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Fine-grained real-time metering is a fundamental service of wireless energy auditing networks, where me-
tering data is transmitted from embedded wireless power meters to gateways for centralized processing,
storage, and forwarding. Due to limited meter capability and wireless bandwidth, the increasing sampling
rates and network scales needed to support new energy auditing applications pose significant challenges to
metering data fidelity and secrecy. This paper exploits the compression and encryption properties of compres-
sive sensing (CS) to design a joint data compression and encryption (JICE) approach that addresses these
two challenges simultaneously. Compared with a conventional signal processing pipeline that compresses
and encrypts data sequentially, JICE reduces computation and space complexities due to its simple design.
It thus leaves more processor time and available buffer space for handling lossy wireless transmissions.
Moreover, JICE features an adaptive reconfiguration mechanism that selects the signal representation ba-
sis of CS at run time among several candidate bases to achieve the best fidelity of the recovered data at
the gateways. This mechanism enables JICE to adapt to changing power consumption patterns. On a smart
plug platform, we implemented JICE and several baseline approaches including downsampling, lossless
compression, and the pipeline approach. Extensive testbed experiments show that JICE achieves higher
data delivery ratios and lower recovery distortions under a range of realistic settings. In particular, at a me-
ter sampling rate of 8Hz, JICE increases the number of meters supported by a gateway by 50%, compared
with the commonly used pipeline approach, while keeping a signal distortion rate lower than 5%.

CCS Concepts: •Networks → Sensor networks; •Security and privacy → Software and application

security;

Additional Key Words and Phrases: Compressive sensing, signal processing, energy auditing

1. INTRODUCTION

In emerging smart grids, wireless energy auditing network (WEAN) [Jiang et al. 2009b;
Jiang et al. 2009a; Dawson-Haggerty et al. 2012; Phillips et al. 2013], which consists
of a network of wireless power meters, is a fundamental system to enable various
new features such as demand response, usage disaggregation, power quality moni-
toring, and efficiency diagnosis. These wireless power meters, embedded in smart ap-
pliances, switches, and plugs, are designed to support continuous measurements of
various physical quantities (e.g., voltage and current) at high frequencies [Jiang et al.
2009b]. However, due to their limited computation and storage capabilities as well as
the need to simultaneously support multiple real-time energy auditing applications
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Fig. 1. Pipeline approach and JICE.

and enable post-event investigations, it is desirable to transmit the raw metering data
to central nodes such as backend servers for advanced processing and long-term stor-
age. This data-collection-over-the-air architecture creates two fundamental require-
ments. First, data fidelity at the central nodes must be preserved to assure the quality
of the aforementioned new functionality in smart grids. Second, data secrecy during the
wireless transmissions must be ensured to protect customers’ privacy from malicious
eavesdroppers, since the power measurements can easily reveal customers’ sensitive
information such as their daily routines. Moreover, recent studies show that an adver-
sary can infer much fine-grained information such as the TV channel being watched
[Enev et al. 2011] and the web page being browsed [Clark et al. 2013] based on un-
encrypted power readings. Indeed, public concern for privacy has derailed planned
mandatory deployments of smart meters [BBC 2013]. Thus, for WEANs to gain accep-
tance by consumers and utility, efficient technologies must be devised to address the
two requirements.

Higher sampling rates for power signals capture more operating characteristics of
appliances, which is desirable for energy auditing. For instance, to capture routine
power activities in harmonics analysis, power meters with wireline communication
often sample at 1.6kHz or higher [Eaton 2006]. However, the highest sampling rate
adopted by current WEAN prototypes is just 4Hz [Jiang et al. 2009b]. Moreover, a re-
cent study [Dawson-Haggerty et al. 2012] finds that a WEAN using one smart plug
per occupant in a typical commercial office, resulting in 455 plugs deployed totally, can
cover only 10% of the appliances. Thus, both the sampling rate and network size need
to be increased to improve the spatiotemporal granularity of energy auditing beyond
the state of the art. However, the goals impose significant challenges for the resource-
constrained smart power meters to meet data fidelity and secrecy requirements. First,
a large volume of measurements from individual meters will quickly congest wireless
channels. The resulting poor end-to-end data delivery ratio will undermine data fi-
delity. The problem can be worsened if the wireless channels used by the meters are
subject to interference with other wireless communications such as WiFi commonly
found in buildings. Second, encryption must be used to achieve data secrecy, but it
often incurs severe computational overhead at the meters. Thus, some off-the-shelf
smart meters do not encrypt their measurements at all [Rouf et al. 2012]. Therefore, to
support higher sampling rates and larger network sizes, new and efficient approaches
that can reduce transmission volume and ensure secrecy are highly desirable. Applica-
tions in other domains often have such dual requirements of data fidelity and secrecy
as well. A conventional approach of pipelining a compressor and a cipher, as illus-
trated in Fig. 1(a), has been widely employed in other domains, such as multimedia
[Ou et al. 2006], storage systems [Grawinkel et al. 2015], and virtual private networks
[McGregor and Lee 2000]. However, the long computation delays of the pipeline on the
resource-constrained power meters may jeopardize the data fidelity, when some of the
measurements have to be dropped to maintain real-time performance.

This paper proposes a joint compression and encryption (JICE) approach based on
compressive sensing (CS) [Candès and Wakin 2008] to achieve data fidelity and se-
crecy simultaneously, as illustrated in Fig. 1(b). CS theory shows that a compressible
signal can be represented by a small number of linear projections of the original sig-
nal and recovered with high probability. The much reduced transmission volume due
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to compression helps in turn to reduce channel contention and hence improve data
fidelity. CS requires only a simple multiplication between a random matrix and a vec-
tor of the original signal, which can be efficiently implemented on capability-limited
meters. Moreover, recent studies [Takhar et al. 2006; Rachlin and Baron 2008] show
that the cryptanalysis of recovering the original signal from a CS-compressed signal is
computationally hard without knowing the true random matrix. Thus, CS provides a
form of encryption if the random matrix is established as a shared secret between the
transmitter and the receiver. Because of these advantages, CS is a promising approach
to achieving simultaneously the dual functions of data compression and encryption
on capability-limited wireless meters. In particular, compared with the conventional
pipeline approach, the CS-based JICE leaves more processor time and available buffer
space for handling lossy wireless transmissions.

This paper presents the design of JICE in WEANs and quantifies the advantages
of JICE over other plausible solutions through extensive benchmarking and testbed
experiments. The technical contributions of this paper include:

— As CS design is application-specific, we address all the key design elements system-
atically for WEANs, which include signal sparsity, representation basis, and mea-
surement matrix, based on real power data traces. The results show that, in contrast
to the choice of the measurement matrix, the choice of the representation basis can
significantly affect the recovery performance. This finding motivates the following
adaptive reconfiguration approach for representation basis.

— We propose a novel adaptive reconfiguration approach that identifies the best repre-
sentation basis autonomously and reconfigures a JICE system to maintain the best
fidelity of the recovered data at a gateway in the presence of changing power con-
sumption patterns. Identifying the best representation basis requires an exhaustive
evaluation of all candidate bases using recent power data traces. Our approach of-
floads most computation to the resourceful gateway by leveraging a few key power
features that indicate the best representation basis.

— Although an adversary cannot easily recover the measurement data without the ran-
dom matrix used in the CS, we identify a vulnerability of CS that can leak important
statistics information about the measurement data. To solve the vulnerability, we
propose a lightweight perturbation approach that adds a random noise signal to the
original power signal. We also study a variation of the known-plaintext attack against
JICE, where the adversary can measure a noisy version of the original signal and es-
timate the random matrix used by JICE based on accumulated data. We analyze how
frequently the random matrix needs to be updated, such that the adversary cannot
accumulate enough data to estimate the random matrix.

— On a smart plug platform, we implement JICE and several baseline approaches.
Benchmarking and testbed experiments show that JICE reduces the computational
overhead and achieves higher data delivery ratios and lower recovery distortions.
When the sampling rate is 8Hz, the number of meters supported by a gateway is
increased by 50%, compared with a pipeline approach that applies a compressor and
a cipher sequentially, while keeping a data distortion rate lower than 5%.

In summary, as a major contribution of this paper, JICE pushes the Pareto-optimal
frontier of the sensor-sampling-rate versus network-size trade-offs under the data fi-
delity and secrecy requirements, beyond the state of the art including commonly used
compression-encryption signal processing pipelines.

The rest of this paper is organized as follows. Section 2 reviews the CS theory and
related work. Section 3 states the objective and provides an overview of JICE. Sec-
tions 4 and 5 design JICE and discuss its secrecy properties, respectively. Section 6
presents implementation details and benchmarking results. Section 7 presents testbed
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experiment results. Section 8 extends JICE for voltage monitoring and discusses other
application scenarios. Section 9 concludes.

2. PRELIMINARIES AND RELATED WORK

In this section, we first present the preliminaries of CS. Then, we review related work
on WEAN and CS.

2.1. Preliminaries

This section briefly reviews CS theory [Candès and Wakin 2008]. Let N denote the
length of the input signal. Suppose Ψ is an orthonormal representation basis Ψ =
[ψ1ψ2 · · ·ψN ] ∈ R

N×N , where ψi is the ith column of Ψ. The coefficient sequence of
a time-domain signal x ∈ R

N×1 on the basis Ψ is denoted as x̂, i.e., x = Ψx̂. In other
words, x̂ is the Ψ-domain transform of x. The signals x and x̂ are k-sparse if x̂ has k
non-zeros. Let y ∈ R

M×1 denote the output signal and Φ ∈ R
M×N denote the measure-

ment matrix, where M < N . The measurement process of CS is

y = Φx.

In this paper, the compression ratio, denoted by γ, is defined as

γ =
N

M
.

Let x′ and x̂′ denote the recovered signal and its Ψ-domain transform, respectively.
The recovery process is

x′ = Ψx̂′,

x̂′ = argmin
ẑ∈RN×1

‖ẑ‖ℓ1 , subject to ΦΨẑ = y,

where ‖ · ‖ℓ1 represents the ℓ1-norm.
It has been shown in [Candès and Wakin 2008; Candès and Romberg 2007] that, for

any k-sparse signal x, the recovery is exact (i.e., x′ = x) if Φ is composed of M rows
that are randomly selected from an orthonormal basis Φ∗ ∈ R

N×N and

M ≥ C · µ2(Φ∗,Ψ) · k · logN, (1)

where µ(Φ∗,Ψ) is the coherence between the two orthonormal matrices Φ∗ and Ψ. The
coherence is formally given by

µ(Φ∗,Ψ) =
√
N · max

1≤i,j≤N
|φ∗i · ψj | ∈ [1,

√
N ],

where φ∗i and ψj are the ith row and jth column of Φ∗ and Ψ, respectively. In other
words, the coherence measures the largest correlation between any row of Φ∗ and any
column of Ψ. In this paper, we adopt the normalized coherence defined as

µ̄(Φ∗,Ψ) = µ(Φ∗,Ψ)/
√
N ∈ [1/

√
N, 1]. (2)

Table I provides a summary of notations used throughout the paper, with their de-
scription and the sections where they are defined.

