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Abstract—Recent years have witnessed the deployments of
wireless sensor networks for mission-critical applications such
as battlefield monitoring and security surveillance. These appli-
cations often impose stringent Quality of Surveillance (QoSv)
requirements including low false alarm rate and short detection
delay. In practice, collaborative data fusion techniques that can
deal with sensing uncertainty and enable sensor collaboration
have been widely employed in sensor systems to achieve stringent
QoSv requirements. However, most previous analytical studies
on the surveillance performance of wireless sensor networks are
based on simplistic models (such as the disc model) that cannot
capture the stochastic and collaborative nature of sensing. In this
paper, we systematically analyze the fundamental relationship
between QoSv, network density, sensing parameters, and target
properties. The results show that data fusion is effective in
achieving stringent QoSv requirements, especially in the senarios
with low signal-to-noise ratios (SNRs). In contrast, the disc model
is only suitable when the SNR is sufficiently high. Our results
help understand the limitations of disc model and provide insights
into improving QoSv of sensor networks using data fusion.

I. INTRODUCTION

Wireless sensor networks (WSNs) are increasingly deployed

for mission-critical applications such as battlefield monitoring

and security surveillance. A fundamental challenge for these

WSNs is to meet the stringent Quality of Surveillance (QoSv)

requirements such as low false alarm rate, high target detection

probability and short detection delay. In particular, low-power

sensors only have limited sensing capabilities. For instance,

the false alarm rate of a single acoustic sensor may be as

high as 60% [1]. Moreover, many surveillance applications

must ensure QoSv over a vast geographic region, which hence

require sensors to efficiently collaborate with each other.

In practice, collaborative signal processing techniques such

as data fusion [2] are widely employed by current sensor

systems [1], [3]. These techniques can improve the QoSv of

WSNs by enabling the cooperation among multiple sensors

with limited capability. However, performance analysis of

QoSv in fusion-based sensor networks is extremely challeng-

ing due to the stochastic nature of data fusion algorithms.

Most previous analytical studies are based on overly simplistic

sensing models, such as the disc model [4]–[7]. In the disc

model, a sensor deterministically detects the targets within a

circular region centered at the sensor. Although such a model

allows a geometric treatment in analyzing the QoSv of WSNs,

a key shortcoming is that it fails to capture the stochastic nature

of sensing, such as the probabilistic detectability caused by

noise. Moreover, most studies based on the disc model do not

exploit the collaboration among sensors.

In our previous work [8], we developed an analytical frame-

work to study the QoSv of large-scale WSNs that adopt col-

laborative data fusion algorithms. To quantify the fundamental

trade-off between detection delay and false alarm rate, we

proposed a new QoSv metric called α-delay that is defined

as the average delay of detecting mobile targets subject to the

false alarm rate bound α. In this paper, we significantly extend

our previous study in several important aspects. First, unlike

most existing analytical studies [3], [8] that adopt a specific

target signal decay model, we assume a general power-law

decay model that can characterize the attenuation of many

physical signals, e.g., acoustic and electromagnetic signals.

Second, we aim to extend our analysis to the case of arbitrary

target speed, which is in contrast to [8] where target speed

is assumed to be very high. Due to the arbitrary target speed,

successive data fusion processes may be statistically correlated

because of the sharing of common sensors. Such correlation

among data fusion processes substantially complicates the

analysis of QoSv. The main contributions of this paper include:

• We present new analytical results on the QoSv of fusion-

based sensor networks for intrusion detection. The results

can be used to achieve desirable trade-offs between false

alarm rate, detection delay and network density.

• To understand the limitation of the disc model and the

impact of data fusion on the QoSv of WSNs, we con-

duct comparative analysis between the two models. In

particular, we show that the ratio of network densities to

achieve the minimum α-delay under the two models has

an asymptotic upper bound of O
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, where k

is the signal path loss exponent and Q−1(·) is the inverse

of the complementary cumulative distribution function

of the standard normal distribution. The result implies

that data fusion is effective in achieving stringent QoSv

requirements, especially in the scenarios with low signal-

to-noise ratios (SNRs). In contrast, the disc model is

suitable only when the SNR is sufficiently high.

