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APPENDIX A
INSTANTIATED MODELS OF DYNAMIC STATE ESTIMATOR AND ANOMALY DETECTOR

This section introduces the Kalman Filter-based state estimator, the χ2 anomaly detector, and the linear controller, which
have been widely used in literature and real systems [1], [2]. The simulations conducted in Section V-B use these instantiated
models. First, the Kalman Filter (KF) instantiates Eq. (3) as x̂[k + 1] = Ax̂[k] +Bu[k] +F(y[k + 1]−CAx̂[k]−CBu[k]),
where F ∈ Rn×m is the Kalman gain matrix given by F = PCT (CPCT + R)−1 and P is the solution of the equation
P = APAT +Q −APCT (CPCT +R)−1CPAT . In addition, Eq. (4) becomes ŷ[k + 1] = CAx̂[k] +CBu[k]. Second,
the χ2 detector computes a scalar residual as r[k] = ε[k]TG−1ε[k], where G ∈ Rm×m is the covariance of ε[k]. When
the KF-based state estimator is used, G = CPCT + R and the r[k] follows a χ2

m distribution. The χ2 detector yields a
positive detection result if r[k + 1] > χ2

m,α, where χ2
m,α represents the 100α%-percentile of the χ2

m distribution. Thus, the
χ2 detector ensures a false alarm rate of (1 − α). Third, in the simulations, we use a negative feedback linear controller of
u[k] = −H(x̂[k]− x0), where H ∈ Rl×n is a constant matrix.

APPENDIX B
DISCUSSION OF ATTACK CAPABILITIES

This section provides justification for the attacker’s capabilities presented in Section III-A. Critical CPSes are often the
target of strong attackers (such as insiders or hostile national rivals), who can obtain detailed knowledge of the system and
the anomaly detection methods through various means. Besides, all traditional control systems adopt a centralized control
theme. Specifically, all the sensor measurements are transmitted to a control center for system monitoring, and all the control
commands are transmitted from the control center for system regulation. If the attackers can eavesdrop on and tamper with
the data flows through several critical routers close to the control center or directly do so in the control center (which is not
impossible as evidenced in the recent high-profile intrusions such as Stuxnet), they can compromise the control commands and
sensor measurements. When the attackers can corrupt only a subset of the control commands or sensor measurements, they
can still perform local stealthy SL attacks, according to the system topology (i.e., A, B and C mentioned in Section II-A). As
the focus of this paper is to develop a defense approach, it is beneficial to assume a strong adversary model (i.e., assume the
attackers can compromise all commands and measurements). The defense based on this strong adversary model will be also
effective to the weaker attackers who can corrupt a subset of the commands or measurements only.

APPENDIX C
PROOF OF LEMMA 1

Proof. (Sufficiency) We prove it through the mathematical induction method. Since ym[k] = y[k], ∀k ∈ N, we have Ym[k] =
Y[k], ∀k ∈ N. In the initial time period, since Ym[0] = Y[0], according to Eqs. (3) and (9), we have x̂m[0] = x̂[0], i.e.,
X̂m[0] = X̂[0]; since Ym[0] = Y[0] and X̂m[0] = X̂[0], according to Eqs. (6) and (12), we have um[0] = u[0], i.e.,
Um[0] = U[0]. Supposing that in the kth time period, X̂m[k] = X̂[k] and Um[k] = U[k]. In the (k + 1)th time period, since
Ym[k + 1] = Y[k + 1], X̂m[k] = X̂[k] and Um[k] = U[k], according to Eqs. (3) and (9), we have x̂m[k + 1] = x̂[k + 1].
Then, X̂m[k+ 1] = X̂[k+ 1]. Moreover, since Ym[k+ 1] = Y[k+ 1], X̂m[k+ 1] = X̂[k+ 1] and Um[k] = U[k], according
to Eqs. (6) and (12), we have um[k + 1] = u[k + 1]. Then, Um[k + 1] = U[k + 1]. Since both the basis and inductive step
have been performed, we have X̂m[k] = X̂[k] and Um[k] = U[k], for ∀k ∈ N. Therefore, according to Eqs. (4) and (10), we
have ŷm[k] = ŷ[k],∀k ∈ N. Then, from ym[k] = y[k] and ŷm[k] = ŷ[k], we have εm[k] = ε[k], for ∀k ∈ N, i.e., the attack
is stealthy.