2.2. Related Work

Pervasive sensing is a key element of smart grid technologies. It is estimated that
by 2019 more than 100 million wireless sensors will be installed in non-residential
buildings, with wireless power meters taking up a major sector [Hatler et al. 2013].
Thus, WEAN has received much research interest in recent years. Early studies have
focused on hardware design of the wireless meters [Jiang et al. 2009a], as well as
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Table I. Summary of Notation

N length of input signal to CS §2.1 M length of output signal of CS §2.1
Ψ representation basis §2.1 Φ measurement matrix §2.1
x time-domain signal §2.1 x̂ Ψ-domain transform of x §2.1
k number of non-zeros in x̂ §2.1 y CS-compressed signal, y = Φx §2.1
x′ recovered time-domain signal §2.1 x̂′ Ψ-domain transform of x′ §2.1
γ compression ratio, γ = N

M
§2.1 µ̄ normalized coherence §2.1

ǫ distortion §4.1 ρ sparsity of x, ρ = k
N

§4.1
u structured component of x §4.1 w white Gaussian noise in x §4.1

x(k) time-domain signal of x̂(k) §4.1 x̂(k) k largest coefficients of x̂ §4.1
ρu sparsity of u §4.1 ΨA ADT basis §4.2
ΨD DCT basis §4.2 ΨH HWT basis §4.2
ΦG Gaussian matrix §4.3 ΦR Rademacher matrix §4.3
ΦB binary matrix §4.3 S number of ones in each column of ΦB §4.3
f feature vector, f = [rac, rsc, σx] §4.4 rac rate of average crossings §4.4
rsc rate of sharp changes §4.4 σx standard deviation of a block §4.4

T1/T2/T3 decision table thresholds §4.4 x̄ mean of a block §5.2
kp shared secret key §5.2 p time-domain perturbation vector §5.2
s noise in noisy-plaintext attack §5.3 σ2

s variance of s §5.3

networking issues in small-scale deployments [Jiang et al. 2009b]. A recent research
project [Dawson-Haggerty et al. 2012] deployed 455 meters in a commercial building.
Although it is recognized [Jiang et al. 2009a] that high sampling rates (multiple to tens
of Hz) are important for load disaggregation, all the existing pilot deployments [Jiang
et al. 2009b; Jiang et al. 2009a; Dawson-Haggerty et al. 2012] adopt low sampling
rates such as one sample per minute [Jiang et al. 2009a]. Data compression to save
wireless bandwidth is therefore not critical in these projects. Moreover, they do not
address data encryption for privacy in their design.

CS-based data collection protocols that exploit the spatial sparsity of sensor readings
have been developed for wireless sensor networks, in the media access control [Bajwa
et al. 2006] and network [Luo et al. 2009] layers. These protocols leverage the com-
pression nature of CS to reduce communication cost. In [Bajwa et al. 2006], multiple
sensors simultaneously transmit their readings amplified by random factors to a sink
node over an analog wireless channel, resulting in a projection of all the readings at the
sink. From the multiple projections, the sink can recover the readings. In [Luo et al.
2009], sensors multiply their readings by random vectors and aggregate the vectors in
the network, resulting in balanced energy consumption of the sensors. Recent studies
have applied CS to various sensing systems including acoustic ranging [Misra et al.
2012], video background subtraction [Shen et al. 2012], and soil moisture monitoring
[Wu and Liu 2012]. By exploiting the temporal sparsity of a single sensor’s data, they
apply CS to schedule the sleep of the sensors [Wu and Liu 2012], and reduce trans-
mission volume [Misra et al. 2012] and computation overhead [Shen et al. 2012]. In
contrast, this paper aims to exploit the low computation and space complexity of CS to
jointly compress and encrypt temporally sparse power signals on embedded wireless
power meters. Moreover, none of the earlier studies aim to reconfigure CS to adapt to
changing signal patterns, but we do.

It is observed in [Takhar et al. 2006] that CS implements a form of encryption if the
measurement matrix is a secret. As the mutual information between the input and
output of CS is non-zero [Rachlin and Baron 2008], like many other ciphers, CS cannot
achieve Shannon’s perfect secrecy. Nonetheless, it is shown that recovering the origi-
nal signal without the true measurement matrix is computationally difficult [Rachlin
and Baron 2008; Orsdemir et al. 2008]. A signal recovered with a wrong measurement
matrix is less sparse than the original signal [Rachlin and Baron 2008]. However, the
cryptanalysis that exhaustively searches for a measurement matrix to minimize the
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Fig. 2. An example WEAN in a home. A wireless power meter monitors the real-time power consumption
of an appliance; the power meters can form a multi-hop network rooted at the gateway; the power meters
transmit the metering data to the gateway.

sparsity of a candidate recovery is often intractable. Similarly, it is shown that brute
force and structured attacks to estimate a Gaussian measurement matrix is practi-
cally infeasible [Orsdemir et al. 2008]. Such secrecy property of CS is used to establish
secret communication in asymmetric channels through secure measurement matri-
ces [Agrawal and Vishwanath 2011]. In addition, this secrecy property has also been
exploited in [Wang et al. 2013] to develop an outsourcing technique that preserves
the secrecy of the original data. Although previous studies [Rachlin and Baron 2008;
Orsdemir et al. 2008] established the difficulty of signal recovery without the mea-
surement matrix, this paper identifies a vulnerability of CS to leaking statistics of the
original signal and proposes an approach to solving the vulnerability.

3. BACKGROUND, OBJECTIVE, AND OVERVIEW OF APPROACH

In this section, we first introduce the technical background of WEAN and state the
objective of this paper. Then, we provide an overview of JICE. Lastly, we present an
illustrating example that provides insights into the advantages of JICE.

3.1. Background and Objective Statement

A wireless power meter embedded in smart appliances, switches, and plugs typically
consists of a power sensor, a microcontroller unit (MCU), a non-volatile memory, and a
Zigbee radio. These meters may draw power from batteries or a power grid. To increase
hardware reliability and minimize the impact on the power grid, these meters often
use low-power hardware components with limited computation, storage, and commu-
nication capabilities. For instance, the TI MSP430F1xx, a widely adopted MCU family
for these meters [Lawson 2010; Jiang et al. 2009a], has an 8MHz clock rate and 10KB
RAM capacity only. As discussed in Section 1, to enable various advanced energy au-
diting applications, it is desirable to transmit the metering data to a gateway such as
a smart meter or a Zigbee access point, while meeting the data fidelity and secrecy
requirements. The wireless power meters can form a multi-hop network rooted at the
gateway. This network is referred to as a WEAN. Fig. 2 shows an example WEAN in a
household environment, where the wireless power meters monitor the real-time power
consumption of home appliances.

As power signals are often temporally correlated and hence compressible, data com-
pression can be applied to reduce transmission volume and alleviate the channel con-
tention. Moreover, it allows more retransmission attempts for lost packets, given a
transmission deadline that ensures real-time metering. Various ciphers [TinyOS 2010]
can be employed to ensure data secrecy. However, system designers often face chal-
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lenges in pipelining existing compressors and ciphers, as they incur significant compu-
tation and storage overhead at the capability-limited meters. Without careful design,
the execution time of these algorithms could jeopardize the timeliness of metering
easily. In this paper, we attempt to exploit the compression nature of CS and its en-
cryption property studied recently [Takhar et al. 2006; Rachlin and Baron 2008; Ors-
demir et al. 2008; Agrawal and Vishwanath 2011; Wang et al. 2013] to design a JICE
approach that addresses the requirements of fidelity and secrecy simultaneously. Ow-
ing to the simplicity of CS, JICE can keep a simple system design of low computa-
tion complexity. As such, we aim to investigate whether and how the CS-based JICE
can push the Pareto-optimal frontier of the sensor-sampling-rate versus network-size
trade-offs under the data fidelity and secrecy requirements, beyond the commonly used
compression-encryption signal processing pipelines.

To this end, in the rest of this paper, we aim to answer the following supporting
research questions:

Q1. How to design the key elements of CS including representation basis and mea-
surement matrix for WEANs to reduce transmission volume and preserve data fi-
delity without introducing significant computation overhead? This question is ad-
dressed in Section 4.
Q2. What are the secrecy vulnerabilities (if any) of CS as a form of encryption? And
how to fix them? These two related questions are addressed in Section 5.
Q3. Can CS bring substantial benefits such as reduced packet losses and recovery
errors, compared with other plausible approaches? This question is addressed in
Sections 6 and 7.

3.2. Approach Overview

In answering the research questions Q1, Q2, and Q3, our designs and evaluations
in the rest of this paper constitute an integrated JICE approach. Fig. 3 provides an
overview of the work flow of JICE, which is described in this section. Note that our dis-
cussion on the design of JICE focuses on a pair of a wireless power meter and a gate-
way, while the performance evaluation of JICE will be based on a WEAN consisting of
a network of wireless power meters and a gateway. Thus, the evaluation captures the
overall system performance where each meter-gateway link adopts JICE. The wireless
power meters can form a multi-hop network rooted at the gateway. Thus, the commu-
nications between a wireless power meter and the gateway as illustrated in Fig. 3 can
be over multiple hops. To make sense the power consumption data collected by each
wireless power meter, we assume that the clocks of the power meters are synchronized
with that of the gateway with satisfactory accuracy, such that each power meter can
timestamp the power consumption samples. CSMA-based media access control (MAC)
protocols can be used to support JICE.

The basic work flow of JICE is as follows. The wireless power meter continuously
samples the power consumption. JICE processes the real-time power consumption
data block by block, where each block is a power signal x with a finite length. The
length of x, i.e., N , is called block size. The meter compresses x using a CS algorithm
and transmits the CS-compressed version of x (i.e., y in Fig. 3) over air to a gate-
way, which then recovers the x for electricity analytics. The threat is an eavesdropper
that can capture the wireless communications between the power meter and the gate-
way. JICE makes the eavesdropper’s cryptanalysis of recovering the x computationally
hard.

Specifically, whenever a new block x is available, the power meter and the gateway
perform the following steps that are illustrated in Fig. 3:

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8

decision

table

perturb &

compress

power

signal

feature

extraction

recover & de-perturb

s.t.

decision table

training

recovered

signals

choice of

    (2 bits)

updates

(14 bytes)

wireless power meter gateway

eavesdropper

(1)

(2) (3)

(4)

(5)

(6)

Fig. 3. Overview of JICE work flow. The y, the choice of Ψ, and the decision table can be transmitted by a
multi-hop network.

(1) The meter first perturbs the original power signal x by adding a perturbation vec-
tor p to fix a secrecy vulnerability of CS identified when studying the research
question Q2. It then compresses the perturbed signal by multiplying it by the ran-
dom measurement matrix Φ.