• We conduct extensive simulations under realistic settings

to verify our theoretical study. The results show that the

data fusion model is more robust than the disc model in

detecting slowly moving targets.

The rest of this paper is organized as follows. Section II

reviews related work. Section III introduces the preliminaries

and problem definition. In Section IV, we derive the α-delay

under the disc and fusion models, respectively. In Section V,

we study the impact of data fusion through performance

comparison between the two models. Section VI presents

simulation results and Section VII concludes this paper.

II. RELATED WORK

Many sensor network systems have incorporated various

data fusion schemes to improve the system performance [1],



[9], [10]. In the surveillance system based on MICA2 motes

developed in [1], the system false alarm rate is reduced by

fusing the detection decisions made by multiple neighboring

sensors. In the DARPA SensIT project, advanced data fusion

techniques have been employed in a number of algorithms

designed for target detection, localization and classification

[3], [9], [10]. The routing algorithms that jointly account for

communication and data fusion costs have been studied in

[11], [12]. In our recent work, we have developed static sensor

deployment algorithms [13] and mobile sensor scheduling al-

gorithms [14], [15] for fusion-based target detection in WSNs.

However, the performance analysis of large-scale fusion-based

WSNs has received little attention.

Most existing analytical studies on target detection [5]–[7]

in WSNs are based on the simplistic disc model. The delay

of detecting mobile targets with randomly deployed sensors

has been analyzed in [5], [6]. The length of free path that a

target travels undetected is derived in [7]. However, the disc

model adopted by these works fails to capture the stochastic

characteristics of real-world surveillance applications, such as

probabilistic detectability and false alarms. In our previous

works [8], [16], we proposed a probabilistic disc model that

extends the existing analytical results based on the classical

disc model to the context of stochastic detection. Moreover,

we studied the impact of data fusion on sensing coverage [16]

and detection delay [8] by comparing the system performance

under the disc and fusion models. However, in [8], we assumed

a particular signal decay model and high target speed. In this

paper, we extend our study to the general cases of signal decay

and target speed.

III. PRELIMINARIES AND PROBLEM DEFINITION

In this section, we first describe the preliminaries of our

work, which include sensor measurement, network, and data

fusion models. We then introduce the problem definition.

A. Sensor Measurement and Network Models

Sensors perform detection by measuring the energy of

signals emitted by the target. The energy of most physical

signals (e.g., acoustic and electromagnetic signals) attenuates

with the distance from the signal source. Suppose sensor i
is di meters away from the target that emits a signal of

energy S. The attenuated signal energy si at the position

of sensor i is given by si = S · w(di), where w(·) is a

decreasing function satisfying w(0) = 1, w(∞) = 0, and

w(x) = Θ(x−k).1 Depending on the environment, k typically

ranges from 2.0 to 5.0. We note that the theoretical results

derived in this paper do not depend on the closed-form formula

of w(·). We adopt w(x) = 1
1+xk in the simulations conducted

in this paper, and we set k = 2 except those explicitly

specified. The measurements of sensors are contaminated by

additive random noises from sensor hardware or environment.

Depending on the hypothesis that the target is absent (H0)

1We adopt the following asymptotic notation: 1) f(x) = Θ(g(x)) means
that g(x) is the asymptotic tight bound of f(x); 2) f(x) = O(g(x)) means
that g(x) is the asymptotic upper bound of f(x).

or present (H1), the measurement of sensor i, denoted by yi,

is given by yi|H0 = ni and yi|H1 = si + ni, where ni is

the energy of noise experienced by sensor i. We assume that

the noise ni at each sensor i follows the normal distribution,

i.e., ni ∼ N (µ, σ2), where µ and σ2 are the mean and

variance of ni, respectively. Moreover, we assume that {ni|∀i}
are spatially independent across sensors. We define the SNR

as δ = S/σ which quantifies the noise level. The above

signal decay and sensor measurement models have been widely

assumed in the literature of signal detection [2] and also have

been empirically verified [10].

