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Abstract—Recent cybersecurity incidents such as Stuxnet and
Irongate alert us to the threats faced by critical cyber-physical
systems. These attacks compromise the control signals to push
the system to unsafe regions and meanwhile, inject fake sensor
measurements to cover the ongoing attack. Detecting these
Stuxnet-like (SL) attacks still remains an open research issue.
This paper analyzes the taxonomy, construction, and implication
of SL attacks in CPS control loops. We propose to apply the
moving target defense (MTD) approach that actively changes the
system configuration to detect SL attacks, since these attacks
are generally constructed based on the knowledge about the
system’s configuration. We analyze the basic conditions for MTD
to be successful. Finally, as a case study, we apply MTD for the
secondary voltage control of power grids and present simulation
results based on the IEEE 39-bus test system under realistic
settings.

Index Terms—Cyber-physical system security, Stuxnet, moving
target defense, stealthy attack.

I. INTRODUCTION

Cyber-physical systems (CPSes), such as power grids, au-
tonomous vehicles, medical systems, are often safety-critical
in that their failures would cause severe consequences includ-
ing losses of life. In the last decades, CPSes are increasingly
adopting modern information and communication technologies
(ICTs) [1]. While the ICTs improve the system efficiency,
they may also make the systems more vulnerable to cyber
attacks launched by malicious insiders or hostile national
rivals and therefore cause serious consequences. Such threats
have been alerted by recent cybersecurity incidents, e.g.,
the Stuxnet worm against nuclear facilities, Irongate against
industrial control systems, and BlackEnergy trojan against
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power plants. In particular, the Stuxnet and Irongate share a
similar attack strategy, i.e., the attacker injects the malicious
control commands to the actuators and meanwhile, corrupt
the sensor readings to cover the ongoing attack. We define
this class of coordinated integrity attacks on the control and
sensor data as Stuxnet-like (SL) attacks, which will be the
focus of this paper. Despite some existing forensic analysis of
SL attacks [2], systematic countermeasures against the attacks
have not received extensive research.

This paper studies the detection of the SL attacks. The
controller of a CPS often adopts an anomaly detector to check
the consistency between the transmitted control signals and the
received sensor measurements. In particular, as the CPS gener-
ally follows known dynamics over time, the anomaly detector
can leverage on the temporal correlations between the series
of control signals and sensor measurements to improve the
anomaly detection performance. However, with the capability
of corrupting both the control and sensor data, the attackers
can craft a series of fake sensor measurements that match
the system dynamics given the original control signals sent
from the controller. In this way, the anomaly detector cannot
detect any deviation from the system dynamics. We note that
a recent work [3] has studied how the false data injection
(FDI) attacks bypass the bad data detection (BDD) of power
grids’ state estimation (SE). However, the SL attack studied
in this paper is fundamentally different from the FDI against
SE’s BDD, in that SL attack bypasses the temporal-correlation-
based check over control/sensor data time series, whereas the
FDI bypasses the spatial-correlation-based check over one-shot
sensor measurements. Thus, existing FDI detection approaches
are not applicable to SL attack detection.

The attackers targeting critical infrastructures are often
highly crafty, resourceful, and able to design the attacks based
on extensive knowledge about the system. To well address
such attackers, we consider the attackers who know the system
topology, operation mechanism, and can compromise all the
control and sensor data transmitted in the communication
network. Under this highly adversary setting, the system
operator may completely lose the awareness of the system
state. As shown in this paper, the attacker can easily bypass the
detection strategies that are based on the measurements only,
e.g., dissipativity-theoretic fault detector [4] and CUSUM-
based χ2 detector [5]. To preclude and/or detect the SL
attacks, a possible approach is to ensure the integrity of the
control commands and sensor measurements. However, such
data integrity ensurance is often very costly.

In this paper, we propose to apply the moving target
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defense (MTD) approach to detect stealthy SL attacks. MTD,
originally proposed to enhance network security [6], actively
changes the configuration of the system such that the attackers’
knowledge about the system is always outdated. This increases
the barriers for the attackers to launch targeted attacks. In this
paper’s context, the MTD changes the CPS’ configuration to
invalidate the attackers’ knowledge about the system that is
used to craft the SL attacks. Specifically, the MTD can perturb
the control and/or the sensing units actively, e.g., through
adjusting the units’ parameters or gains. This idea can be easily
implemented on existing physical units including the current
transformer (CT) and the potential transformer (PT), etc. For
instance, the turns ratio of CT can be achieved by modifying
the primary circuits through the CT’s window [7]. Moreover,
recent ICTs, such as flexible manufacturing and multi-sensor
information fusion can also be leveraged to implement MTD.
Thus, we envision that MTD can be implemented readily in
many rapidly evolving CPSes. Our previous work [8] studied
the hidden MTD against the FDI attacks that compromise
measurement signal. It showed that MTD’s completeness (i.e.,
the ability to detect all FDI attacks) and stealthiness (i.e., the
ability of being undetected by the attacker) are two conflicting
goals. However, the hidden MTD does not address the much
stronger SL attacks.

In this paper, we make the following contributions to
understand and defend SL attacks using MTD:

First, we analyze the properties of SL attacks. Specifically,
based on a general temporal-correlation-based anomaly detec-
tor, we analyze the necessary and sufficient condition for the
SL attacks to achieve stealthiness. Based on this condition,
we investigate the construction strategies of SL attacks, which
can be classified into measurement independent stealthy attack
(MISA) and measurement dependent stealthy attack (MDSA).
For MISA, the attackers use the full knowledge of the target
system to construct SL attacks that are completely stealthy
to the anomaly detector, whereas the MDSA leverages the
eavesdropped measurements to reduce the attack’s reliance
on the knowledge about the target system but with reduced
stealthiness consequently.

Second, we design MTD against the above different types
of SL attacks. We show that, by perturbing the control units
only, the MTD can deal with MISAs, whereas the MTD
that perturbs the sensing units only can preclude any stealthy
MISAs and MDSAs considered in this paper. Moreover, we
study several important aspects of MTD’s implementation,
including the basic prerequisites of the system, the selection
of MTD’s parameters and the implementation overhead.