(2) The meter also extracts a feature vector consisting of three simple statistics of x.
(3) Based on the feature vector, the meter uses a decision table to choose the most

efficient representation basis Ψ among several candidate bases. This design is mo-
tivated by a key observation when studying the research question Q1, i.e., the
representation basis significantly affects recovery performance.

(4) The meter sends the CS-compressed signal y and the choice of Ψ to the gateway.
(5) Upon receiving y and choice of Ψ, the gateway recovers x using p, Φ, and the chosen

Ψ. The gateway may run advanced electricity analytics based on the recovered data
and/or forward the data to backend servers through secure wireline links.

Moreover, as illustrated in Step (6) in Fig. 3, the gateway runs a decision table train-
ing algorithm periodically (e.g., every one hour) based on recently recovered data, and
sends the updated decision table to the meter, such that the system can adapt well to
changing power characteristics. The decision-table-based representation basis selec-
tion at the power meter, i.e., Step (3), and the decision table training at the gateway,
i.e., Step (6), forms the adaptive reconfiguration mechanism.

Note that the perturbation vector p and the measurement matrix Φ are shared se-
crets between the meter and the gateway, to ensure the secrecy of the data transmis-
sions over air. Moreover, they should be different across the meters, such that leak of
the secret of a single meter (e.g., by extracting from the memory of a physically cap-
tured meter) will not reveal the secrets of other meters. The details for establishing
these shared secrets will be discussed in Section 5.

Note that this paper focuses on the confidentiality threat from the eavesdropper
shown in Fig. 3. A WEAN may face other threats such as integrity and availability at-
tacks on the data packets exchanged between the power meter and the gateway. These
attacks can adversely impact the performance of JICE. By further integrating JICE
with cryptographic protection methods (e.g., cryptographic signature) and resilient
data delivery approaches, the resilience of JICE can be improved against the integrity
and availability threats. Due to channel contention and interference among wireless
power meters, the gateway may receive a portion of the CS-compressed data (i.e., y)
only. Section 7 will present an approach for the gateway to recover the x from a portion
of y and evaluate the impact of the data loss on the recovery distortion (cf. Fig. 22).

JICE is a novel application of CS to improve WEAN’s data collection performance
under the data fidelity and secrecy requirements. As discussed in Section 2.2, none
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mission protocol Packet Link Layer (PLL). In JICE, the whole output buffer is updated for each new power
sensor reading. When the output buffer is ready after processing N new readings, the output buffer and the
transmission buffer (Tx buf) are swapped. Then, the PLL starts sending new data.

of the earlier studies of applying CS in sensor networks reconfigure CS to adapt to
changing signal patterns. Existing studies on the secrecy of CS focus on analyzing the
difficulty of the cryptanalysis of recovering the original signal. The adaptive reconfig-
uration mechanism and the perturbation approach to fix specific information leakage
issues discovered in this paper are two novel contributions of JICE.

3.3. An Illustrating Example

Before presenting the detailed design of each component of JICE, in this section, we
present an illustrating example that shows the intricate interactions among the com-
putation and space complexity of compression/encryption at the wireless power meter,
the quality of wireless link, and the fidelity of signal recovery at the gateway. It also
provides insights into understanding why JICE with low computation complexity can
better address the challenges arising from the interactions.

We compare JICE with a pipeline approach that applies a wavelet-based compres-
sor and the Advanced Encryption Standard (AES) cipher sequentially. We note that
the implementations of JICE and the pipeline approach are well optimized. The im-
plementation details can be found in Section 6. Both approaches process the metering
data block by block. The block size N is a major factor for determining computation
and RAM storage overhead. Thus, its setting must meet the meter’s computation and
memory constraints. For instance, on an MSP320-based smart plug platform [Son-
nonet 2011], if the power sensor sampling rate is 64Hz, the maximum block size for
JICE is 2048 (i.e., each block x contains readings sampled for 32 seconds), since un-
der this setting, JICE will fully utilize the RAM. To preserve data fidelity, we adopt a
reliable transmission protocol called Packet Link Layer (PLL) [David M. 2007], which
retransmits a packet if its acknowledgment is not received in time.

We adopt the widely used double buffering method to interface the output of the
JICE/pipeline and the input of the PLL, which is illustrated in Fig. 4. PLL reads data
sequentially from a transmission buffer for packeting and transmission. In JICE, the
whole output buffer is updated whenever the meter obtains a new reading (cf. Sec-
tion 6). Whenever the output buffer is ready for transmission after JICE/pipeline has
processed N new readings (i.e., a block), the pointers to the two buffers held by the
JICE/pipeline and the PLL are swapped. Then, the PLL starts sending new data. How-
ever, because of either channel contention or deteriorated link quality, the transmis-
sion buffer may not be fully processed when new data in the output buffer becomes
ready. To prevent the new data from being overwritten and ensure real-time metering,
the pointers to the two buffers are still swapped immediately and therefore, the me-
ter stops sending from the partially processed transmission buffer and instead starts
sending the new data. Intuitively, a large block size allows the meter to try more re-
transmissions per packet until a successful attempt under harsh channel conditions. In
contrast, with small block sizes, the meter is more likely to stop retransmissions and
discard old data pending transmission, which results in data loss. Thus, both JICE
and the pipeline approach should adopt their maximum achievable block sizes given
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Fig. 5. Packet sequence number (starting from 0) vs. time. The JICE approach successfully transmits all
the packets. The pipeline approach drops 4, 2, 4, and 1 packets around the 8th, 10th, 12th, and 14th seconds,
respectively. A cross means that all the 4 packets are dropped by the pipeline approach.

certain sampling rate and RAM capacity, which will be benchmarked in Section 6. As
the pipeline approach has higher computation and space complexities, its maximum
achievable block size subject to real-time processing requirement and RAM capacity
constraint is smaller than JICE’s. Thus, compared with the baseline approach, JICE
may better tolerate link quality deterioration due to its larger block size.

We conduct an experiment to validate the above discussion. We deploy the pipeline
approach and JICE on two smart plugs sampling at 64Hz, respectively. They use the
same compression ratio (γ = 4) and their maximum achievable block sizes are 128 and
2048, respectively (cf. Table VII). As a result, the pipeline approach sends 4 packets ev-
ery 2 seconds, while JICE sends 64 packets every 32 seconds. Fig. 5 shows the sequence
numbers of packets received by the gateway versus time. We intentionally create wire-
less interference using another smart plug that continuously transmits packets. We
can see that during the interference period, the packet delivery rate of JICE drops.
Nevertheless, it successfully transmits all the 64 packets within 10 seconds, before
the pointers to the two buffers are swapped. In contrast, the pipeline approach fails
to transmit a total of 11 packets during the interference period, because it swaps the
pointers every 2 seconds. The packet drops will inevitably affect the signal recovery
quality. From this experiment, we can see that, although JICE and the pipeline ap-
proach achieve the same compression ratio with data secrecy, JICE maintains better
data delivery ratio when the link quality deteriorates. We note that this experiment
is specifically designed to provide insights into the advantages of JICE due to its low
complexity. It also provides a basis for understanding the extensive experiments in
Section 7 that compare JICE with the pipeline and other baseline approaches under
realistic settings.

Having shown the above illustrating example, in the following two sections, we will
present the detailed design of JICE.

4. COMPRESSIVE SENSING FOR POWER SIGNALS

This section analyzes the sparsity of power signals, which is essential to the design
of JICE. We then design the representation basis Ψ and the measurement matrix Φ.
There is no systematic way of selecting Ψ and Φ; it is usually done through a trial-and-
error approach. This paper similarly adopts such an approach, with guidance by CS
theory to make the process more scientific. Finally, we develop a novel adaptive recon-
figuration approach for the power meters to choose the most efficient representation
basis. Note that, in this paper, we focus primarily on the design of JICE for power sig-
nals, although to demonstrate generality, we also extend our design to address voltage
signals in Section 8.

4.1. Approximate Sparsity

The sparsity of signal x or x̂, denoted by ρ, is defined as ρ = k/N . CS theory assumes
that x̂ has N − k zeros (i.e., k-sparse). However, in practice, x̂ typically contains small

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.



A:11

values rather than zeros. A common approach is to approximate x̂ by x̂(k), which is
obtained by keeping the k largest coefficients of x̂ and setting the others to zeros [Bajwa
et al. 2006]. As a result, the setting of k (or ρ) affects the approximation accuracy and
the design of CS (e.g., the choice of compression ratio). This section analyzes the impact
of the setting for ρ on the approximation accuracy, which provides analytical guidelines
for setting ρ. We assume that x is the sum of a structured signal (denoted by u) and a
zero-mean white Gaussian noise (denoted by w). Formally, x = u+w. The structured
signal u captures the power consumption pattern of the monitored appliances. The
white Gaussian noise assumption follows from the central limit theorem due to the
fact that electrical circuits of appliances generate noises independently. The sparsities
of u and w jointly determine ρ. The structured signal u is naturally sparse, while the
white noise w is a limiting factor in determining ρ because it will not be sparsified
given any orthonormal representation basis. In this section, we formally analyze the
impact of the sparsity of u and noise strength on the setting of ρ.

We define the following notation. Define x(k) = Ψx̂(k). The distortion of x(k) is then
given by

ǫ(x(k),x) =
‖x(k) − x‖ℓ2

‖x‖ℓ2
. (3)

Let σ2
w

denote the variance of w, i.e., σ2
w

= limN→∞ ‖w‖2ℓ2/N . We define the signal-to-

noise ratio as SNR = limN→∞ ‖u‖2ℓ2/‖w‖2ℓ2. Let [z]i denote the ith element of a signal
z. We define û(k) by setting [û(k)]i = 0 if [x̂(k)]i = 0 or [û(k)]i = [û]i otherwise. We define
ŵ(k) according to ŵ and x̂(k) in a similar way. Let ûmin and ρu denote the smallest non-
zero element and the sparsity of u, respectively. We have the following proposition,
which gives an asymptotic lower bound for the distortion of x(k). The proof can be
found in Appendix A.

PROPOSITION 4.1. For an orthonormal representation basis Ψ,

lim
N→∞

ǫ(x(k),x) ≥






√
û
2
min
σ2
w

(ρu−ρ)+(1−ρ)

1+SNR , if ρ ∈ [0, ρu];

√
1−ρ

1+SNR , otherwise.

(4)

Fig. 6 illustrates the lower bound, which shows the trade-off between the distortion ǫ
and the sparsity ρ. From Proposition 4.1, these bounds are largely affected by SNR and
ρu (i.e., the sparsity of u), where the SNR is an inherent property of x and ρu depends
on Ψ. From Fig. 6, for a smaller ρu, ρ have a larger range (i.e., [ρu, 1]) where ǫ follows

the lowest bound (i.e.,
√

1−ρ
1+SNR ). Thus, it is desirable to choose Ψ to minimize ρu and

achieve the lowest trade-off curve between ǫ and ρ. Moreover, from Proposition 4.1, in
the presence of noise, there does not exist a setting for ρ within (0, 1) such that the
distortion is zero. Thus, we define approximate sparsity as follows.