We assume that a sensor executes detection task every T
seconds, where T is referred to as the detection period. In

each detection period, a sensor gathers the signal energy during

the sampling interval for the detection made in the current

period. We note that such an intermittent measurement scheme

is consistent with several wireless sensor systems for target

detection and tracking [1], [3]. For instance, a sensor may

wake up every 5 seconds and sample acoustic energy for 0.05
seconds, where T is 5 s and the sampling interval is 0.05 s [3],

[10]. We assume that the sampling interval is much shorter

than the detection period.

We consider a network deployed in a vast two-dimensional

geographical region. We assume that the positions of sensors

are uniformly and independently distributed in the deployment

region. Such a deployment scenario can be modeled as a

stationary two-dimensional Poisson point process. Let ρ denote

the density of the underlying Poisson point process. We assume

that the target may appear at any location in the deployment

region and move freely. Moreover, the target is blind to the

network, i.e., the target does not know the sensors’ positions,

and hence it cannot choose a moving scheme to reduce

the probability of being detected. The sensors synchronously

detect the target, and we refer to the target detection in one

detection period as the unit detection. The process of detecting

a target consists of a series of unit detections. As the sampling

interval is much shorter than the detection period, we ignore

the target’s movement during the sampling interval.

B. Data Fusion Model

Data fusion [2] can improve the performance of detection

systems by jointly considering the noisy measurements of

multiple sensors. We adopt a data fusion scheme as follows.

For any physical point P , the sensors within a distance of R
meters from P participate in the data fusion to detect whether

a target is present at P , where R is referred to as the fusion

range. The number of sensors within the fusion range of P is

represented by N(P ). For conciseness, we use N for N(P )
when the point of interest is clear. Due to the Poisson process

deployment, for a random point P , N follows the Poisson

distribution with mean of ρπR2, i.e., N ∼ Poi(ρπR2). In each

detection period, a cluster head is elected to make the detection

decision by comparing the sum of measurements reported by

member sensors within the fusion range against a detection

threshold η. Let Y denote the sum of measurements, i.e.,

Y =
∑N

i=1 yi. If Y ≥η, the cluster head decides H1; otherwise,
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Figure 1. Intrusion detection under the data fusion model. The void circles
represent sensors; the solid circles represent the target in different sampling
intervals, and a unit detection is performed in each sampling interval; the
dashed discs represent the fusion ranges. The figure shows two cases: (a) In
the no-overlap case, there is no overlap between any two fusion ranges; (b)
In the overlap case, the fusion ranges can overlap.

it decides H0. Fig. 1 illustrates the intrusion detection under

the fusion model.

We assume that the system can obtain the position of a pos-

sible target through a localization service in the network [10].

Our previous analysis [8] based on a simple localization

algorithm shows that the localization error decreases with

network density and becomes insignificant when the network

density is high enough. Therefore, the localization error can be

safely ignored in our analysis that is focused on the detection

delay when the network density is high. In each detection

period, a cluster is formed by the sensors within the fusion

range centered at the possible target to make a detection

decision. The cluster formation may be initiated by the sensor

that has the maximum measurement. Such a scheme can be

implemented by several dynamic clustering algorithms [17].

C. Problem Definition

The delay of detecting mobile targets is an important QoSv

metric of surveillance WSNs. As the process of detecting a

target is inherently stochastic, detection delay is closely related

to two system performance metrics, namely, the false alarm

rate (denoted by PF ) and detection probability (denoted by

PD). PF is the probability of making a positive decision

when no target is present, and PD is the probability that a

present target is correctly detected. Although detection delay

can be reduced by making sensors more sensitive (e.g., setting

lower detection thresholds), the fidelity of detection results

may be unacceptable because of high false alarm rates caused

by noises. To quantify the trade-off between detection delay

and false alarm rate, we proposed a new QoSv metric called

α-delay in [8], which is stated as follows.