In this paper, we demonstrate using our MTD design to
protect a real-world CPS, the secondary voltage control (SVC)
in power grids. Simulations based on the IEEE 39-bus test
system confirm our analytical results.

The rest of this paper is organized as follows. Section II
presents preliminaries. Section III describes the SL attacks.
Section IV designs MTD against SL attacks. Section V
presents simulation results. Section VI discusses a matrix
estimation attack against MTD and proposes countermeasures.
Section VII reviews related work. Section VIII concludes.
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Fig. 1. Block diagram of the CPS with MTD approach. The blocks belonging
to MTD are shaded.

II. PRELIMINARIES

In this section, we describe a CPS model, a dynamic state
estimator, and an anomaly detector under the general settings.
The analytical results of this paper are based on these general
models. Due to space limitations, the instantiated models
are introduced in Appendix A1, which will be used in the
simulations in Section V. The notation convention in this paper
is as follows. Take the letter x as an example. X denotes a
matrix; X represents a set; x denotes a column vector; x[k]
represents the sample of the signal x in the kth time period.

A. CPS Model

As illustrated in Fig. 1, the CPS control loop consists
of the control center, physical plant, actuators and sensors
[9], [10]. In this paper, we model the CPS dynamics by the
following discrete-time linear time-invariant (LTI) model. This
LTI model, which ignores the system nonlinearities, has been
proven useful in studying the stability, faults, and attacks in
power networks [11], [12], sensor networks [13], and building
networks [14], etc.

x[k + 1] = Ax[k] + Bu[k] + w[k], (1)
y[k] = Cx[k] + v[k], (2)

where x[k] ∈ Rn and y[k] ∈ Rm respectively denote the
system state and sensor measurement; u[k] ∈ Rl is the control
signal; A ∈ Rn×n, B ∈ Rn×l, and C ∈ Rm×n are the
state transit matrix, control matrix, and measurement matrix,
respectively; w[k] ∈ Rn and v[k] ∈ Rm respectively denote
the process and sensor noises. We assume that w[k] and v[k]
follow the zero-mean multivariate Gaussian distributions with
Q and R as the covariance matrices, respectively. The control
signal u[k] and the sensor measurement y[k] are transmitted
through a communication network.

B. Dynamic State Estimator and Anomaly Detector

This section describes the general dynamic state estimator
and anomaly detector that will be used in our analysis.

The dynamic state estimator estimates the system state
based on the measurement. Moreover, to better deal with
measurement noises, the estimator can use historical estimated

1Due to space limitations, all appendixes are omitted and can be found in
the supplementary file of this paper.
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system states, control signals, and sensor measurements to esti-
mate the current system state. Specifically, in the (k+1)th time
period, the dynamic state estimator computes the estimated
state, denoted by x̂[k + 1], as

x̂[k + 1] = L1(X̂[k],U[k],Y[k + 1]), (3)

where X̂[k] = [x̂[k] ... x̂[0]] ∈ Rn×(k+1), U[k] =
[u[k] ... u[0]] ∈ Rl×(k+1), Y[k] = [y[k] ... y[0]] ∈
Rm×(k+1). Note that the L1(·) is an abstract function and
our analysis does not depend on the specific form of this
function. To properly initialize the dynamic state estimator, we
assume that the system operator knows the initial system state
x[0]. Based on the estimated state, the dynamic state estimator
can predict the sensor measurement that can be used for the
anomaly detection:

ŷ[k + 1] = L2(X̂[k],U[k],Y[k]), (4)

where ŷ[k+1] denotes the predicted measurement in the (k+
1)th time period and L2(·) is an abstract function.

The anomaly detector detects various data faults or FDI
attacks. The main components include the residual generation
using the model, the signature generation via statistical testing,
and the signature analysis [15]. This paper adopts a state-based
residual defined as [15]

ε[k + 1] , y[k + 1]− ŷ[k + 1]. (5)

The statistical-isolability-based anomaly detector [15] yields
a negative detection result if −ε0 � ε � ε0 and a positive
detection result otherwise, where ε � ε0 means that each
element of ε is no greater than the corresponding element
of ε0; ε0 is a predefined vector of small positive values that
ensures a certain alpha level of detection.

To ensure stable and safe operation of the CPS, the control
algorithm computes the control signal to maintain the system
state around a desired target state x0. We consider a generic
control algorithm as follows:

u[k + 1] = L3(X̂[k + 1],U[k],Y[k + 1],x0), (6)

where L3(·) is an abstract function.

III. STUXNET-LIKE ATTACKS

This paper considers the FDI attacks that aim to subvert
the safe operation of the CPS by tampering with the control
signal and sensor measurement in the communication network.
This section analyzes the system dynamics in the presence of
attack. The results show that, for the FDI attack to be stealthy
to the anomaly detector, the attack must obtain write access
to both the control signal and sensor measurement, which is
referred to as Stuxnet-like attack in this paper. Then, we create
the taxonomy of the SL attacks that we will address using
the MTD approach in Section IV. This section ends with the
analysis of SL attack’s practical implementation.

A. Threat Model and System Dynamics under FDI Attack

This section describes the threat model and analyzes the
system dynamics under attack. To preserve the generality of
the analysis, we assume that the attackers have the following
two capabilities:

• Capability 1: The attackers can compromise all the con-
trol and sensor data transmitted in the communication
network. This capability will be used in all the analyses
and discussions in this paper.

• Capability 2: The attackers know the system topology and
the operation mechanism. This capability will be mainly
used in the SL attack construction in Section III-C.

Appendix B provides justification for the above attacker’s
capabilities.

Now, we analyzes the system dynamics under attack. We
use the symbols defined in Section II to denote the quantities
in the absence of attack. In the presence of attack, our
notation convention is as follows. We omit the time index for
conciseness. Denote by xa and ya the actual system state
and sensor measurement, respectively. Denote by x̂m, ŷm,
εm, and um the control center’s estimated state, predicted
sensor measurement, residual error, and the determined control
signal, respectively. Denote by ua the actual control signal
received by the actuators, which has been contaminated by
the attack. Specifically, ua = um + a, where a ∈ Rl denotes
the malicious data injected into the control signal um from the
control center. Denote by ym the sensor measurement received
by the control center, which has been contaminated by the
attack. Specifically, ym = ya+b, where b ∈ Rm denotes the
malicious data injected into the actual sensor measurement ya.

