.5] ≤17002 16553.3
distortion (no perturb) 2.47% 2.27%
distortion (kp=5×103) 2.47% 2.31%
distortion (kp=5×105) 2.49% 2.44%

the bounds for x̄ and σx depend on kp and they are wrong.
Moreover, the perturbation causes little extra distortion in the
signal recovery.

VI. IMPLEMENTATION AND BENCHMARKING

We implemented JICE on a smart plug platform called
SPlug [30]. An SPlug consists of a Kmote and a power sensor
(ADI ADE7763). The Kmote consists of a TI MSP430F1611
MCU (8MHz clock rate and 10KB RAM) and a Chipcon
CC2420 Zigbee radio, and runs the TinyOS operating system.
To evaluate JICE, we implemented the pipeline approach
discussed in Section III-B, a downsampling approach, and a
lossless compression approach as baselines. We have released
a code package [31] including all these implementations. This
section presents the implementation details and summarizes
the computation and storage overhead measurement results.

For all the approaches, data is represented as 4-byte inte-
gers or floating point numbers. To preserve data fidelity, we
adopt a reliable transmission protocol [32], which retransmits
a packet if its acknowledgment is not received in time.

JICE: JICE uses two buffers, an output buffer and a trans-
mission buffer. The sizes of these two buffers are M . When
the meter obtains a power reading, it generates a random
number, multiplies it with the reading, and adds the result to
an entry of the output buffer. For the same reading, it repeats
this process for each entry of the output buffer. We generate
Gaussian and Rademacher random numbers by Box-Muller
transform and thresholding based on uniform pseudo-random
numbers, respectively. For the binary measurement matrix, we
implement the approach described in [27] to generate binary
random numbers. For every N sensor readings, the meter
stops sending from the current transmission buffer, switches
the roles of the transmission and output buffers by swapping
pointers to them (which avoids costly data copying), and starts
transmitting from the new transmission buffer. Under this
scheme, when the link quality deteriorates, the transmission
buffer may not be fully processed when the output buffer is
ready, leading to data loss. However, this scheme prevents
the new data in the output buffer from being overwritten and
ensures real-time metering. In a packet to the gateway, the
meter piggybacks the dynamic selection of Ψ and a sequence
number to synchronize the measurement matrix generations
between the meter and gateway, which takes one byte payload.

Pipeline: The pipeline approach employs a wavelet-based
lossy compression algorithm that captures the main principle
of most lossy compression schemes. It first computes the
transform x̂ from the original signal x, then encodes the
largest M

2 transform coefficients along with their positions
in x̂, resulting in a total of M numbers. This approach
employs the Advanced Encryption Standard (AES) algorithm,

a representative symmetric-key cipher. Although the SPlug
has built-in AES implementation in its CC2420 radio chip,
this is not necessarily true of all meters. To preserve the
generality of our results, we use a software implementation
of AES [33]. In fact, our tests show that the built-in AES
is slower than the software implementation. The pipeline
approach has two variants regarding the implementation of
transforms. A few transforms such as ADT and HWT have
efficient implementations without resorting to matrix-vector
multiplication. We refer to the resultant variant as native
pipeline. Other transforms may involve intensive floating-point
computation (e.g., cosine in DCT) that incurs unacceptable
delays. Instead, they can be implemented as a multiplication
of x and a pre-computed Ψ, which incurs O(N2) storage
overhead, however. We refer to the resultant variant as matrix
pipeline. We implement both the native and matrix versions
of HWT, which allows us to understand the impact of storage
overhead on the overall performance. The pipeline approach
also uses a transmission buffer to coordinate data processing
and transmission.

Downsampling: This approach transmits raw data to the
gateway. For fair comparisons, we downsample the signal in
this implementation to have the same transmission volume as
those of the JICE and pipeline approaches. We use a circular
queue to coordinate the sensor sampling and data transmission.
A data packet encapsulating new sensor readings is added to
the queue. An infinite loop removes a packet from the queue
and transmits it to the gateway. When a new packet is available
and the queue is full, the meter stops sending the oldest packet,
removes it, and adds the new packet to the queue.

Lossless: This approach first applies SLZW [34], a lossless
compression algorithm designed for embedded sensors, then
applies AES to encrypt the compressed data. As the compres-
sion ratio of SLZW is unpredictable, the lengths of all the
signal buffers are set to be N to prevent overflow.

We benchmark the computational and storage overhead of
each approach. We use the maximum sampling rate (MSR)
and maximum block size (MBS) to inversely characterize the
computational and storage overhead, respectively. Specifically,
MSR is the reciprocal of the average processing time for a
single reading and MBS is obtained by increasing the block
size until the RAM usage reported by the TinyOS compiler
exceeds the RAM capacity. The benchmark details are omitted
here due to space constraints and can be found in [28]. The
measurement results show that 1) JICE with the binary and
Rademacher matrices consistently outperforms the pipeline
approach in terms of MSR; 2) JICE with the binary matrix
leads to the highest MSR; and 3) JICE yields larger MBSs than
the pipeline and lossless approaches. As JICE with the binary
matrix incurs the lowest overhead, in our testbed experiments
presented in Section VII, we adopt the binary matrix.