Definition 4.2. A signal x is said approximately k-sparse, where k is the minimum
of l subject to ǫ(x(l),x) ≤ ǫ0 and ǫ0 is a small fixed threshold. The ρ = k

N
is the approxi-

mate sparsity of x.

From Proposition 4.1, for a sufficiently small ρu, we can solve ρ from the second
inequality in Eq. (4) and obtain ρ / 1 − ǫ20(1 + SNR), which suggests the setting for
ρ that ensures a distortion of ǫ0 given an SNR. In the rest of this paper, we refer to
approximate sparsity when we mention sparsity and ǫ0 is set to 1% unless otherwise
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lim
N→∞

ǫ(x(k),x)

√√√√ û
2
min

σ2
w

ρu+1

1+SNR

√
1−ρ

1+SNR
√

1
1+SNR

ρ10 ρu

√√√√ û
2
min

σ2
w

(ρu−ρ)+(1−ρ)

1+SNR

Fig. 6. Asymptotic lower bound of distortion versus setting of sparsity.
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Fig. 7. Various types of power consumption (unit: watt): (a) Duty-cycled (pantry); (b) Periodic (boardroom);
(c) Fluctuating (office); (d) Spiky (server room); (e) Silent (boardroom).

specified. In next subsection, we will apply the analytic result in Proposition 4.1 to
explain the empirical results on the design of representation basis based on the real
power consumption traces.

4.2. Design of Representation Basis Ψ

We drive the design of CS in JICE based on real power traces. We first present the
details of a data set of real power traces collected on one floor of an office building for
18 hours. The floor has multiple rooms and open areas, which draw power from a total
of 39 branches at a main power panel. We install power meters on the main power
panel to measure the power consumption per branch at one Hz. Different appliances
have different power consumption patterns. After a thorough inspection, the power
signals can be classified into five categories: duty-cycled, periodic, fluctuating, spiky,
and silent. Fig. 7 shows examples for the different types. Many heating/cooling appli-
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Table II. SNR and ρu for various combinations of power signal types and rep-
resentation bases

duty-cycled periodic fluctuating spiky silent
SNR 709.76 31.672 4.926 1.002 0.982

ρu (ADT) 0.0059 0.6406 0.0674 0.0186 0.1055
ρu (DCT) 0.0098 0.0020 0.0176 0.0020 0.3691
ρu (HWT) 0.0078 0.0420 0.0107 0.0029 0.0654

ances duty-cycle to achieve the desired temperatures. Fig. 7(a) shows the duty-cycled
power consumption in a pantry with a refrigerator and a water dispenser. Fig. 7(b)
shows the periodic power consumption of a projector in a boardroom. Computers can
generate complex power consumption patterns. Fig. 7(c) shows the power trace of an
office room, where the fluctuations of about 40 watts are caused by a desktop computer.
Fig. 7(d) shows the power trace of a server room, with power spikes caused by a bursty
workload of the servers. Fig. 7(e) shows the power consumption of the boardroom when
only ceiling lights are on, where the fluctuations are within one watt.

From Eq. (1), it is desirable to choose a representation basis to efficiently sparsify
the signal to achieve a better compression ratio. This paper considers three commonly
adopted representation bases [Wu and Liu 2012; Luo et al. 2009], although JICE can
easily encompass other bases. The adjacent difference transform (ADT) [Wu and Liu
2012] computes the difference between two adjacent samples and can sparsify a steady
signal that occasionally has transient changes. The discrete cosine transform (DCT) ex-
presses the signal by a weighted sum of cosine functions of different frequencies, and
hence can efficiently sparsify signals with periodic components. The discrete wavelet
transform can compactly represent the signal with both temporal correlation and pe-
riodicity. In this paper, we consider the Haar wavelet transform (HWT), which is com-
monly used with CS [Wu and Liu 2012]. Let ΨA, ΨD, and ΨH denote the representation
bases for ADT, DCT, and HWT, respectively. Their definitions can be found in [Wu and
Liu 2012; MathWorks 2015; MathWorks 2010].

We separately evaluate the sparsity of power signals for the different categories un-
der different representation bases. The results are shown in Fig. 8. We can see that
all the three transforms can reduce the signal sparsity with respect to the original
signal. To explain the results, we estimate SNR and ρu, which are the major factors
of sparsity from Proposition 4.1. We also analyze the sparsity-distortion trade-off for
the power signals under different representation bases. Table II summarizes these two
parameters for various combinations of power signal types and representation bases.
To estimate the two parameters, we decompose x to u and w as follows. With the rep-
resentation basis that grants the smallest ρ, x(k) is considered to be u, where k is max-
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Table III. Coherence
µ̄(Φ∗,Ψ)

ΨD ΨH

Φ∗
G 0.154 0.158

Φ∗
R 0.148 0.144

† N = 1024

imized subject to that w = x − x(k) passes the Durbin-Watson test (i.e., w is white).
The SNRs in Table II explain the increasing ρ for the signal types from duty-cycled
to silent. In particular, the small SNRs for spiky and silent signals result in limited
sparsity gains over the original for all representation bases. Note that ρu cannot be ac-
curately estimated for the signals with significantly low SNRs, as the u becomes hardly
differentiable from the noise. Thus, the estimated ρu becomes no longer meaningful for
low SNR signals. This explains that the results for spiky and silent signals in Table II
are not perfectly consistent with Fig. 8. When the SNR is high enough, a correct choice
of representation basis can greatly reduce the sparsity of a signal. From Table II, we
can see that ADT and DCT obtain the minimum ρu for the duty-cycled and periodic
signals, respectively. This is consistent with the results in Fig. 8. Fig. 8 also shows the
overall results when all the types of signals are used. HWT outperforms the other two
transforms in an average sense. Thus, ΨH is a preferable default basis when the prior
knowledge of the power signal structures is not available.

4.3. Design of Measurement Matrix Φ

From Eq. (1), to achieve better compression ratios, Φ and Ψ should be chosen to jointly
reduce the signal sparsity and coherence. In this paper, we consider three random
measurement matrices that have been shown to satisfy the condition in Eq. (1) [Candès
et al. 2006; Berinde et al. 2008] and employed in various applications [Wu and Liu
2012]:
Gaussian matrix ΦG: Each element of ΦG is drawn from the normal distribution
N (0, 1

M
), where M satisfies Eq. (1).

Rademacher matrix ΦR: Each element of ΦR is either 1√
M

or − 1√
M

with a probability

of 0.5, where M satisfies Eq. (1).
Binary matrix ΦB: Each column of ΦB has S ones and (M − S) zeros. The positions
of ones are uniformly distributed. ΦB satisfies a relaxation to the condition in Eq. (1)
[Berinde et al. 2008].

We conduct extensive empirical studies on the performance of the combinations of
the above three measurement matrices and the three representation bases described
in Section 4.2. The compression ratio and distortion of the recovered signal are two im-
portant but competing performance metrics for signal compression. In this paper, the
distortion is assessed by ǫ(x′,x), where x′ is the recovered signal and ǫ(·, ·) is defined
in Eq. (3). We first evaluate the distortion for the duty-cycled signals collected in the
pantry under different combinations of Φ and Ψ. The result in Fig. 9 shows that ADT
obtains the smallest distortion across all the bases, which is consistent with Fig. 8.
Table III lists the normalized coherence defined in Eq. (2) for different combinations of
Φ and Ψ. Note that as ΨA and ΦB are not orthonormal, the coherence involving them
is undefined. ΦR shows smaller coherence than ΦG, but the difference is not signifi-
cant. A similar trend can be found in Fig. 9, where the choice of Φ barely affects the
distortion.
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Fig. 10. Distortion of reconstruction (excluding pantry). Error bars represent min and max values.

Next, we evaluate the distortions for different combinations of Φ and Ψ over all the
types of signal except for duty-cycled. We assume no prior knowledge of the structure
of power readings. Fig. 10(a) shows the distortions based on different combinations of
Φ and Ψ. From the figure, we can see that HWT yields a lower distortion than ADT
and DCT, but the difference in distortion is not significant compared to duty-cycled.
It also shows that the choice of measurement matrix has negligible impact on the
distortion. This result applies for a range of compression ratios. Fig. 10(b) shows the
distortion of HWT under different measurement matrices versus compression ratios.
While the distortion increases with γ, it is similar among the measurement matrices.
In summary, we have the following important insights on choosing Φ and Ψ. The Φ
does not significantly affect the performance of JICE. If the signal structure is known,
the optimal choice of Ψ can improve greatly the performance; otherwise, HWT yields a
marginal performance gain over ADT and DCT on average.

4.4. Adaptive Reconfiguration of Ψ

Motivated by the observation in Section 4.3, we design a lightweight adaptive recon-
figuration approach to select the most efficient Ψ for each signal block at run time.

4.4.1. Signal Feature Extraction. Our approach is based on a three-dimensional feature
vector f = [rac, rsc, σ] for each block x, where rac is the rate of average crossings, rsc is
the rate of sharp changes, and σx is the standard deviation. These metrics are related
to the signal structure. Specifically, rac is the ratio of times when the signal crosses
its average value to the block size, which is related to the periodicity of the signal; rsc
is the ratio of the number of sharp changes to the block size, which is related to the
presence of duty-cycling appliances; σx is related to the magnitude of fluctuation of the
signal. Formally, denoting by ∇xi = (x̄ − xi)(x̄ − xi−1) and △xi = |xi − xi−1|, these
features are defined as rac = 1

N
‖{i|∇xi < 0, i = 2, · · · , N}‖, rsc = 1

N
‖{i|△xi > δ, i =

2, · · · , N}‖, σx =
√

1
N

∑N
i=1(xi − x̄)2, where δ is a predefined threshold (e.g., 5W in

our implementation) to determine a sharp change, and ‖ · ‖ represents the cardinality
of a set. As shown in Section 4.2, the most efficient representation basis Ψ (i.e., the
one minimizes sparsity ρ) is different for the signals with different structures. Thus,
the feature vector f can indicate the best configuration of Ψ. In Section 4.4.2, we will
present a decision-table-based approach to identify the best Ψ from f .