In the presence of attack, the system dynamics is as follows:

xa[k + 1] = Axa[k] + Bua[k] + w[k], (7)
ya[k] = Cxa[k] + v[k]. (8)

The compromised sensor measurement will affect the system
state estimation process in Eqs. (3) and (4), the anomaly
detection in Eq. (5), and the control algorithm in Eq. (6):

x̂m[k + 1] = L1(X̂m[k],Um[k],Ym[k + 1]), (9)

ŷm[k + 1] = L2(X̂m[k],Um[k],Ym[k]), (10)
εm[k + 1] = ym[k + 1]− ŷm[k + 1], (11)

um[k + 1] = L3(X̂m[k + 1],Um[k],Ym[k + 1],x0), (12)

where X̂m[k] = [x̂m[k] ... x̂m[0]]; Ym[k] = [ym[k] ... ym[0]];
Um[k] = [um[k] ... um[0]]. Note that ŷm[0] = ŷ[0].

B. Stealthy FDI Attack

To be effective, the FDI attack needs to be stealthy to the
anomaly detector. Otherwise, its impact can be mitigated or
the attack may be isolated completely. We formally define the
stealthiness of the FDI attack as follows.

Definition 1. An FDI attack is stealthy if εm[k] = ε[k], ∀k.

Since the anomaly detection is made based on the residual
error (i.e., ε in the absence of attack and εm in the presence
of attack), from Definition 1, in the presence of attack, the
detection results will be same as those in the absence of attack.
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We have the following lemma that gives the necessary and
sufficient condition for the attack stealthiness.

Lemma 1. An FDI attack is stealthy if and only if ym[k] =
y[k], ∀k.

The sufficiency of Lemma 1 is intuitive, since the sensor
measurement is the only input to the control center. If the
compromised sensor measurement after the onset of the at-
tack is same as the sensor measurement without attack, the
control center will act exactly the same as in the absence of
attack. Thus, the attack is stealthy. Regarding the necessity
of Lemma 1, as the sensor measurement is the only input
to the control center, if Ym[k] = Y[k], we can derive
ŷm[k+1] = ŷ[k+1]. Since the attack is stealthy, according to
Eqs. (5) and (11), we have ym[k+1] = y[k+1]. Therefore, we
can prove ym[k] = y[k], ∀k, through mathematical induction.
The complete proof of Lemma 1 can be found in Appendix C.

The attackers’ write accesses to the communicated data in
the CPS are essential to launching the attack. Now, we analyze
the needed write access for an FDI attack to be stealthy. We
consider three cases.

1) Both the control signal and the sensor measurement are
compromised (i.e., Stuxnet-like attack): From Lemma 1, a
stealthy FDI attack can be designed as follows. In the kth
time period, the attackers inject an arbitrary malicious data
a[k] into the control signal um[k], and then tamper with the
sensor measurement in the next time period by b[k + 1] =
y[k+1]−ya[k+1]. Thus, the sensor measurement received by
the control center is ym[k+1] = ya[k+1]+b[k+1] = y[k+1],
satisfying the stealthiness condition in Lemma 1.

The above attack behaves like the Stuxnet worm that ob-
tained the write accesses to both the control signal and sensor
measurement of the centrifuges in Iran’s nuclear plants. The
worm intercepted the control commands from the supervisory
control and data acquisition (SCADA) software and sent ma-
licious commands to the field programmable logic controllers
(PLCs). Meanwhile, to hide the ongoing anomaly, the worm
replayed normal sensor measurements to the SCADA software.

2) Only the control signal is compromised (i.e., b[k] = 0,
∀k): Suppose that the attackers tamper with the control signal
from the kth time period. Thus, xa[k] = x[k] and um[k] =
u[k]. From Eqs. (1), (2), (7), and (8), the sensor measurement
in the (k+1)th time period is ym[k+1] = ya[k+1] = y[k+
1]+CBa[k]. From Lemma 1, the attack a[k] is stealthy if and
only if a[k] ∈ ker(CB), where ker(·) denotes the kernel space
of a matrix. In addition, by defining e[k+1] = x[k+1]−xa[k+
1] (i.e., the deviation of actual system state due to the attack),
we have ym[k+1]−y[k+1] = −Ce[k] and the condition for
the stealthy attack is e[k] ∈ ker(C). The feasibility of this type
of stealthy attack, called zero state inducing (ZSI) attack [13],
is conditioned that the matrix C is not fully column-ranked.
Thus, by designing or tuning the system to ensure that the C
has full column rank, the attackers cannot achieve stealthiness
by compromising the control signal only.

3) Only the sensor measurement is compromised (i.e.,
a[k] = 0, ∀k): Suppose that the attackers tamper with the
sensor measurement from the kth time period, i.e., b[k] 6= 0.

Thus, ym[k] = ya[k] + b[k] = y[k] + b[k]. From Lemma 1,
the attack is not stealthy at its onset time.

In summary, the SL and ZSI attacks are the only two types
of stealthy FDI attacks. We can easily nullify the stealthiness
of the ZSI attack by designing the system to have fully
column-ranked C or CB. In contrast, the stealthiness of the
SL attack imposes no special conditions on the system model.
Additional attack detection mechanisms must be developed to
address the SL attack, which is the subject of Section IV.

C. SL Attack Taxonomy

From the analysis in Section III-B1, the attackers need to
compute y[k + 1] (i.e., the sensor measurement as in the
absence of attack) and accordingly the injection b[k+1] based
on the observed ya[k + 1], to ensure the attack’s stealthiness.
This section analyzes the SL attack taxonomy in terms of the
approaches to computing y[k + 1] and b[k + 1].

SL attacks can be divided into two categories: measure-
ment independent stealthy attack and measurement dependent
stealthy attacks. The construction of MISA does not depend
on any sensor measurement, but it needs the knowledge of
the system model. In contrast, the construction of MDSA is
based on the intercepted sensor measurement and it needs only
partial or even no knowledge of the system model. In this
paper, we consider two representative MDSAs, namely, control
scaling attack and measurement replay attack. The former
scales the control signal; the latter retains the control center’s
understanding on the system state, which is actually out of
date. In what follows, we analyze these attacks separately.