Definition 1 ( [8]). α-delay is the average number of detection

periods before a target is first detected subject to that the false

alarm rate of the network is no greater than α, i.e., PF ≤ α,

where α ∈ (0, 1).

In [8], we derived the relationship between the α-delay and

network density. Moreover, we investigated the impact of data

fusion on the QoSv by comparing the network densities under

the disc and fusion models for achieving the same α-delay.

However, our analyses in [8] have two major limitations. First,

it is assumed that the signal emitted by the target follows the

Inverse-square law, which is a specific case of the signal decay

model in Section III-A with k = 2. However, the Inverse-

square law is only applicable to the attenuation of acoustic and

seismic signals in open space. Second, it is assumed that there

is no overlap between any two fusion ranges, which is referred

to as the no-overlap case and illustrated in Fig. 1(a). The no-

overlap condition may not be satisfied if the target speed is

low or the detection period T is short. In this paper, we will

generalize the analyses in [8] to the significantly more general

power-law decay model and the overlap case of data fusion

as illustrated in Fig. 1(b). In addition, we will investigate the

impact of target speed on the QoSv of a network.

IV. α-DELAY UNDER PROBABILISTIC DISC AND DATA

FUSION MODELS

In this section, we derive the α-delay under the probabilistic

disc model [8], [16] and data fusion model, respectively. The

results will be used to study the impact of data fusion on the

QoSv of WSNs in Section V.

A. α-Delay under Probabilistic Disc Model

In our previous works [8], [16], we extended the classical

disc model to capture the probabilistic sensing characteristics.

The probabilistic disc model lays a foundation for understand-

ing the limitation of disc model on quantifying the QoSv

of WSNs. Let Q(·) denote the complementary cumulative

distribution function (CDF) of the standard normal distribution,

i.e., Q(x) = 1√
2π

∫∞
x

e−t2/2dt. In the probabilistic disc model,

the sensing range of a sensor, denoted by r, is given by [16]:

r = w−1

(

Q−1(α) − Q−1(β)

δ

)

, (1)

where α and β are two constants within (0, 1), w−1(·) and

Q−1(·) are the inverse functions of w(·) and Q(·), respectively.

Under such a model, the probability of detecting any target

within the sensing range of a sensor is no lower than β and

the false alarm rate is no greater than α. With this model, the

existing analytical results based on the classical model [5]–[7]

can be extended to the context of stochastic detection.

We now derive the α-delay under the probabilistic disc

model. We refer to the circular region with radius of r centered

at the target as the target disc. In each unit detection, if there

is at least one sensor within the target disc, the target can be

detected with a probability of no lower than β. By letting β be

sufficiently close to 1 (e.g., β = 0.99), sensors can exhibit the

deterministic detectability as under the classical disc model.

In our previous work [8], we proved that the α-delay under

the probabilistic disc model is τ = 1/(1 − e−ρπr2

) if there

is no overlap between any two target discs. However, the no-

overlap condition may not hold if the target speed is low or

the detection period T is short. For instance, suppose the target

moves at a constant speed of v, the no-overlap condition cannot



be satisfied if vT < 2r. In this section, we derive the α-

delay without the no-overlap condition, which is given by the

following lemma (the proof is omitted due to space limit and

can be found in [18]).

Lemma 1. Let τ denote the α-delay under the probabilistic

disc model. We have τ ≥ 1

1−e−ρπr2 , where r is given by (1).

Compared with the result in [8], we can see from Lemma 1

that the α-delay is minimized for the no-overlap case. In-

tuitively, the area covered by the union of target discs is

maximized in the no-overlap case, which yields the maximum

overall detection probability for a given number of detection

periods and in turn leads to the minimum detection delay.

B. α-Delay under Data Fusion Model

Although the probabilistic disc model discussed in Sec-

tion IV-A captures the stochastic nature of sensing, it does

not exploit the possible collaboration among sensors. In this

section, we derive α-delay under the data fusion model.