From the implementation details described in Section 6, the meter does not store x
to reduce RAM storage overhead. To follow this efficient paradigm, we use the aver-
age value of the previous block as x̄ to calculate σx, such that rac, rsc, and σx can be
computed in an incremental online manner.
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Table IV. Threshold-based decision table.

rac>T1? (T1=0.095) N N N N Y Y Y Y
rsc>T2? (T2=0.059) N N Y Y N N Y Y
σx > T3? (T3=51) N Y N Y N Y N Y

choice for Ψ ΨD ΨA ΨH ΨA ΨH ΨH ΨH ΨH

Table V. Structure features and chosen representation bases for the signals
shown in Fig. 7.

duty-cycled period fluctuating spiky silent
rac 0.00586 0.01758 0.04297 0.39844 0.00391
rsc 0.02051 0.04004 0.62402 0.19629 0.03516
σx 247.5 31.4 30.3 5.1 0.3
Ψ ΨA ΨD ΨH ΨH ΨD
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Fig. 11. Distortions of JICE with fixed Ψ, adaptive Ψ reconfigured by the decision table, and optimal Ψ.

4.4.2. Adaptive Reconfiguration of Ψ. Our approach aims to determine the most efficient
Ψ based on f . As it is difficult to discover the statistical distributions for f , statisti-
cal classifiers (e.g., Bayesian) are not applicable. Moreover, the classification based on
complex decision boundaries of these classifiers will impose substantial computational
overhead for meters, potentially negating the benefit brought by reconfiguring Ψ at
run time. In our approach, we adopt a threshold-based decision table to determine Ψ
from f , which is a look-up table according to the results of comparing rac, rsc, and σx
with three thresholds (T1, T2, and T3). Table IV shows such a table. The thresholds T1,
T2, T3, and the last row of the decision table are obtained by a training algorithm based
on a training data set, which will be presented in Section 4.4.3. Table IV also includes
the training results based on a half of the data set described in Section 4.2. Table V
reports the feature vectors for the signals shown in Fig. 7 and the Ψ chosen accord-
ing to the decision table in Table IV, which are the same as the optimal results. We
note that the most efficient Ψ may not be consistent with the results shown in Fig. 8
(e.g., spiky and silent), which consider sparsity only. Fig. 11 plots the distortions with
a fixed Ψ and an adaptive Ψ reconfigured using the decision table in Table IV, based
on the other half of the data set. It also shows the distortions under the true optimal
Ψ. Compared with a fixed Ψ, an adaptive Ψ can reduce the distortion effectively for 15
blocks out of totally 90 blocks. For one block only, our approach chooses a Ψ that is not
necessarily the optimal one.

4.4.3. Decision Table Training Algorithm. This section presents an autonomous algorithm
to train the threshold-based decision table, that is, to determine the thresholds
T1, T2, T3, and the choice of Ψ (i.e., the last row of Table IV). The basic idea of the
algorithm is to minimize the average extra distortion in CS recovery due to wrong Ψ
choices. Let X denote the training data set. For each block x ∈ X, we pre-compute the
distortions under ΨA, ΨD, and ΨH , which are denoted by ǫΨA

(x), ǫΨD
(x), and ǫΨH

(x).
Let Ψ∗

x
denote the optimal representation basis for x, i.e., the one with the smallest

distortion.
With certain thresholds T1, T2, and T3, we define Z(x) for x as a three-bit integer,

where the bits are given by the boolean results of the comparisons rac > T1, rsc > T2,
and σx > T3, respectively. Formally, Z(x) = (1rac>T11rsc>T21σx>T3)2, where 1c = 1 if the
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Algorithm 1 Decision table training algorithm

Input: training data set X
Output: decision table consisting of the thresholds T ∗

1 , T ∗
2 , T ∗

3 , and the last row of Ψ
choices denoted by M∗(z), ∀z ∈ [0, 7]

1: min total increased distortion = DBL MAX // initialize to a large number
2: for T1 ∈ [0, 1], T2 ∈ [0, 1], and T3 ∈ [Tmin

3 , Tmax
3 ] do

3: for z ∈ [0, 7] do
4: Sz = ∅ // initialize to empty set
5: end for
6: for each block x in training data set X do
7: Ψ∗

x
= argminΨ∈{ΨA,ΨD,ΨH} ǫΨ(x) // Ψ∗

x
is optimal Ψ for x

8: compute rac, rsc, σx of x
9: compute Z(x) = (1rac>T11rsc>T21σx>T3)2 // classify x using T1, T2, T3

10: SZ(x) = SZ(x)

⋃{x}
11: end for
12: for z ∈ [0, 7] do

13: M(z) = argminΨ∈{ΨA,ΨD,ΨH}
∑

x∈Sz
ǫΨ(x)− ǫΨ∗

x
(x) // optimal Ψ for zth class

14: E(z) = ∑
x∈Sz

ǫM(z)(x)− ǫΨ∗
x
(x)

15: end for
16: if min total increased distortion >

∑7
z=0 E(z) then

17: min total increased distortion =
∑7

z=0 E(z)
18: T ∗

1 = T1, T ∗
2 = T2, T

∗
3 = T3, M∗(z) =M(z), ∀z ∈ [0, 7]

19: end if
20: end for

condition c is true and 1c = 0 otherwise. For instance, if for a block x we have rac < T1,
rsc > T2, and σx > T3, then Z(x) = (011)2 = 3. Thus, an x is classified into any of the
23 classes in the decision table, where Z(x) represents the class index. Define Sz as
the subset of blocks classified into the zth class. Formally, Sz = {x|∀x ∈ X, Z(x) = z},
where z = 0, 1, . . . , 7. Thus, any two subsets have no overlap and the training data set

is the union of all the eight subsets. Formally, Sz ∩ Sy = ∅ if z 6= y; and
⋃7

z=0 Sz = X.
Define M(z) = argminΨ∈{ΨA,ΨD,ΨH}

∑
x∈Sz

ǫΨ(x) − ǫΨ∗
x
(x). Note that ǫΨ(x) − ǫΨ∗

x
(x) is

the increased distortion for block x if the representation basis Ψ rather than its optimal
representation basis Ψ∗

x
is used. Thus, this increased distortion is always non-negative.

Therefore, M(z) ∈ {ΨA,ΨD,ΨH} is the representation basis that minimizes the total
increased distortion if M(z) is used as the representation basis consistently for all
blocks in Sz. For the zth class, we define the corresponding total increased distortion
as E(z) = ∑

x∈Sz
ǫM(z)(x)− ǫΨ∗

x
(x). We iterate T1, T2, and T3 in their possible ranges to

minimize
∑7

z=0 E(z) (i.e., the overall increased distortion for all eight classes), yielding
the optimal settings for T1, T2, and T3. Under these optimal settings, M(z) gives the
representation basis that should be chosen for any block in the zth class (i.e., Z(x) = z).
Thus, M(z) where z = 0, 1, . . . , 7, gives the last row of Table IV.

Both the ranges of T1 and T2 are [0, 1], which can be discretized to facilitate the
search. The historical smallest and largest standard deviations with safeguard mar-
gins can be used to set the search range for T3. Denote the search range for T3 as
[Tmin

3 , Tmax
3 ]. Algorithm 1 provides the pseudocode of the decision table training algo-

rithm. Denoting by n the search range size for the thresholds and by ‖X‖ the training
data set size, the complexity of the algorithm is O(n3 · ‖X‖).
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4.4.4. Practical Issues. We now discuss a few practical issues for the adaptive Ψ re-
configuration approach. First, unlike many training-based approaches, our approach
needs no ground-truth labels for the training data, since the most efficient Ψ can be
identified autonomously by the training algorithm, simply by comparing the distortion
under different representation bases (i.e., Line 7 in Algorithm 1). Thus, the training
can be fully automated. Second, the decision table can be updated periodically (e.g.,
hourly) by the gateway using the training algorithm and the recently reconstructed
signals as training data, such that the WEAN can adapt to changing characteristics
or usage patterns of appliances. The updated decision table can be transmitted to the
meter, which introduces little overhead (14-byte payload in our implementation). Al-
ternatively, the decision table can be updated when there is a change of usage pattern.
The change of usage pattern can be detected by tracking the distribution of the decision
results over the eight classes shown in Table V. Compared with the periodic update ap-
proach, this on-demand approach can avoid the decision table training when the usage
pattern remains unchanged. In JICE, the gateway computes different decision tables
for different meters based on their own data.

5. DATA SECRECY OF COMPRESSIVE SENSING

This paper considers a wireless eavesdropping threat model, where an eavesdropper
can capture the CS-compressed signal transmitted over air from a power meter to
the gateway and aims to recover the original signal. In this section, we address two
secrecy vulnerabilities of CS to wireless eavesdropping and develop countermeasures.
The first vulnerability is a leak of several statistics of the original signal. To fix this,
we propose a perturbation approach. The second vulnerability is the exposure of the
random matrix, which is used as a secret key, in a variation of the known-plaintext
attack. To fix this, we analyze how frequently the random matrix should be updated,
such that the adversary cannot accumulate enough data to implement the attack.

5.1. Basic Secrecy Property Achieved by CS

With the CS-compressed signals only, recovering the original signals is computation-
ally hard, as long as the random measurement matrix Φ is kept secret [Rachlin and
Baron 2008; Orsdemir et al. 2008]. A symmetric secret key shared by the meter and the
gateway can be used as the seed to generate Φ, where the symmetric key can be hard-
coded or established using existing code libraries for key exchange (e.g., [Liu and Ning
2008]) that are often based on public-key cryptography. We note that, although estab-
lishment of the symmetric key may introduce some overhead due to the complexity of
public-key cryptography, it is a one-time procedure during system initialization only.
Different symmetric keys can be established for different meters. As such, the leak of a
single meter’s key (e.g., by extracting from the memory of a physically captured meter)
will not reveal the keys of other meters.

5.2. Leak of Statistics under CS

5.2.1. Statistics of Compressed Signal. Although CS prevents the recovery of the original
signal under wireless eavesdropping, we identify the following vulnerability of CS in
leaking statistics of the original signal.

PROPOSITION 5.1. When the Gaussian or the Rademacher matrix is adopted (i.e.,
Φ = ΦG or Φ = ΦR), the eavesdropper can accurately estimate the ℓ2-norm of the original
signal ‖x‖ℓ2 from the compressed signal y = Φx. They can also estimate the bounds for
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Table VI. An example of perturbation.