1) MISA: MISA can be constructed based on the knowl-
edge of the system model, i.e., A, B, and C.

Definition 2. MISA injects an arbitrary a[k] into the control
signal and b[k] = −

∑k
s=1 CAs−1Ba[k − s] into the sensor

measurement.

The stealthiness of MISA can be verified as follows.
From Lemma 1, for a stealthy attack, we have ya[k] =
y[k] +

∑k
s=1 CAs−1Ba[k − s]. Thus, by setting b[k] =

−
∑k
s=1 CAs−1Ba[k− s], we have ym[k] = y[k] and the at-

tack is stealthy. The meaning of b[k] is as follows. By defining
e[k] = x[k]− xa[k] (i.e., the deviation of actual system state
due to the attack), the b[k] given by Definition 2 can be written
as b[k] = Ce[k], where e[k] = Ae[k−1]+Ba[k−1]. In other
words, MISA computes the system state deviation due to the
injection a[k−1] and hides the deviation by injecting into the
sensor measurement. We note that because b[k] removes only
the deviation projected by the deterministic system matrices
A, B, and C, the anomaly detector’s residual error εm will
equal the residual error ε purely caused by the process and
measurement noises in the absence of attack. Thus, MISA is
stealthy from Definition 1 in the presence of random process
and measurement noises.

2) MDSA: MDSA leverages the intercepted sensor mea-
surements to reduce the reliance on the knowledge about the
system model in the attack construction. We note that, since
the crafted injection b is based on the sensor measurements
that contain noises, it does not exactly remove the deviation
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projected by the system matrices A, B, and C. As a result,
MDSA nearly achieves stealthiness. In this paper, to simplify
the discussion, we assume that the system is noiseless (i.e.,
w[k] = 0 and v[k] = 0) for all MDSA-related analysis. Under
this assumption, MDSA achieves the stealthiness as defined in
Definition 1. This simplification helps understand the essence
of MDSA. Section V will evaluate the impact of the noises on
our analysis via simulations. In the following, we define the
control scaling and measurement replay attacks.

Definition 3. The control scaling attack injects a[k] = λku[k]
into the control signal, where λk ∈ R and λk 6= −1.
Accordingly, the attack injects b[k + 1] = − λk

1+λk
(ya[k +

1] − CAC+ya[k]) + CAC+b[k] into the sensor measure-
ment, where C+ denotes the generalized inverse of C, i.e.,
C+ = (CTC)−1C.

The stealthiness of the scaling attack can be verified by
mathematical induction. Due to space limitation, the proof of
the scaling attack’s stealthiness can be found in Appendix D.

The construction of the control scaling attack uses A, C,
and the actual sensor measurement ya. The intuition of the
attack is as follows. A precondition for the scaling attack is
that C has full column rank. Thus, the system state of each
time period can be estimated from the sensor measurement
directly. Since the impact of the malicious injection into the
control signal is proportional to that of the original control
signal, combined with the system transit matrix A and the
system state, the attack can remove a corresponding portion
from the sensor measurement to achieve stealthiness.

Definition 4. Suppose that a system has converged to the
desired target state x0 in the tth time period. The measurement
replay attack injects an arbitrary a[k] into the control signal
and replays the historical sensor measurements from the tth to
the kth time period, i.e., b[k+1] = y[s]−ya[k+1], t ≤ s ≤ k.

After convergence, the control signal will remain unchanged
to maintain the system state, i.e., u[k] = u[t] and x[k] = x0,
∀k ≥ t. Since ym[k + 1] = ya[k + 1] + b[k + 1] = y[s] =
Cx[s] = Cx[k + 1] = y[k + 1], ∀k ≥ t, the attack is
stealthy according to Lemma 1. The intuition of the attack
is as follows. For a converged system, the control center
would expect unchanged system states. Thus, the attackers
can simply replay the historical sensor measurements after
convergence to achieve stealthiness. The replay attack does not
need any system knowledge. By monitoring the control signal
and the sensor measurement, the attackers can judge whether
the system has converged and launch the attack accordingly.

In addition to the SL attacks discussed above, several
attacks, such as denial-of-service (DoS) attack and false data
injection attack, are also studied in the literature. We note that
these attacks are not stealthy in the dynamic state estimator
and anomaly detector, and thus not the focus of this paper. Due
to space limitation, these attacks are discussed in Appendix E.

D. SL Attack Implementation
This section discusses the implementation of the three SL

attacks (i.e., the MISA, the scaling attack and the replay attack)
described in Section III-C.

To launch stealthy SL attacks, the attackers will firstly
obtain the read and write access of both the control sig-
nals and sensor measurements, according to the analysis in
Section III-B. For a traditional system using a centralized
control theme, this can be achieved by intruding into several
critical routers and inject malware close to the control center
or directly intruding into the control center (just as the
Stuxnet). Then, the attackers will design the SL attack scheme
accordingly. The attack schemes can be divide into two types:
online and off-line modes. If the attackers can transmit real-
time attack commands, and synchronously corrupt the sensor
measurements, all the three SL attacks can be launched online.
This can be more easily achieved for a small-scale system. For
a large-scale networked system, transmitting real-time attack
commands becomes more challenging, due to the unreliable
network links and the unresponsive machines. However, we
cannot rule out this possibility. In addition, according to
Definition 2, 3 and 4, we can easily derive that only the MISA
and the replay attack can be launched in an off-line mode. The
detailed analysis can be founded in Appendix F. Appendix F
also provides an illustrating example of MISA.

IV. MTD AGAINST SL ATTACKS

In general, MTD actively introduces controlled changes
to a system to increase uncertainty and complexity for the
attackers. As the construction of the SL attacks depends on
the system matrices explicitly (in MISA and control scaling
attack) or implicitly (in measurement replay attack), this
section investigates whether MTD is effective in detecting the
SL attacks. Section IV-A describes the MTD approach in CPS;
Section IV-B derives the analytical conditions that MTD can
always detect the SL attacks defined in Section III-C.