(Necessity) We prove it through the mathematical induction method. In the initial time period, since the attack is stealthy and
ŷm[0] = ŷ[0], we have 0 = εm[0]−ε[0] = ym[0]−y[0]. Then, according to Eqs. (3) and (9), we have x̂m[0] = x̂[0]. Moreover,
according to Eqs. (6) and (12), we have um[0] = u[0]. That is, Ym[0] = Y[0], X̂m[0] = X̂[0] and Um[0] = U[0]. Supposing
that in the kth time period, Ym[k] = Y[k], X̂m[k] = X̂[k] and Um[k] = U[k]. In the (k+1)th time period, according to Eqs. (4)
and (10), we have ŷm[k+1] = ŷ[k+1]. Since the attack is stealthy, we have 0 = εm[k+1]−ε[k+1] = ym[k+1]−y[k+1], i.e.,
Ym[k+1] = Y[k+1]. From Ym[k+1] = Y[k+1], X̂m[k] = X̂[k] and Um[k] = U[k], we have x̂m[k+1] = x̂[k+1] according
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to Eqs. (3) and (9), i.e., X̂m[k+1] = X̂[k+1]. Therefore, according to Eqs. (6) and (12), we have um[k+1] = u[k+1], i.e.,
Um[k+1] = U[k+1]. Since both the basis and inductive step have been performed, we have Ym[k] = Y[k], X̂m[k] = X̂[k]
and Um[k] = U[k], for ∀k ∈ N, according to the mathematical induction. That is, ym[k] = y[k], for ∀k ∈ N.

APPENDIX D
PROOF OF SCALING ATTACKS’ STEALTHINESS

Proof. We prove it through the mathematical induction method. Initially, b[0] = 0 and Ym[0] = Y[0]. Assume Ym[k] = Y[k].
Then, Um[k] = U[k]. In the (k + 1)th time period, C+(ya[k] + b[k]) = C+ym[k] = C+y[k] = x[k]. Thus, C+b[k] =
x[k]− xa[k]. Moreover, ya[k + 1] = CAxa[k] + (1 + λk)CBu[k]. Then, ya[k + 1]−CAxa[k] = (1 + λk)CBu[k]. Hence,
b[k+1] = −λkCBu[k]+CA(x[k]−xa[k]). Then, ym[k+1] = CAxa[k]+(1+λk)CBu[k]−λkCBu[k]+CA(x[k]−xa[k]) =
y[k + 1]. Therefore, Ym[k + 1] = Y[k + 1]. From Lemma 1, the attack is stealthy.

APPENDIX E
FREQUENTLY STUDIED ATTACKS IN LITERATURE EXCEPT FOR SL ATTACKS

This section briefly introduces several frequently studied attacks in the literature. We note that these attacks are not stealthy
in the dynamic state estimator and anomaly detector, and thus not the focus of this paper.

• Denial-of-service (DoS) attack: The DoS attack is a cyber-attack in which the attackers jam the communication channels
and prevent the control signal or sensor measurement from reaching the destination. In a DoS attack, the attackers usually
overwhelm the targeted devices or exhaust relevant resources by sending excessive messages [3]. Zhang et al. [4] studied
the optimal attack strategies of DoS attack to degrade the system performance. Agah and Das [5] proposed a protocol
based on game theory to prevent the DoS attack.

• False data injection attack: FDI attacks can be launched against the state estimation of power grids while keeping stealthy to
the SE’s BDD mechanism [6], if the attackers know the details of the BDD and can compromise the sensor measurements.
FDI attacks for different malicious objectives have been studied in [7], [8] and [9]. The stealthy FDI attacks can be
prevented by protecting selected sensor measurements [10], or securing PMU data [11]. The attacks can be detected by
using more adaptive algorithms [12], [13].

• Other attacks: Huang et al. [14] and Sridhar et al. [15] proposed the min-and-max attack, the scaling attack, the pulse
attack and the random attack against either the sensors or actuators. However, according to the analysis in Section III-B,
these attacks that compromise either the control signals or the sensor measurements are not stealthy.