Gaussian matrix ΦG binary matrix ΦB

ℓ2-norm x̄ σx x̄

true value 13689 426.8 28.56 426.8
estimate (no perturbation) 14445 [14.1, 451.4] ≤451.1 426.8

estimate (kp=5×103) 19773 [19.3, 617.9] ≤617.6 601.3
estimate (kp=5×105) 544336 [531.5, 17010.5] ≤17002 16553.3

distortion (no perturbation) 2.47% 2.27%
distortion (kp=5×103) 2.47% 2.31%
distortion (kp=5×105) 2.49% 2.44%

the mean and standard deviation of x (denoted by x̄ and σx, respectively) as

1

N
‖x‖ℓ2 ≤ x̄ ≤ 1√

N
‖x‖ℓ2, (5)

σx ≤
√
N − 1

N
· ‖x‖ℓ2. (6)

PROOF. By denoting yi as the ith entry of y, we have yi =
∑N

j=1 φi,jxj , where xj is

the jth entry of x and φi,j is the (i, j)th element of ΦG or ΦR. For both ΦG and ΦR, the
variance of φi,j is Var[φi,j ] =

1
M

. As each φi,j is independent and identically distributed,

we have Var[yi] =
1
M

∑N
j=1 x

2
j = 1

M
‖x‖2ℓ2. Given y, the unbiased sample variance of yi

for any i, denoted by s2y, is given by s2y = 1
M−1

∑M
i=1(yi − ȳ)2, where ȳ = 1

M

∑M
i=1 yi. As

Var[yi] ≃ s2y, we can derive ‖x‖ℓ2 ≃
√

m
m−1

∑m
i=1(yi − ȳ)2. In other words, the ℓ2-norm

of the original signal can be accurately estimated from the compressed signal. Based
on the estimated ‖x‖ℓ2, the adversary can further estimate bounds for the mean and

standard deviation of x. As xi ≥ 0, x̄ = 1
N
‖x‖ℓ1 . As ‖x‖ℓ2 ≤ ‖x‖ℓ1 ≤

√
N‖x‖ℓ2 , we have

Eq. (5). Moreover, as σx =
√

1
N
‖x‖2ℓ2 − x̄2, we have Eq. (6).

PROPOSITION 5.2. When the binary matrix is adopted (i.e., Φ = ΦB), the eavesdrop-
per can exactly estimate x̄ from the compressed signal y = ΦBx.

PROOF. It is easy to verify that x̄ =
∑M

i=1 yi

N ·S , since each column of ΦB contains S
ones.

Note that x̄ and σx represent important privacy information of the user. Table VI
shows an example of the leak of statistics. We can see that, when ΦG is used, the ℓ2-
norm of the original signal can be accurately estimated. The estimated upper bound of
x̄ is close to x̄. When ΦB is used, the x̄ can be exactly estimated.

5.2.2. Perturbation. To solve the vulnerability, we propose to perturb the power signal.
In JICE, the meter and gateway have a shared secret key denoted by kp ∈ R. Define
a perturbation vector p̂ = [kp, 0, . . . , 0]

T ∈ R
N×1. Its time-domain counterpart is p =

Ψp̂ = kpψ1, which can be pre-computed by the meter. The meter computes the sum
of x and p to produce the perturbed signal denoted by x̃, i.e., x̃ = x + p. The meter
then applies CS to x̃ and transmits. As the sparsity of x̃, denoted by ρx̃, is at most
ρ+1/N , the extra distortion caused by the perturbation is almost negligible. Moreover,
for DCT and HWT, the first transform coefficient corresponds to the lowest frequency
component, which is typically non-zero. Therefore, the perturbation will not change the
signal sparsity. As shown in Table VI that applies two settings for kp, the perturbation
does not lead to significant increases of distortion. As the gateway also knows p, it can
remove p from the reconstructed signal to obtain the original signal. When ΦG or ΦR
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is used, the adversary can estimate ‖x + p‖ℓ2 = ‖x̂ + p̂‖ℓ2 , but cannot estimate ‖x̂‖ℓ2
since p̂ contains an arbitrary number kp. When ΦB is used, the adversary can estimate

x̄+
kp

N

∑N
j=1 ψ1,j . As

∑N
j=1 ψ1,j 6= 0 and kp is an arbitrary number, the adversary cannot

estimate x̄. From the example shown in Table VI, with perturbation, the adversary’s
estimates for ‖x‖ℓ2 and the bounds for x̄ and σx depend on kp and they are wrong.
Moreover, the perturbation causes little extra distortion in the signal recovery.

5.3. Noisy-Plaintext Attack

5.3.1. Attack Model. Because the CS-compressed data is a linear combination of the
original signal, the random measurement matrix can be estimated in the known-
plaintext attack. However, in WEANs, obtaining the original signal will need physical
access to the power wires or retrofit to the meters, making it difficult and detectable.
A more realistic threat model is that the wireless eavesdropper can measure a noisy
version of the original signal, e.g., by a current transducer. As a variation of the known-
plaintext attack, we call this attack model noisy-plaintext attack. Specifically, we as-
sume that the adversary can measure x′ = x+s, where s is a Gaussian zero-mean noise
with variance σ2

s . Given the compressed signal y and the noisy signal x′, the adversary
aims to estimate the random measurement matrix Φ. Apparently, the adversary can-
not solve Φ from y = Φ(x′ − s) since s is unknown. However, if the Φ is fixed, the
adversary can accumulate multiple blocks of (y,x′) and use existing approaches to es-
timate Φ. Specifically, let (yi,x

′
i) denotes the ith block of the eavesdropped/measured

data, we have yij = (x′
i − si)

T · ΦT
j for i = 1, 2, . . ., where yij is the jth element of yi

and Φj is the jth row of Φ. Methods such as total least square (TLS) can be applied to
compute a good estimate of Φj from the above group of equations. Thus, the adversary
can estimate all rows of Φ.

According to our numerical experiment, the accuracy of the TLS estimator heavily
depends on the volume of the input data. This means that, with more data for a fixed
Φ, the adversary can achieve a more accurate Φ estimation. To mitigate this, a coun-
termeasure is to generate a Φ using a symmetric key every data block, so that the
adversary cannot accumulate sufficient data. However, this approach would incur con-
siderable overhead, as random matrix generation is a non-trivial computation task.
A better countermeasure is to update Φ every few data blocks, to reduce the related
overhead. In the following subsections, we analyze and evaluate a trade-off between
the adversary’s estimation accuracy of Φ and the update rate of Φ.

5.3.2. Analyzing Adversary’s Φ Estimation Accuracy. Cramér-Rao bound (CRB) is a lower
bound of the mean square error (MSE) for an estimated parameter. That is, the es-
timation of a parameter cannot be statistically accurate if its CRB is large. We use
CRB as a metric to characterize how accurate the adversary can estimate Φ. Thus, we
can assess the CRB under different settings for the update rate of Φ. CRB is defined
as the inverse of the Fisher information matrix (FIM). The relationship between CRB

and the MSE of an estimator is given by MSE(θ̂) ≥ CRB = I(θ)−1, where θ̂ denotes
the estimate of the parameter θ, and I(θ) is the FIM. A closed-form solution for I(θ) is

given by I(θ) = (XTX)
(σ2

s‖Φj‖2
l2
)

[Wiesel et al. 2008], where X = [x1x2...xk]
T is a collection of

the original signals. The CRB of the ith entry of Φj is given by the ith element in the

diagonal of the matrix I(θ)−1 = (σ2
s‖Φi‖2l2)(XTX)

−1
.

5.3.3. A Numerical Example. We present a set of numerical results to illustrate the ef-
fectiveness of the noisy-plaintext attack by evaluating the distortion of the signal re-
covered using the estimated Φ. In this example, we use the Gaussian matrix with vari-
ance of 1

64 as Φ and TLS as the adversary’s estimator. The original signal is taken from
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Fig. 12. Distortion of the captured noisy signal and the recovered signal using the estimated Φ in the
noisy-plaintext attack.
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the pantry (cf. Fig. 7(a)), and for the noisy signal acquired by the adversary, we add
Gaussian noise to the original signal. The block size for CS is 256, and the compres-
sion ratio is 4. We gradually increase the volume of the adversary’s eavesdropped data,
and compare the distortion rates of the recovered signal and the captured noisy signal.
Fig. 12 shows the result. Interestingly, we can see that, with sufficient data blocks, the
adversary can use the estimated Φ to recover the original signal and achieve a distor-
tion rate lower than that of the captured noisy signal. In particular, the adversary can
achieve a distortion rate of 6% when they are provided with 1792 blocks of the noisy
version of the original signal with a distortion rate of 10%.

We also evaluate the tightness of CRB. Fig. 13 shows the CRB and the MSE achieved
by TLS versus the number of data blocks used by the adversary to estimate Φ. We can
see that CRB, MSE, and the gap between them decrease with the number of blocks.
As suggested by this result, when the number of blocks is small, the CRB may be
loose. Thus, the CRB-based assessment of the adversary’s Φ estimation accuracy may
be conservative. The conservative assessment will not lead to a wrong setting for the
Φ update rate, given a required level of MSE. We also assess the CRB under different
noise levels as shown in Fig. 14. Consistent with intuition, the CRB increases with the
noise level. Moreover, we can see that the CRB decreases drastically when the num-
ber of blocks increases from 512 to 768. This result suggests that, under the specific
settings of this numerical experiment, the adversary’s ability to estimate Φ is signif-
icantly weakened if we update Φ every 512 blocks instead of 768. This approach can
also be applied to choose the Φ update rate under other settings.

6. IMPLEMENTATION AND BENCHMARKING

We implemented JICE on a smart plug platform called SPlug [Sonnonet 2011]. An
SPlug consists of a Kmote and a power sensor (ADI ADE7763). The Kmote consists of
a TI MSP430F1611 MCU (8MHz clock rate and 10KB RAM) and a Chipcon CC2420
Zigbee radio, and runs the TinyOS operating system. To evaluate JICE, we imple-
mented the pipeline approach discussed in Section 3.3, a downsampling approach, and
a lossless compression approach as baselines. We have released a code package [Chiu
and Nguyen 2015] including all these implementations. This section presents the im-
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plementation details and measures the computation and RAM storage overhead of
different approaches. The overhead measurement results validate that JICE has low
computation and space complexities. The performance improvements by adopting the
JICE implemented in this section will be evaluated through testbed experiments in
Section 7.

6.1. Implementation Details

For all the approaches, data is represented as 4-byte integers or floating point num-
bers. To preserve data fidelity, we adopt a reliable transmission protocol called Packet
Link Layer [David M. 2007], which retransmits a packet if its acknowledgment is not
received in time. The default CSMA-based MAC protocol in TinyOS is used.

JICE: JICE uses the double buffering illustrated in Fig. 4 to interface the com-
pression/encryption and the transmission. The sizes of the output and transmission
buffers are M . When the meter obtains a power reading, it generates a random num-
ber, multiplies it with the reading, and adds the result to an entry of the output buffer.
For the same reading, it repeats this process for each entry of the output buffer. We
generate Gaussian and Rademacher random numbers by Box-Muller transform and
thresholding based on uniform pseudo-random numbers, respectively. For the binary
measurement matrix, we implement the approach described in [Berinde et al. 2008]
to generate binary random numbers. For every N sensor readings, the meter stops
sending from the current transmission buffer, switches the roles of the transmission
and output buffers by swapping pointers to them (which avoids costly data copying),
and starts transmitting from the new transmission buffer. In a packet to the gateway,
the meter piggybacks the selection of the representation basis Ψ according to the deci-
sion table and a sequence number to synchronize the measurement matrix generations
between the meter and gateway, which takes one byte of payload. In our current im-
plementation, for each meter-gateway pair, we manually assign a shared secret key
kp that is used to generate the perturbation vector as described in Section 5.2.2. This
manual approach can be improved by employing a key-agreement protocol such as the
Diffie-Hellman key exchange protocol.