A. MTD in CPS

The proposed MTD actively perturbs the control matrix B
or the measurement matrix C. Thus, the B or C become
time-varying and we denote by Bk and Ck the respective
matrices in the kth time period. The perturbation is performed
every time period. Our analysis in Section IV-B will show the
necessity of this per-period perturbation. Note that we choose
not to perturb the state transit matrix A, because otherwise
the physical plant is to be changed during the whole control
process, which significantly increases implementation cost and
also may introduce new risks to the system (e.g., instability). In
contrast, perturbations to B or C can be implemented purely
in the digital space. For instance, perturbing B can be achieved
by a hybrid controller that can actively update the feedback
gain (i.e., H in Appendix A) of the control units [16], or
by adjusting the gains for the actuation system; perturbing
C can be achieved by adjusting the sensors’ gains (e.g., the
transformation ratio of CT and PT).

In MTD, the control center needs the latest Bk or Ck.
Communicating the Bk or Ck from the field to the control
center is not advisable since the communication network is
subjected to the FDI attack. Instead, as illustrated by the
shaded blocks in Fig. 1, common seeds can be used to
generate the Bk or Ck in the field and the control center. We
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assume that the common seeds are shared symmetric keys that
are unknown to the attackers, such that the attackers cannot
estimate/predict the current/future Bk or Ck. We note that the
traditional method, e.g., the encryption-and-decryption, is not
applicable in this paper. Except for the MTD, the detection of
stealthy attacks on CPS against the attackers who can obtain
the system model requires at least one secure communication
channel between the system operator and the plant [17], [18],
[19]. Since this paper considers the scenario where an attacker
can compromise all the control and sensor data transmitted
in the communication network, the attackers may also obtain
the keys of the encryption-and-decryption method, and thus
subvert it. If the attackers launch the MISA or control scaling
attack, they will need the system matrices. We assume that
the attackers can obtain the true A (since our MTD does
not perturb A) and out-of-date control and/or measurement
matrices denoted by Bµ and Cν , respectively, where µ < k
and ν < k. In Section VI, we will discuss how to ensure that
the attackers cannot obtain the latest Bk and Ck. We note that
the attackers should not use random matrices for B and C,
because otherwise the injections will mostly be detected by
the anomaly detector.

B. Design of MTD against SL Attacks

This section analyzes the design of MTD to negate the
stealthiness of the SL attacks defined in Section III-C. We
assume the attackers start injecting into the control signal and
sensor measurement from the kth and (k + 1)th time period,
respectively. Our analysis focuses on this attack onset time
period. We consider the different SL attacks separately.

1) MTD against MISA: In the (k + 1)th time period, we
have εm[k+1]−ε[k+1] = ym[k+1]−y[k+1] = ya[k+1]+
b[k+1]−y[k+1] = (Ck+1Bk−CνBµ)a[k]. If MTD ensures
ker{Ck+1Bk −CνBµ} = {0}, i.e., (Ck+1Bk −CνBµ) has
full column rank, there exist no injections a[k] and b[k + 1]
to ensure the attack stealthiness defined in Definition 1. We
consider two approaches to achieve the full column rank:
• Perturb C only: By ensuring that (Ck+1 −Cν)B has full

column rank, there exist no stealthy MISAs. In addition,
from Section III-C1, the deviation of the actual system state
due to the attack, i.e., e[k + 1], can be calculated exactly.
Then, we have εm[k+1]−ε[k+1] = −(Ck+1−Cν)e[k+1].
Thus, alternatively, by ensuring that (Ck+1 −Cν) has full
column rank, there exist no stealthy MISAs.

• Perturb B only: By ensuring that C(Bk − Bµ) has full
column rank, there exist no stealthy MISAs.
2) MTD against control scaling attack: In the (k + 1)th

time period, we have εm[k + 1] = λk

1+λk
(CνAC+

ν y[k] −
Ck+1AC+

k y[k]) = λk

1+λk
(CνAC+

ν Ck − Ck+1A)x[k]. We
consider two approaches:
• Perturb C only: We assume that the attackers know x[k]

since they can infer it using A, B, and u according to
Eq. (1). Thus, we rewrite b[k + 1] in Definition 3 as
b[k+ 1] = − λk

1+λk
(ya[k+ 1]−CνAx[k]) and εm[k+ 1] =

λk

1+λk
(Cν −Ck+1)Ax[k]. With any non-zero system state,

by ensuring that (Cν−Ck+1)A has full column rank, there
exist no stealthy control scaling attacks.

• Perturb B only: Since εm[k + 1] does not involve B,
perturbing B only is unable to detect the attack.
3) MTD against measurement replay attack: We aim to de-

tect the attack without affecting the already converged system
state. Suppose that in the (k + 1)th time period, the attackers
replay the previous measurements, i.e., ym[k + 1] = y[s],
where s ∈ [t, k]. Thus, εm[k + 1] = ym[k + 1] − y[k + 1] =
(Cs −Ck+1)x0, s ∈ [t, k]. We consider two approaches:
• Perturb C only: For any non-zero converged system state
x0, by ensuring that (Cs−Ck+1) has full column rank, ∀s ∈
[t, k], there exist no stealthy measurement replay attacks.

• Perturb B only: As εm[k+1] does not involve B, there does
not exist a B perturbation to facilitate the attack detection.
We note that the MTD must be executed every time period

to ensure that any measurement replay attack can be detected.
As a counterexample, if the MTD is executed every two time
periods and C2k+1 = C2k, ∀k, the attackers can replay the
sensor measurement y[2k] in the (2k + 1)th time period to
achieve stealthiness.

Now, we summarize the analytical results for the three
attacks. By perturbing B only, the MTD can deal with MISAs
only. For the MTD that perturbs C, a condition that ensures
no stealthy MISAs, control scaling, and measurement replay
attacks is: (Cν − Ck+1) has full column rank, ∀ν ∈ [0, k],
and A has full rank. Note that Cν represents any out-of-
date measurement matrix that the attackers obtain. Since
the ν is undetermined to the defenders, we should consider
any historical Cν , i.e., ∀ν ∈ [0, k]. Table I summaries the
analytical results of this section.