VII. TESTBED EXPERIMENTS

A. Experiment Methodology

We conduct extensive testbed experiments to compare the
performance of the different approaches. To make the results
of various approaches (e.g., the recovered signals) comparable,
we need them to measure the same power signal. As an
SPlug has both plug and socket interfaces, multiple SPlugs
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Fig. 7. Data delivery ratio and distortion vs. sampling rate (γ = 4).

can be connected in series to measure the same appliance.
We use five SPlugs loaded with JICE, native pipeline, matrix
pipeline, downsampling, and lossless approaches, respectively,
and a sixth SPlug loaded with a ground-truth data collection
program. Each approach adopts its MBS obtained in the
performance benchmark [28], to maximize its tolerance to link
quality deterioration. The ground-truth SPlug transmits the raw
data without any processing. We use two gateways, which are
two Kmotes connected to two computers. The five SPlugs with
the JICE and baseline approaches communicate with a gateway
using the same Zigbee channel, while the ground-truth SPlug
communicates with the other gateway using another Zigbee
channel. We use our setup to measure the power consumption
of a 29-inch LCD that repeatedly displays a video.

B. Experimental Results

1) Data Delivery and Fidelity: Fig. 7(a) shows the data de-
livery ratios of the various approaches under different sampling
rates. We can see that the pipeline approaches do not scale well
with the sampling rate. As the downsampling approach uses
a large circular buffer which tolerates variable link quality, it
yields comparable data delivery ratios as JICE. Note that as the
lossless approach generates a variable number of packets, we
omit its data delivery ratio. Fig. 7(b) shows the distortions of
the signals recovered by the various approaches. Note that the
gateway can detect lost packets from the sequence numbers in
the received packets. Under JICE, the gateway uses the rows in
A that correspond to the received data points only to recover
the signal. For the pipeline approaches, the lost coefficients
are set to zeros. For the downsampling approach, omitted and
lost readings are interpolated. For the lossless approach, a
whole block is discarded if any packets are lost since SLZW
requires complete data for decompression. We can see that
JICE generally yields the lowest distortions. An exception
is the native pipeline approach when the sampling rate is
16Hz. Under this setting, both JICE and native pipeline have
nearly 100% data delivery ratios and hence their distortions
are comparable. Fig. 8 plots segments of the ground truth
and recovered signals by JICE and the native pipeline, at a
sampling rate of 32Hz and γ = 4. We can see that JICE well
preserves the shape of the signal whereas the native pipeline
approach has significant recovery errors.

We conduct another set of experiments similar to the one
in Fig. 7, except that we fix the sampling rate to 64Hz and
vary the compression ratio. The results are shown in Fig. 9.
When γ = 2, JICE has a smaller block size [28] and more data
to be sent. As a result, JICE experiences a low data delivery
ratio (38%). However, from Fig. 9(b), the distortion of JICE is
just 4%. For JICE, the effect of packet loss is similar to that
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Fig. 9. Data delivery ratio and distortion vs. γ (sampling rate: 64 Hz).

of choosing a larger γ. Therefore, the distortions of JICE for
γ = 2 and γ = 4 are comparable since the data delivery ratio is
doubled when γ increases to 4. In summary, JICE outperforms
the baseline approaches in terms of distortion.

2) Scalability: This section evaluates the scalability of
JICE with respect to the network size. For this testbed exper-
iment, we tune down the transmission power of the SPlugs
to simulate long distances from the gateway in real large-
scale networks. The resultant RSSIs at the gateway are within
[−40,−30], a typical range observed in practice when meters
use the maximum transmission power. To simulate a large
number of meters, we use several Kmotes as traffic nodes,
which continuously transmit packets. Fig. 10 plots the data
delivery ratio and distortion versus the number of traffic nodes,
when the sampling rate is 8Hz. JICE outperforms the native
pipeline approach except when the number of traffic nodes is 4.
Under this setting, both approaches have comparable delivery
ratios and the pipeline approach has a slightly lower distortion.
From Fig. 10(b), to maintain a distortion of 5%, JICE can
increase the supported meters by 50%, compared with the
pipeline approach. According to the generated traffic volume,
each traffic node can be projected to 12 nodes running the JICE
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or pipeline approaches sampling at 8Hz. Thus, to maintain a
distortion of 5%, JICE supports up to 144 meters.

VIII. CONCLUSION AND FUTURE WORK

This paper applied CS to jointly compress and encrypt
measurements from wireless power meters in a WEAN. We
designed JICE through analysis and extensive empirical studies
based on real data traces. We developed a machine-learning-
based lightweight algorithm to configure the representation
basis of JICE dynamically to optimize performance. For pri-
vacy, we identifed leak of statistical information by CS and
proposed a perturbation approach to solving the vulnerability.
Extensive benchmarking and testbed experiments showed that
JICE outperforms various baseline approaches under different
realistic settings.

A. Discussion and Future Work

Many pervasive sensing applications based on capability-
limited sensors face the same challenges in ensuring data
fidelity and secrecy as WEANs. Examples include residential
activity sensing and wireless medical monitoring. Sensors
for residential activity monitoring often stream their high-
resolution data to a central node for complex cognitive pro-
cessing [4]. However, the data can reveal the user’s daily
activities, from usage of appliances [35], to keystroke sequence
on a computer keyboard [36] if acoustic sensors are used,
as in [4]. Mote-class body-worn sensors have been used for
monitoring patients’ vital signs (e.g., pulse) at low rates in gen-
eral hospital units [37]. To support cardiac and epilepsy care
that requires high-rate (up to 100Hz) electroencephalography
and/or acceleration measurements, compressing and encrypting
this privacy-sensitive data become imperative. Although this
paper focuses on WEAN, JICE can also be applied to these
other emerging applications. Specific best choice of key CS
elements such as representation basis and measurement matrix
may be application specific. To address the challenge, in this
paper we advance generic design elements, such as the dy-
namic representation basis configuration and the perturbation
approach for privacy preservation, which can be readily applied
to new application domains. Our future work will realize JICE
for some of these other applications.
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