Pipeline: The pipeline approach employs a wavelet-based lossy compression algo-
rithm that captures the main principle of most lossy compression schemes. It first
computes the transform x̂ from the original signal x, then encodes the largest M

2 trans-
form coefficients along with their positions in x̂, resulting in a total ofM numbers. This
approach employs the Advanced Encryption Standard (AES) algorithm, a representa-
tive symmetric-key cipher. Although the SPlug has built-in AES implementation in
its CC2420 radio chip, this is not necessarily true of all meters. To preserve the gen-
erality of our results, we use a software implementation of AES [Pelissier 2010]. In
fact, our tests show that the built-in AES is slower than the software implementation.
The pipeline approach has two variants regarding the implementation of transforms.
A few transforms such as ADT and HWT have efficient implementations without re-
sorting to matrix-vector multiplication. We refer to the resultant variant as native
pipeline. Other transforms may involve intensive floating-point computation (e.g., co-
sine in DCT) that incurs unacceptable delays. Instead, they can be implemented as a
multiplication of x and a pre-computed Ψ, which incurs O(N2) RAM storage overhead,
however. We refer to the resultant variant as matrix pipeline. We implement both the
native and matrix versions of HWT, which allows us to understand the impact of RAM
storage overhead on the overall performance. The pipeline approach also uses the dou-
ble buffering to coordinate data processing and transmission.

Downsampling: This approach transmits raw data to the gateway without process-
ing. For fair comparisons, we downsample the signal in this implementation to have
the same transmission volume as those of the JICE and pipeline approaches. We use a
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Table VII. Maximum block size (unit: samples)

JICE JICE JICE Native Matrix Down- Loss-

(γ=2) (γ=4) (γ=8) pipeline pipeline sampling∗ less

1024 2048 4096 128 16 2048 256
∗ For downsampling approach, the number is the maximum size of the circular queue.

† For the native pipeline, matrix pipeline, and down sampling approaches, γ = 4.

circular queue to coordinate the sensor sampling and data transmission. A data packet
encapsulating new sensor readings is added to the queue. An infinite loop removes a
packet from the queue and transmits it to the gateway. When a new packet is available
and the queue is full, the meter stops sending the oldest packet, removes it, and adds
the new packet to the queue.

Lossless: This approach first applies SLZW [Sadler and Martonosi 2006], a lossless
compression algorithm designed for embedded sensors, then applies AES to encrypt
the compressed data. As the compression ratio of SLZW is unpredictable, the lengths
of all the signal buffers are set to be N to prevent overflow.

6.2. Benchmarking

We use the maximum sampling rate (MSR) to inversely characterize the computational
overhead of an approach, which is defined as the reciprocal of the average processing
time for a single reading. Fig. 15 plots the MSR of various approaches versus block size.
As the computation complexity of HWT is superlinear with respect to N , we can see
that the MSR of the native pipeline approach decreases with the block size. For JICE
with binary matrix, the number of ones in each column is fixed. Hence, the number
of arithmetic operations for each reading is fixed and the MSR is independent of the
block size. For JICE with Rademacher matrix, the number of arithmetic operations for
each reading is proportional to M , which depends on the block size and compression
ratio. Thus, from Fig. 15, the MSR of JICE with Rademacher matrix decreases with
the block size and increases with γ. Since Gaussian number generators, such as the
Box-Muller transform used in our implementation, are often computation-intensive,
the MSR of JICE with Gaussian matrix is low (3Hz when the block size is 128). Thus,
the Gaussian measurement matrix is not suitable for capability-limited meters. In
summary, from Fig. 15, JICE with either binary or Rademacher matrix consistently
outperforms the pipeline approach. As a larger block size is preferable and the binary
matrix leads to the highest MSRs for large block sizes, in the rest of this paper, we will
adopt the binary matrix. Note that the MSR of JICE can be further increased if the
meter generates a new measurement matrix Φ every few blocks instead of every block
as in the current implementation.

We use the maximum block size (MBS) that can be achieved by an approach to in-
versely characterize the RAM storage overhead. The MBS is obtained by increasing
the block size until the RAM usage reported by the TinyOS compiler exceeds the RAM
capacity. Table VII lists the MBSs of various approaches. Note that the MBS is a power
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Fig. 16. Data delivery ratio and distortion vs. sampling rate (γ = 4).

of two, which is a requirement of HWT. From the table, we can see that JICE has larger
MBSs than the pipeline and lossless approaches.

In summary, JICE with binary matrix has lower computation and space complexities
than the pipeline approach. For the pipeline approach with γ = 4, the MBS is 128 to
meet the RAM capacity constraint. From Fig. 15, this MBS may not be achieved if the
required sampling rate is high. For instance, if the required sampling rate is 500Hz,
the pipeline approach needs to adopt a block size of 32. In contrast, JICE can achieve a
block size of 2048 from Fig. 15 and Table VII. Such a much larger block size will make
JICE more resilient to wireless link quality deterioration as shown in Section 3.3.

7. TESTBED EXPERIMENTS

In this section, we conduct extensive testbed experiments to compare the performance
of the different approaches’ implementations presented in Section 6.

7.1. Experiment Methodology

To make the results of various approaches (e.g., the recovered signals) comparable, we
need them to measure the same power signal. As an SPlug has both plug and socket
interfaces, multiple SPlugs can be connected in series to measure the same appliance.
We use five SPlugs loaded with JICE, native pipeline, matrix pipeline, downsampling,
and lossless approaches, respectively, and a sixth SPlug loaded with a ground-truth
data collection program. Note that each approach adopts its MBS shown in Table VII.
The ground-truth SPlug transmits the raw data without any processing. We use two
gateways, which are two Kmotes connected to two computers. The five SPlugs with
the JICE and baseline approaches communicate with a gateway using the same Zig-
bee channel, while the ground-truth SPlug communicates with the other gateway us-
ing another Zigbee channel. We use our setup to measure the power consumption of a
29-inch LCD that repeatedly displays a video. In this section, we evaluate the perfor-
mance of JICE and the baseline approaches under various settings for sampling rate,
compression ratio, and network size. For each setting, we conduct an experiment run
that lasts for one hour.

7.2. Experimental Results

7.2.1. Data Delivery and Fidelity. Fig. 16(a) shows the data delivery ratios of the various
approaches under different sampling rates. We can see that the pipeline approaches do
not scale well with the sampling rate. In contrast, JICE maintains a much better data
delivery ratio (82%) than the pipeline approach when the sampling rate is 64Hz. When
the sampling rate increases, each SPlug will transmit more data, causing increased
wireless channel contention. As shown in the illustrating example in Section 3.3, JICE
can better handle deteriorated link quality, which explains the higher data delivery
ratios of JICE in Fig. 16(a). As the downsampling approach uses a large circular buffer
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Fig. 17. Signal recovery example. (a) Ground truth; (b) Recovered by JICE; (c) Recovered by native pipeline.
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Fig. 18. Data delivery ratio and distortion vs. γ (sampling rate: 64 Hz).

which tolerates variable link quality, it yields comparable data delivery ratios as JICE.
Note that as the lossless approach generates a variable number of packets, we omit its
data delivery ratio.

Fig. 16(b) shows the distortions of the signals recovered by the various approaches.
Note that the gateway can detect lost packets from the sequence numbers in the re-
ceived packets. Under JICE, the gateway uses the rows in ΦΨ that correspond to the
received data points only to recover the signal. For the pipeline approaches, the lost
coefficients are set to zeros. For the downsampling approach, omitted and lost readings
are interpolated. For the lossless approach, a whole block is discarded if any packets
are lost since SLZW requires complete data for decompression. We can see that JICE
generally yields the lowest distortions. An exception is the native pipeline approach
when the sampling rate is 16Hz. Under this setting, both JICE and native pipeline
have nearly 100% data delivery ratios and hence their distortions are comparable.
Fig. 17 plots segments of the ground truth and recovered signals by JICE and the
native pipeline, at a sampling rate of 32Hz and γ = 4. We can see that JICE well
preserves the shape of the signal whereas the native pipeline approach has significant
recovery errors.

We conduct another set of experiments similar to the one in Fig. 16, except that we
fix the sampling rate to 64Hz and vary the compression ratio. The results are shown
in Fig. 18. When γ = 2, JICE has a smaller block size (cf. Table VII) and more data
to be sent. As a result, JICE experiences a low data delivery ratio (38%). However,
from Fig. 18(b), the distortion of JICE is just 4%. For JICE, the effect of packet loss is
similar to that of choosing a larger γ. Therefore, the distortions of JICE for γ = 2 and
γ = 4 are comparable since the data delivery ratio is doubled when γ increases to 4. In
summary, JICE outperforms the baseline approaches in terms of distortion.
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Fig. 19. Data delivery ratio and distortion vs. the number of traffic nodes (γ = 4, sampling rate = 8 Hz)

7.2.2. Scalability. This section evaluates the scalability of JICE with respect to the
network size. For this testbed experiment, we tune down the transmission power of
the SPlugs to simulate long distances from the gateway in real large-scale networks.
The resultant RSSIs at the gateway are within [−40,−30], a typical range observed
in practice when meters use the maximum transmission power. To simulate a large
number of meters, we use several Kmotes as traffic nodes, which continuously trans-
mit packets. Fig. 19 plots the data delivery ratio and distortion versus the number of
traffic nodes, when the sampling rate is 8Hz. With more traffic nodes, the wireless
channel contention is severer. JICE outperforms the native pipeline approach except
when the number of traffic nodes is 4. Under this setting, both approaches have com-
parable delivery ratios and the pipeline approach has a slightly lower distortion. From
Fig. 19(b), to maintain a distortion of 5%, JICE can increase the supported meters by
50%, compared with the pipeline approach. According to the generated traffic volume,
each traffic node can be projected to 12 nodes running the JICE or pipeline approaches
sampling at 8Hz. Thus, to maintain a distortion of 5%, JICE supports up to 144 me-
ters.

8. JICE FOR VOLTAGE MONITORING AND OTHER APPLICATIONS

In this section, we extend JICE to address voltage monitoring and discuss several
other scenarios where JICE can be potentially used.

8.1. JICE for Voltage Monitoring

8.1.1. Background of Voltage Monitoring. Real-time monitoring of voltage waveforms at
different locations of a power transmission/distribution system can provide crucial in-
formation for power system condition assessment. Several large-scale voltage monitor-
ing projects have been initiated in the past decade. For instance, right after the 2003
blackout in North America, more than 1,000 phasor measurement units (PMUs) have
been deployed in power systems to monitor abnormal voltage disturbances. This de-
ployment is known as the North American SynchroPhasor Initiative (NASPI). These
PMUs collect real-time voltage waveforms (also called synchrophasor data) and trans-
mit them to phasor data concentrators to generate real-time grid condition reports. Be-
sides, in 2014, Cisco announced the deployment of a voltage monitoring system called
LineWatch [QinetiQ 2014] to monitor the voltage waveforms in its power distribution
networks [John 2014].