C. Implementation Considerations

This section discusses several considerations in implement-
ing the MTD approach presented in Section IV-B.

First, cyber-physical systems are often safety-critical. Thus,
it is always desirable and imperative to improve the security of
safety-critical systems. Note that the implementation overhead
of MTD to enhance the system security is not high, since
the physical plant and sensors generally have computation
capability and the proposed MTD can be implemented purely
in the digital space. Moreover, because the system operation
cost mainly depends on the system state and the control signal,
it remains nearly unchanged under the MTD that perturbs
the measurement matrix only. Thus, it is wise to deploy the
proposed MTD to deal with various attacks.

Second, only the systems with m ≥ n can achieve fully
column-ranked (Cν −Ck+1). In practice, such systems gen-
erally have fully column-ranked C, which is also the condition
to prevent the ZSI attack introduced in Section III-B2. Thus,
to counteract the ZSI and SL attacks, m ≥ n is necessary.

Third, we discuss how to construct Ck+1 to ensure that
(Cν−Ck+1) has full column rank, ∀ν ∈ [0, k]. In fact, the
selection of Ck+1’s elements under MTD is essential. Denote
by cm,ij an element of the measurement matrix under MTD,
which is in the ith row and jth column. Denote by Mr and
Mc the sets of the row and column indices of all cm,ij ,
respectively, i.e., i ∈ Mr, j ∈ Mc,∀cm,ij . We can derive that
|Mr| ≥ n and |Mc| = n is necessary to guarantee the above
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TABLE I
CONDITIONS FOR MTD TO ENSURE NO STEALTHY ATTACKS.

Attack type Information needed by attackers Condition for MTD to ensure no stealthy attacks
Perturbing C Perturbing B

MISA A,B,C rank((Ck+1 −Cν)B) = l or rank(Ck+1 −Cν) = n rank(C(Bk −Bµ)) = l
Scaling attack A,C, and sensor measurements rank((Cν −Ck+1)A) = n Ineffective
Replay attack sensor measurements rank(Cs −Ck+1) = n, ∀s ∈ [t, k] Invalid

Summary rank(Cν −Ck+1) = n, ∀ν ∈ [0, k], rank(A) = n Detect MISA only

condition. In addition, for the MTD that satisfies |Mr| ≥ n
and |Mc| = n, if any cm,ij varies randomly, the probability to
get a Ck+1 with fully column-ranked (Cν−Ck+1) is high.

V. CASE STUDY: SECONDARY VOLTAGE CONTROL

Many power grid control loops can be described using the
LTI model mentioned in Section II-A. This section uses the
secondary voltage control (SVC) as a case study. Besides,
we adopt the Kalman filter (KF) and the χ2 detector as the
instantiated dynamic state estimator and anomaly detector,
respectively, which are introduced in Appendix A.

A. Secondary Voltage Control and Simulation Settings

Maintaining the buses’ voltages at their nominal values is a
fundamental control task of any power grid. The generators’
primary voltage controls maintain their output voltages at the
setpoints via the excitation systems. The SVC maintains the
voltages at selected non-generator buses called pilot buses
by adjusting the voltage output setpoints of the generators.
SVC can be modeled as follows. In the kth time period, the
system state x[k] is the vector of the pilot bus voltages and the
control signal u[k]=vG[k]−vG[k−1], where vG denotes the
vector of the generator output voltages. SVC can be modeled
using Eqs. (1) and (2) [20], where A is an identity matrix.
As the pilot bus voltages can be measured directly, C = In.
Denote by x0 the vector of the desired pilot bus voltages.
For control theory, if the voltage control algorithm satisfies
Bu[k]=β(x0−x[k]), where β ∈ (0, 1), the system is bounded-
input bounded-output stable. The actual state x[k] is often
estimated from the noisy measurements y[k]. In practice, the
estimated state x̂[k] is used to compute the control signal [20]:
Bu[k]=β(x0−x̂[k]). We note that the above LTI model is an
approximation to the actual system dynamics. The modeling
inaccuracy can be captured by the process noise in Eq. (1).

We simulate the SVC based on the IEEE 39-bus system
model that consists of 39 buses and 10 generators (i.e., l = 10).
We choose 10 buses as the pilot buses. Thus, m = n = 10.
We estimate the control matrix B from simulation data traces
generated using PowerWorld, an industry-class high-fidelity
power system simulator. While our analysis assumes a noise-
less system, our simulations generate zero-mean process and
measurement noises using covariance matrices of Q = R =
0.0032In as the default setting. The KF-based state estimator
and the χ2 anomaly detector introduced in Section II are used.
We set β = 0.5 for the control algorithm. We set α = 0.99,
i.e., the false alarm rate of each time period is 0.01.

B. Simulations and Results

We conduct four sets of simulations.

1) Effectiveness of various detectors against MISA: We
evaluate three detection approaches including the MTD pro-
posed in Section IV-B, a baseline approach called partial
MTD, and the watermarking approach proposed in [9], [19].
• The MTD approach perturbs C only. Specifically, in the
kth time period, the MTD applies a measurement matrix
of Ck = diag(ck1, ck2, ..., ckn), where cki is uniformly and
randomly sampled from [1/(1 + dm), 1 + dm], where dm
characterizes the magnitude of MTD. By default, we set
dm = 1. The Ck satisfies all the conditions in Table I.

• The partial MTD applies Ck = diag(ck1, ck2, ..., ckn),
where cki = 1 for the voltage sensors not used for MTD and
the other cki’s are uniformly and randomly sampled from
[1/(1 + dm), 1 + dm]. We assume that the attackers know
which voltage sensors are not used for MTD. Thus, they
can construct stealthy SL attacks by enforcing x[k](i) =
xa[k](i), where x[k](i) and xa[k](i) represent the voltages
of any bus i monitored by a sensor used for MTD, in the
absence and presence of the attack, respectively.