We first review the system detection performance in a unit

detection derived in [8]. The results will be used to analyze

the α-delay under the fusion model. It has been shown in

[8], by setting the detection threshold of the fusion model as

η = Njµ+
√

NjσQ−1(α) where Nj is the number of sensors

within the fusion range in the jth unit detection, the system

false alarm rate is α and the detection probability is

PDj =Q

(

σ
√

σ2
s +σ2

· Q−1(α)− µs
√

σ2
s +σ2

·
√

Nj

)

, (2)

where µs and σ2
s are the mean and variance of the signal

energy received by any sensor in fusion range. The formulae

for µs and σ2
s have been derived in [8], [16], i.e., µs =

2S
R2

∫ R

0
w(di)diddi and σ2

s = 2S2

R2

∫ R

0
w2(di)diddi − µ2

s.

As discussed in Section III-A, the process of detecting a

target consists of a series of unit detections. In [8], we proved

that the α-delay under the fusion model is τ = 1/E[PD] if

there is no overlap between any two fusion ranges. However,

the no-overlap condition may not hold if the target speed is low

or the detection period T is short. For instance, suppose the

target moves at a constant speed of v, the no-overlap condition

cannot be satisfied if vT < 2R. In this section, we derive the

α-delay without the no-overlap condition, which is given by

the following theorem (the proof is omitted due to space limit

and can be found in [18]).

Theorem 1. Let τ denote the α-delay of fusion-based de-

tection. We have τ ≤ E[1/PD], where PD is the detection

probability in any unit detection.

As 1/PD is a convex function of PD , according to Jensen’s

inequality, E[1/PD] ≥ 1/E[PD], where 1/E[PD] is the α-

delay under the no-overlap case. We now discuss how to

compute E[1/PD] in Theorem 1. As PDj is a function of Nj

which follows the Poisson distribution, i.e., Nj ∼ Poi(ρπR2),
E[1/PD] can be numerically computed by averaging 1

PDj
over

the distribution of Nj .

V. IMPACT OF DATA FUSION ON QUALITY OF

SURVEILLANCE

Many mission-critical surveillance applications require de-

tection delay to be as small as possible [1], [19]. As an

asymptotic case, the α-delay approaches one, i.e., any intruder

can be detected almost surely in the first detection period after

its appearance, which is referred to as the instant detection.

As a smaller detection delay always requires more sensors, the

network density for achieving instant detection is an important

cost metric for mission-critical surveillance WSNs. In this

section, we study the ratio of network densities required by

the disc and fusion models for achieving instant detection,

which characterizes the relative cost of the two models when

detection delay is minimized. The result provides important

insights into understanding the limitation of disc model and

the impact of data fusion on the QoSv of surveillance WSNs.

A. Network Density for Achieving Instant Detection

In our previous work [8], we have obtained the ratio of

network densities for instant detection when the target signal

follows the Inverse-square decay law (i.e., w(x) = Θ(x−2))
and the target discs and fusion ranges under the two models

do not overlap. In this section, we derive the density ratio

without the no-overlap conditions and extend the result to the

general power-law decay model in Section III-A. We have the

following theorem.

Theorem 2. Let ρf and ρd denote the network densities for

achieving α-delay of τ under the fusion and disc models,

respectively. For given path loss exponent k, the ratio of

network densities for instant detection satisfies

lim
τ→1+

ρf

ρd
= O

(

(

δ

Q−1(α)

)2/k
)

. (3)

Proof: According to Lemma 1 and Theorem 1, we have

1/(1 − e−ρdπr2

) ≤ τ ≤ E [1/PD] . (4)

We first find a upper bound of E [1/PD]. As we are not

interested in the index of unit detection, we use N instead

of Nj and PD instead of PDj . As ρf → ∞, N → ∞ almost

surely. In (2), the second item − µs√
σ2

s+σ2
·
√

N dominates when

ρf → ∞, since the first item σ√
σ2

s+σ2
· Q−1(α) is a constant.