To reduce deployment overhead and cost, as well as to enable one-shot diagnostic
installations, it is desirable to adopt a wireless design, i.e., transmit the voltage wave-
form data from meters to gateways via wireless communications. In contrast to power
signals, voltage signals are often sampled at relatively higher rates, e.g., 30Hz adopted
by NASPI. Higher sampling rates are needed for monitoring voltage harmonics, which
are caused by non-linear loads and efficiently indicate power quality [Santoso et al.
1996]. For instance, to capture the 3rd harmonic component, a sampling rate of at

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.



A:27

least three times the nominal grid frequency is needed. Because of the high sampling
rates, data compression before the wireless transmission is highly desirable to ensure
the fidelity of the collected voltage data.

Voltage waveforms are also sensitive data that needs protection. For instance, given
the PMU data at certain sites of the power grid, the topology of the whole grid and
the power system state estimation model can be inferred [Baldwin et al. 1993]. With
such knowledge, the adversary can launch undetectable attacks that perturb the sys-
tem’s state, making the power grid unstable [Liu et al. 2011]. Moreover, by studying
transient patterns in voltage waveforms, electrical activities including the operations
of specific appliances can be identified [Cox et al. 2006].

In summary, the above data fidelity and secrecy requirements of voltage monitoring
motivate the use of JICE for this application. Since the secrecy analysis of JICE in
Section 5 is general, in this section, we focus on the design of the measurement matrix
and the representation basis for data fidelity.

8.1.2. Design of JICE for Alternating Current Voltage Signals. In Section 4, we have demon-
strated how JICE adapts to various power signals by autonomously choosing an ap-
propriate representation basis. Voltage signals pose different challenges for CS-based
compression. Since voltage signals are periodic time series data, we choose the DCT
as the representation basis. The DCT transform of a voltage signal will have a large
spike at the nominal grid frequency. According to [Candès et al. 2008], large coeffi-
cients often negatively affect the performance of most CS recovery algorithms. Sev-
eral re-weighting algorithms have been proposed to mitigate this effect [Candès et al.
2008]. However, these algorithms often introduce significant computational overhead
[Candès et al. 2008]. Instead, we adopt an efficient and simple regularization approach.
It is based on a smoothing filter called Hamming window. Because the DCT coefficients
of the original voltage signal are normally large at low frequencies and small at high
frequencies, we aim to reduce the amplitudes of the large coefficients, while preserv-
ing the small ones. Thus, we design a diagonal N -by-N matrix H with the diagonal
elements given by Hnn = 1

0.54+0.46·cos( πn
N−1 )

, which is the reciprocal of a left-half ele-

ment in the Hamming window. The recovery is based on a new representation basis
Ψ′

D = HΨD. We conduct an experiment to evaluate this regularization approach. Fig.
20(a) plots a 50Hz voltage signal measured in our office. Fig. 20(b) and Fig. 20(c) show
the recovered voltage signals using the original and regularized DCT bases, respec-
tively. We can observe that the regularization approach can significantly improve the
reconstruction quality.

8.1.3. Evaluation. As discussed in Section 8.1.1, voltage harmonics provide important
information about power quality and load activities. Thus, the ability of preserving
voltage harmonics is an important performance metric. In this section, we conduct
a set of experiments to evaluate the performance of JICE in the presence of signifi-
cant voltage harmonics. Our evaluation methodology is as follows. We inject harmonic
waves into a fundamental waveform which is a pure 50Hz sinusoid wave, and adjust
the magnitudes of the harmonic waves to evaluate the ability of JICE in preserving the
harmonics. The total harmonic distortion (THD) is a widely used metric to characterize

the magnitudes of harmonic components. It is defined as THD =

√∑
∞
n=1 V 2

n

V1
, where Vn

represents the amplitude of the nth harmonic component and V1 is the amplitude of
the fundamental sinusoid wave. In this experiment, only the 3rd, 5th, and 7th harmon-
ics are considered. Moreover, for simplicity, all the harmonics are configured with the
same amplitude. For instance, to create a distorted sinusoid of 5% THD, the amplitude
of each injected harmonic is approximately 2.9% of the fundamental sinusoid wave.
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Fig. 20. (a) Original voltage signal; (b) Reconstructed signal using DCT; (c)
Reconstructed signal using regularized DCT.
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Fig. 22. Recovery distortion in the presence of har-
monics versus packet delivery ratio.

The block length for the CS compression is equivalent to 4 cycles of the fundamental
sinusoid wave, and the compression ratio is 8.

Fig. 21 shows the recovery distortion at the gateway under different THD settings
when JICE adopts the original and the regularized DCT basis. We note that many
electric appliances require that THD is less than 5% [Csanyi 2016]. However, large
non-linear load and power electronics in industrial settings can increase THD beyond
5%. From Fig. 21, when THD is 5%, the regularized DCT can help JICE reduce the
recovery distortion rate by half, compared with the original DCT. Moreover, with the
regularized DCT, JICE maintains small recovery distortion rates under larger THD
settings. This result shows that regularized DCT is more effective in preserving the
harmonics than the original DCT. We also evaluate JICE’s robustness against packet
losses under the following settings: i) JICE with the original ΨD; ii) JICE with the
regularized ΨD; iii) pipeline approach with the regularized ΨD. Fig. 22 shows the re-
covery distortion rates versus the packet delivery ratio under different approaches.
With higher delivery rates, pipeline approach achieves the best recovery quality. This
is because either the fundamental wave or the harmonics can be well represented
by a few coefficients. However, JICE with the regularized DCT is the most robust to
packet losses. In particular, the pipeline approach performs poorly (about 60% distor-
tion) when 30% packets are lost (i.e., 70% delivery ratio). This result is consistent with
our previous result for the power signals (cf. Section 7.2.1).

8.2. JICE for Other Applications

Many pervasive sensing and Internet of things (IoT) applications based on capability-
limited sensors face the same challenges in ensuring data fidelity and secrecy as
WEANs. Examples include residential activity sensing and wireless medical monitor-
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ing. Sensors for residential activity monitoring often stream their high-resolution data
to a central node for complex cognitive processing [Phillips et al. 2013]. However, the
data can reveal the user’s daily activities, from usage of appliances [Srinivasan et al.
2008], to keystroke sequence on a computer keyboard [Zhuang et al. 2009] if acoustic
sensors are used, as in [Phillips et al. 2013]. Mote-class body-worn sensors have been
used for monitoring patients’ vital signs (e.g., pulse) at low rates in general hospital
units [Chipara et al. 2010]. To support cardiac and epilepsy care that requires high-
rate (up to 100Hz) electroencephalography (EEG), electrocardiogram (ECG), and/or
acceleration measurements, compressing and encrypting this privacy-sensitive data
become imperative. In [Wang et al. 2010], body-worn sensors apply the pipeline ap-
proach to compress and encrypt ECG data before wireless transmission. JICE can be
applied to these other emerging applications. As illustrated in the voltage monitoring
application in Section 8.1, specific best choice of key CS elements such as represen-
tation basis and measurement matrix may be application specific. However, several
generic design elements advanced in this paper, such as the adaptive representation
basis configuration and the perturbation approach for privacy preservation, can be
readily applied to new application domains.

9. CONCLUSION

This paper applied CS to jointly compress and encrypt measurements from wireless
power meters in a WEAN. We designed JICE through analysis and extensive empirical
studies based on real data traces. We developed a lightweight algorithm to reconfigure
the representation basis of JICE adaptively at run time to optimize performance. For
privacy, we identified leak of statistical information by CS and proposed a perturba-
tion approach to solving the vulnerability. Besides, we considered a threat in which the
adversary can obtain a noisy version of the original signal and thus can estimate the
random measurement matrix that is used as a secret key in JICE. Our analysis sug-
gests the update rate for the random measurement matrix before it can be accurately
estimated by the adversary. Extensive benchmarking and testbed experiments showed
that JICE outperforms various baseline approaches under different realistic settings.
This paper also presented an extension to address voltage monitoring and discussed
other application scenarios.
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A. PROOF OF PROPOSITION 4.1

PROOF. We can verify x̂(k) = û(k) + ŵ(k) and x(k) = u(k) + w(k). As ‖x(k) − x‖ℓ2 =
‖x̂(k) − x̂‖ℓ2 = ‖(û(k) − û) + (ŵ(k) − ŵ)‖ℓ2 , we have

lim
N→∞

ǫ2(x(k),x)= lim
N→∞

1
N
‖(û(k) − û) + (ŵ(k) − ŵ)‖2ℓ2

1
N
‖u+w‖2ℓ2

(*)
= lim

N→∞

1
N
‖û(k)−û‖2ℓ2+ 1

N
‖ŵ(k)−ŵ‖2ℓ2

1
N
‖u‖2ℓ2 +

1
N
‖w‖2ℓ2

=
lim
N→∞

1
N
‖û(k)−û‖2ℓ2+lim

N→∞
1
N
‖ŵ(k)−ŵ‖2ℓ2

σ2
w
(1 + SNR)

(7)

where the step marked by (*) follows from lim
N→∞

1
N
〈u,w〉 = 0 and lim

N→∞
1
N
〈û(k)−û, ŵ(k)−

ŵ〉 = 0. Moreover, we have

lim
N→∞

1

N
‖ŵ(k) − ŵ‖2ℓ2 = E[(ŵ(k) − ŵ)2]

= E[(ŵ(k) − ŵ)2|ŵ(k) = 0] · P(ŵ(k) = 0) + E[(ŵ(k) − ŵ)2|ŵ(k) = ŵ] · P(ŵ(k) = ŵ)

= E[ŵ2](1− ρ) = σ2
w
(1− ρ), (8)

where ŵ(k) ∈ ŵ(k) and ŵ ∈ ŵ. It is easy to verify that ‖û(k) − û‖2ℓ2 ≥ ∑N
i=k+1([ûdesc]i)

2.
Therefore, by applying this bound and Eq. (8) on Eq. (7), we have limN→∞ ǫ(x(k),x) ≥√

1
σ2
w

fû(ρ)+(1−ρ)

1+SNR , where fû(ρ) = limN→∞
1
N

∑N
i=ρN+1([ûdesc]i)

2 and ûdesc denotes the

sorted û in a descending order. Let IA(x) denote the indicator function of A where

IA(x) = 1 if x ∈ A and IA(x) = 0 otherwise. It is easy to verify
∑N

i=ρN+1([ûdesc]i)
2 ≥

û2
min(ρuN − ρN)I[0,ρu](ρ). Thus, fû(ρ) ≥ û2

min(ρu − ρ) and we have Eq. (4).
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