• The watermarking approach [9], [19] uses the actuation
system to add a private excitation ∆u[k] to the control
signal. The excitation generation algorithm is known to the
control center but unknown to the attackers. The control
signal executed by the actuators is ua[k] + ∆u[k]. We
generate B∆u[k] from a zero-mean Gaussian with the same
covariance as the process and measurement noises.
In each simulation, the MISA is launched from the first

time period. Each element of the injection a in Definition 2
is sampled from a uniform distribution U(−da, da), where da
characterizes the attack magnitude. In this set of simulations,
we set da = 0.04. Note that in the simulation, the normal
control commands are always within [−0.1, 0.1], and thus the
attack vector is negligible and may significantly affect the
system state. For a time period, the attack detection probability
and false alarm rate are assessed as the probabilities that the
detector makes at least one positive detection decision from
the first to the current time period, in the presence and absence
of attack, respectively. Fig. 2 shows the attack detection
probability by various detection approaches over time. The
number in the legend of Fig. 2 is the ratio of the voltage
sensors that are not used for MTD out of totally n voltage
sensors used for SVC. In the first time period, our MTD
approach achieves a detection probability of about 0.5. This is
because that the χ2 detector adopts a high detection threshold
to ensure a high alpha level of 0.99 given the high process
and measurement noise levels. The high detection threshold
results in a relatively low detection probability. Nevertheless,
after four time periods, our MTD approach achieves extremely
high detection probabilities. In contrast, the partial MTD’s
detection probabilities remain low. This is because that the
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Fig. 2. MISA detection probability by various
detection approaches in different time periods.
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Fig. 3. Control scaling attack detection probability
under various MTD and attack magnitudes.
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Fig. 4. Measurement replay attack detection proba-
bility under various MTD and attack magnitudes.

attackers can always find non-zero MISA injections while
enforcing the stealthiness condition x[k](i) = xa[k](i) for
all buses monitored by the sensors used for MTD. Note
that the partial MTD’s detection probabilities are close to
its false alarm rate of 1 − αk, where α = 0.99. In other
words, the partial MTD approach cannot well discriminate
the residual errors caused by the process/measurement noises
and the attacks. The watermarking approach has similarly
low detection probabilities. This is because that MISA only
removes the effect of the injection on the control signal by
tampering with the sensor measurement, while the watermark
still remains in the compromised sensor measurement.

2) Effectiveness of MTD against MDSA: Figs. 3 and 4
show the probabilities in detecting the control scaling and
measurement replay attacks by the MTD with different mag-
nitudes. For the control scaling attack, the scaling factor λk
(cf. Definition 3) is sampled from a uniform distribution
U(0, db), where db characterizes the attack magnitude. For
the measurement replay attack, the injection a is constructed
same as in Section V-B1. From the two figures, when MTD
is not applied (i.e., the MTD magnitude is zero), the attacks
are stealthy. The detection probability increases with the MTD
magnitude, which is consistent with intuition. In Fig. 4, the de-
tection probability is the same for different attack magnitudes
(da). This is because the detection of the measurement replay
attack is irrelevant to how the control signal is tampered with.

3) Noise sensitivity analysis: Above simulations are con-
ducted under fixed system noises. This section analyzes the
detection probability under different process and measurement
noise levels. We select four groups of noisy environments:
1) Q = R = 0.0032In; 2) Q = 0.0062In,R = 0.0032In; 3)
Q = 0.0032In,R = 0.0062In; 4) Q = R = 0.0062In. Fig. 5
shows the performance of detecting SL attacks under different
noises and MTD magnitudes. From the three figures, for the
same MTD magnitude, the SL attack detection probability
decreases with the system noises. This is because that the
anomaly detector should adopt a higher detection threshold
to ensure a certain false alarm rate given a higher process
or measurement noise level, which results in a relatively low
detection probability. Therefore, to ensure a certain false alarm
rate, a system with higher noise level should adopt a higher
MTD magnitude. For instance, to detect the MISA with a
probability of 0.8, the MTD magnitude should be set to be 0.3
and 0.6 under the first and fourth noise levels, respectively.

4) Effectiveness of the linearized model for SL attack detec-
tion using MTD approach: Previous simulations assume that

the real system dynamics exactly follow the LTI model. This
section discusses the effectiveness of this simplified model
for SL attack detection. Note that the state transit matrix A
in the SVC is the identity matrix. That is, the system state
will not change regardless of the process noise, and thus
the system in each period reaches a steady state. In this set
of experiments, we adopt the power flow analysis module
(provided by MATPOWER) to determine the real system
state, and assume that the power flows in the real system
can be characterized by the ac power flow model. Besides,
we adopt the following settings: 1) the process noises are
only caused by load perturbations, and the load perturbation
between adjacent time periods follows the zero-mean Gaussian
distribution; 2) the defenders/attackers adopt the linearized
model to detect/generate the SL attacks. We respectively
consider the detection performance of the linearized model
against the three SL attacks.

Fig. 6 shows the receiver operating characteristic (ROC)
curves [21] of SL attack detection performance. The curves
labeled “MTD” and “Without MTD” refer to the ROC curves
for the defenders in detecting the SL attacks when the MTD
is used or not, respectively. The curves labeled “AM1” and
“AM2” refer to the ROC curves when the attack magnitude is
low or high. The concrete settings of the MTD magnitude and
the attack magnitude can be seen in the subtitle of each figure.
The third and fourth curves in each figure are the results when
MTD is not used. From the ROC curve, the attacker’s detection
performance is poor. For instance, when the false positive rate
is 0.5, the true positive rate is also about 0.5. The first and
second curves are the results when the MTD is applied. We can
see that the MTD significantly improves the defenders’ attack
detection performance. For instance, the curves with regard to
the replay attack nearly passes through the (0, 1) point, i.e.,
the replay attack will be always detected by the defenders
who adopt the MTD approach and appropriately select the
detection threshold. Moreover, the detection performance is
always better when a greater attack magnitude is adopted,
which is consistent with intuition.

VI. DISCUSSION

Our analysis in Section IV shows that MTD is effective
in detecting the SL attacks constructed based on out-of-date
control and measurement matrices. This section discusses an
attack called matrix estimation attack that estimates the latest
control and/or measurement matrices from the control signals
and sensor measurements. We also propose countermeasures.
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Fig. 5. SL attack detection probabilities under different noises and MTD magnitudes.
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Fig. 6. ROC curves of SL attack detection performance for the linearized model.