Therefore, it is safe to use PD = Q(γ
√

N) to approximate

(2), where γ = − µs√
σ2

s+σ2
< 0. As N ∼ Poi(ρfπR2) and

the Poisson distribution approaches to the normal distribution

N (ρfπR2, ρfπR2) when ρf → ∞, for any given constant

ξ ∈ (0, 1), we have P(N ≥ ξρfπR2) = Q

(

ξρf πR2−ρf πR2√
ρf πR2

)

=

Q
(

(ξ−1)
√

ρfπR2
)

. When ρf → ∞, P(N ≥ ξρfπR2) → 1,

i.e., N ≥ ξρfπR2 with high probability (w.h.p.). More-

over, as 1/PD = 1/Q(γN) is a decreasing function of N ,

E[1/PD] ≤ 1/Q(γ
√

ξρfπR2) w.h.p.. Furthermore, accord-

ing to (4), we have 1/(1 − e−ρdπr2

) ≤ 1/Q(γ
√

ξρfπR2)
w.h.p. when ρf → ∞. After manipulation, we have ρd ≥



− 1
πr2 ln

(

Φ(γ
√

ξπR
√

ρf )
)

, where Φ(x) = 1 − Q(x). Hence,

we have

lim
τ→1+

ρf

ρd
≤ −πr2 lim

ρf→∞

ρf

ln
(

Φ(γ
√

ξπR
√

ρf )
) =

2

γ2ξR2
· r2.

In the above derivation, we use the equality lim
x→∞

x
ln Φ(ϑ

√
x)

=

− 2
ϑ2 (the proof can be found in [16]). Moreover, as γ is a

constant when δ is fixed or approaches to infinity [8], we have

lim
τ→1+

ρf/ρd = O(r2). As w−1(x) = Θ(x−1/k), according to

(1), r2 = Θ

(

(

δ
Q−1(α)

)2/k
)

for fixed β. Therefore, we have

(3).

Theorem 2 suggests that, for a certain path loss exponent

k, the relative cost for instant detection between the fusion

and disc models depends on the required false alarm rate α
and SNR δ. First, when α → 0, Q−1(α) → ∞ and hence

lim
τ→1+

ρf/ρd→0. It suggests that data fusion can significantly

reduce network density when a small false alarm rate is

required. Second, the bound of density ratio increases with

δ, which suggests that the advantage of data fusion diminishes

as the SNR increases. Moreover, the path loss exponent k
determines the order of density ratio with regard to the SNR.

Intuitively, sensor collaboration is more advantageous when

the SNR is low. However, when the SNR is sufficiently high,

the detection performance of a single sensor is satisfactory and

the collaboration among multiple sensors may be unnecessary.

B. Application of Results

In this section, we discuss the implications of Theorem 2

using numerical examples. As lim
τ→1+

ρf/ρd → 0 when α→ 0,

if a small α is required, ρf < ρd for instant detection, i.e.,

the fusion model requires lower network density than the disc

model. In other words, data fusion is effective in reducing

detection delay and false alarms. Fig. 2 plots the upper bound

of the density ratio versus the required false alarm rate under

various SNRs. The fusion range R is set to be 25 m. From the

figure, we can see that when SNR is lower than 19 dB, the

fusion model outperforms the disc model as long as α < 0.2.

In practice, most mission-critical surveillance systems require

a small α. For instance, in the vehicle detection system [1]

and the acoustic shooter localization system [19], the false

alarm rates are tuned to be near zero. Therefore, data fusion

can significantly reduces the network density of these mission-

critical surveillance systems.

Moreover, as lim
τ→1+

ρf/ρd increases with δ for fixed α, if

the SNR is high enough such that lim
τ→1+

ρf/ρd > 1, the disc

model is superior to the fusion model in achieving instant

detection. It implies that the disc model suffices when the SNR

is sufficiently high. Fig. 3 plots the upper bound of density

ratio versus SNR under various path loss exponents. From the

figure, we can see linear and concave relationships between

the density ratio and SNR when k is 2 and 4, respectively,

which are consistent with Theorem 2. Moreover, if the SNR is

sufficiently high (e.g., 22 dB), the disc model outperforms the

fusion model. However, the SNR depends on the characteristics
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of targets, environment and sensor device. For instance, the

SNR can be extremely low when acoustic sensors experience

strong wind. In the vehicle detection experiments based on

low-power motes, e.g., MICA2 [20] and ExScal [21], the SNRs

are usually low to moderate (≤ 17 dB). In such a case, data

fusion can effectively reduce the network density required to

achieve short detection delay and low false alarm rate.