APPENDIX F
SL ATTACK IMPLEMENTATION IN AN OFF-LINE MODE AND AN ILLUSTRATING CASE

This section separately analyzes whether the three SL attacks can be launched in an off-line mode.
• MISA: According to Definition 2, the attackers can design the command injection a in a priori, and calculate the

measurement injection b for each time period. Since the attack vectors a and b are independent to the real-time system
states or measurements, the MISA can be launched off-line.

• Scaling Attack: According to Definition 3, the measurement injection b is usually designed according to the whole
real-time sensor measurements ya. Thus, the scaling attack cannot be launched off-line.

• Replay Attack: To launch the replay attack, the attackers should firstly judge whether the system has converged, by
monitoring the control signals and the sensor measurements. In an off-line mode, this may need the communication
between the injected malware on each router, but needs weak synchronization requirement. After convergence, according
to Definition 4, the compromised measurement of each sensor will be replaced by its historical data, which can be achieved
in a distributed manner by the malware on each router. Thus, the replay attack can be launched off-line.

1) A Numerical Case of MISA: To better illustrate the concept of the CPS loop and the SL attack, here we provide a
numerical case of MISA’s implementation. For simplicity, we consider a noiseless LTI system, which is given by (7) and (8)
with the following system parameters:

A =

[
1 1
0 1

]
,B =

[
1 0
0 1

]
,C =

[
1 0
0 1

]
,w = 0,v = 0.

The system state estimation process in Eqs. (9) and (10), and the control algorithm in Eq. (12) are given by:

x̂m[k + 1] = ym[k + 1],

ŷm[k + 1] = Ax̂m[k + 1] +Bum[k],

um[k + 1] = 0.5(x0 − x̂m[k + 1]).

In addition, the initial system state is x[0] = [10 10]T and the desired target state is x0 = [0 0]T . Due to noiseless, the threshold
ε0 can be set as 0, which ensures a zero false alarm rate.



3

TABLE I
NUMERICAL CASE OF MISA.

Time x(y) xa(ya) b ym ŷm εm um a ua

0 [10 10]T [10 10]T [0 0]T [10 10]T [10 10]T [0 0]T [−5 − 5]T [0 0]T [−5 − 5]T

1 [15 5]T [15 5]T [0 0]T [15 5]T [15 5]T [0 0]T [−7.5 − 2.5]T [0 0]T [−7.5 − 2.5]T

2 [12.5 2.5]T [12.5 2.5]T [0 0]T [12.5 2.5]T [12.5 2.5]T [0 0]T [−6.25 − 1.25]T [5 5]T [−1.25 3.75]T

3 [8.75 1.25]T [13.75 6.25]T [−5 − 5]T [8.75 1.25]T [8.75 1.25]T [0 0]T [−4.38 − 0.63]T [5 5]T [0.63 4.38]T

4 [5.63 0.63]T [20.63 10.63]T [−15 − 10]T [5.63 0.63]T [5.63 0.63]T [0 0]T [−2.81 − 0.31]T [5 5]T [2.19 4.69]T

5 [3.44 0.31]T [33.44 15.31]T [−30 − 15]T [3.44 0.31]T [3.44 0.31]T [0 0]T [−1.72 − 0.16]T [5 5]T [3.28 4.84]T

Table I shows the numerical result of MISA. The column “x(y)” shows the system state in the absence of the attack, which
rapidly converges to the desired target state x0. Unfortunately, the attacker designs the attack plan in advance, which is shown
in the column “a” and “b”. The attacker begins to inject the malicious control commands from the second time period. The
column “xa(ya)” shows the real system state, which deviates from the desired target state x0 and has reached to [33.44 15.31]T

in the fifth time period. Meanwhile, the attacker corrupts the sensor readings from the third time period to cover the ongoing
attack. The residual error (shown in the column “εm”) is always [0 0]T and thus the MISA is stealthy to the system. Note that
the sensor reading in the presence of the attack is same as that in the absence of the attack, i.e., ym = y, which is consistent
with Lemma 1.
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