We consider the MTD that perturbs the measurement ma-
trix only. We illustrate the matrix estimation attack for a
system that adopts a diagonal measurement matrix Ck =
diag(ck1, ck2, ..., ckn). We assume that the attackers have
obtained the previous system state xa[k − 1]. Since only the
measurement matrix is perturbed, the attackers can estimate
xa[k] using Eq. (7) and the known A, B, and ua. Moreover,
as ya[k] = Ckxa[k], the attackers can estimate the Ck by
cki = yai[k]

xai[k]
, 1 ≤ i ≤ n, where xai and yai respectively denote

the ith element of xa and ya.
The above matrix estimation attack is no longer valid if

the measurement matrix is not a simple diagonal matrix such
that the problem of estimating Ck from ya[k] = Ckxa[k]
is underdetermined. Nevertheless, we discuss the following
approaches to counteracting the attack. First, we can perturb
the matrices C and B simultaneously. Thus, the attackers
cannot estimate xa[k] since B is unknown. Second, similar to
the watermarking approach [19], we can add a controlled noise
q[k] to the sensor measurement, i.e., y[k] = Ckx[k] + q[k].
If this controlled noise is known to the control center (e.g.,
by common seeding) but unknown to the attackers, it will not
affect the control after being removed from y[k] by the control
center and disable the attackers from estimating Ck accurately
even if they have a good estimate of xa[k].

The analysis and evaluation of this paper show the effective-
ness of the MTD approach in a cyber-physical control system
with a communication network that may be compromised.
In practice, the communication credential and the seed used
by the MTD may be stored in different memory areas. For
instance, by exploiting the Heartbleed bug, the attacker may
be able to obtain uninterrupted read and write access to a data
link protected by SSL. However, the attacker in general cannot
access the whole memory spaces of the communicating nodes.

We also acknowledge that MTD is not meant to provide perfect
security. It is effective when the attacker can compromise the
data links only. If the attackers can intrude into physical plant
or sensors, they can launch stronger attacks and MTD can no
longer protect the system. In this sense, the adoption of MTD
will increase the bar for the attackers to launch successful
attacks to drive the system into unsafe states.

VII. RELATED WORK

Ensuring the safe operation of CPSes is always critical.
Towards the safety threats from the unpredictable and diver-
sified cyber attacks, Cárdenas et al. [22] presented a high-
level analysis of the vulnerabilities of the CPS and defined
certain attack models. One of the popular attacks is the
Denial-of-Service (DoS) attacks, in which the attackers jam
the communication channel to disrupt the normal operation
of the CPS. Another one is the deception attacks, in which
the attackers tamper with the control signals and/or sensor
measurements to derail the system’s safe operations.

Several integrity attacks that corrupt either the control sig-
nals or sensor measurements have received research attention.
For instance, Pasqualetti et al. [18] studied the attack detection
and identification if the control commands are corrupted. The
zero dynamics attacks, which are constructed off-line, tamper
with the control signals only [13], [23]. Lakshminarayana et al.
[24] provided the basic understanding on the impact limit of
the attacks on the sensor measurements based on the trade-off
between attack impact and stealthiness. Vu et al. [4] studied the
detection of the FDI attacks on either the sensor measurements
or control signals based on the dissipativity-theoretic fault
detector. However, detecting the FDI attacks on both the sensor
and control data, i.e., SL attacks, has received limited research,
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since the SL attacks are considered to be undetectable by any
anomaly detectors [4], [25].

MTD approaches can enhance network security [6], and
power grid SE’s security [26]. The physical watermarking can
be considered an MTD approach. The defenders actively inject
additional secret excitations into the control signals, expecting
to see the corresponding changes in the system outputs. Mo et
al. [9] first applied the watermarking approach to detect replay
attacks. However, since the additional excitations also induce
fluctuations in the system state, the defenders face a trade-off
between the attack detection accuracy and system operation
performance. In contrast, our MTD approach has no influence
on the converged system state. Watermarking approaches were
also extended to detect more general data integrity attacks
[19]. However, we show through simulations and analysis in
Section V-B1 that these watermarking approaches are ineffec-
tive in detecting the MISAs. Another MTD approach actively
perturbs the system structure. Teixeira et al. [23] applied the
MTD concept to reveal zero dynamics attacks. Weerakkody
and Sinopoli [27] proposed an MTD approach through the
extended dynamic physical plant, while the nominal operation
of the original system remains unchanged. However, this
approach increases the system manufacturing and operational
overheads, and may also induce new risks to the system (e.g.,
instability). In contrast, our approach is free from these issues.

VIII. CONCLUSION AND FUTURE WORK

This paper studies the SL attacks that aim at disrupting the
CPS. First, we present the taxonomy of SL attacks, and study
the construction and implication of MISA, scaling attack and
replay attack. Then, we propose the MTD-based SL attack
detection framework, and study the design of MTD against
different SL attacks. Lastly, a case study of detecting SL
attacks against the SVC in power grids is presented with
extensive simulation results under realistic settings.

We now discuss several issues that can be studied in future
work. First, the attack identification and isolation through the
MTD approach is an interesting issue. On the detection of
the SL attack, it is desirable to identify the attacks, i.e., to
identify which actuators or sensors have been compromised.
According to the attack identification results, the impact of
the attacks can be mitigated, or the attacks can be isolated.
Pasqualetti et al. [18] showed the fundamental limitations in
the attack identification of the defenders. Weerakkody and
Sinopoli [28] further presented the superiority of the MTD
approach in the identification of the malicious sensors. The
identification when both the sensors and the actuators have
been compromised (i.e., the SL attack) through the MTD
approach can be studied in the future. Second, we wish to
distinguish between the malicious attack and system failures
in CPS through the MTD approach. The ability to distinguish a
system fault and an attack is useful for the system operators to
respond to the situation in an appropriate way. However, a fault
and an attack are generally indistinguishable in that a fault may
be considered as an attack in many cases. Meanwhile, an attack
may also act as a critical fault to mislead the control center.
However, the ability for an attacker to create an attack acting

as a fault requires the knowledge of the system model. By
limiting the attackers’ knowledge through the MTD approach,
a system fault and an attack may become distinguishable.
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