VI. PERFORMANCE EVALUATION

In this section, we conduct extensive simulations to evaluate

the theoretical results in previous sections.

A. Simulation Settings and Methodology

In the simulations, sensors are deployed uniformly into a

large field and periodically detect the target. The target moves

in the deployment region with a constant speed. Under the

fusion model, sensors within the fusion range of the target fuse

their measurements and make the detection decision. Under

the disc model, once the target enters the sensing range of a

sensor, the sensor makes a detection. We conduct 500 runs

with different random sensor deployments. The α-delay is

computed as the average number of detection periods before

the target is first detected in each run. We also evaluate the

impact of the overlap/no-overlap condition by comparing the

simulation results under the overlap and no-overlap cases. For

the overlap case, the target moves R
2 and r

2 in each detection

period under the fusion and disc models, respectively; for the

no-overlap case, it moves 2R and 2r, respectively.

B. Simulation Results

We first evaluate the analytical results on the α-delay under

the two models. Fig. 4 plots the α-delay versus the network

density under the fusion model. The curves labeled with “upper

bound” and “analytical (no-overlap)” plot the upper bound

of α-delay given by Theorem 1 and the analytical α-delay

under the no-overlap case derived in [8], respectively. We can

see that the two analytical results are very close. The other

two curves plot the simulation results for the overlap and no-

overlap cases, respectively. The simulation results confirm the

analytical results when the network density is greater than

0.02. When ρ is smaller than 0.01, the simulations results

start to deviate from the analytical results. This is due to the

approximation made in the derivation of PD. Moreover, we can

see from Fig. 4 that the overlap/no-overlap condition has little

impact on the α-delay under the fusion model. Fig. 5 plots the
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α-delay under the disc model. Note that the lower bound given

by Lemma 1 is also the analytical result of α-delay under the

no-overlap case given in [8]. We can see that the simulation

results confirm the analytical results under the disc model.

Moreover, the α-delay significantly increases under the overlap

case. Hence, the overlap/no-overlap condition has significant

impact on the α-delay under the disc model.

We then evaluate the impact of false alarm rate and SNR on

the density ratio. Figs. 6 and 7 plot the density ratio versus α-

delay given various false alarm rates and SNRs, respectively.

We can see from Fig. 6 that the disc model requires more than

twice sensors when the α-delay approaches to one. Moreover,

the density ratio decreases if a lower α is required, which

is consistent with our analysis in Section V. From Fig. 7,

we can see that the density ratio increases with SNR. For

instance, if the SNR is 20 dB,
ρf

ρd
is greater than 1.2 and hence

the disc model requires fewer sensors than the fusion model.

Moreover, from the two figures, we can see that the density

ratio under the overlap case is smaller than that under the no-

overlap case. This is consistent with our observation that the

overlap condition has little impact on the fusion model while

leads to significant increase of α-delay under the disc model.

As target speed is an important factor of the overlap/no-

overlap condition, we finally evaluate its impact on the density

ratio. Fig. 8 shows the density ratio versus the target speed.

We can see that the density ratio significantly increases when

the target speed increases from r
20 to 2r. This is due to the

significant impact of overlap condition on the disc model, as

observed in Fig. 5. Therefore, the data fusion model is more

robust than the disc model in detecting slowly moving targets.

VII. CONCLUSION

In this paper, we study the impact of data fusion on QoSv of

WSNs through the performance comparison between the disc

model and data fusion model. The results show that data fusion

is effective in achieving stringent QoSv requirements such as

short detection delay and low false alarm rate, especially in the

scenarios with low SNRs. In contrast, the disc model suffices

only when the SNR is sufficiently high. The results help

understand the applicability of the two models, and provide

important guidelines for the design of surveillance WSNs.
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