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Motivation

3rd largest cluster of cyber-physical attacks 2014 Moscow derailment

• Cyber-attacks on industrial control systems
– Dragonfly, Stuxnet

– 11 transportation intrusions in 2013

• Voltage control in traction power systems
– Cybernated, safety-critical

– Voltage drop before Moscow derailment

3 largest cluster of cyber-physical attacks

[U.S. CERT / ICS-CERT, 2013]

https://ics-cert.us-cert.gov/sites/default/files/ICS-CERT_Monitor_April-June2013_3.pdf

2014 Moscow derailment

[Image from USNews]



Background
• AC traction power systems

– Up to 50 kV

– Substations connected to utility grid or dedicated power grid

• Large voltage fluctuations
– Trains: moving loads

– De-accelerating trains: moving generators

– Train shift between sections causes step change– Train shift between sections causes step change
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• Control algorithm

– BIBO stable if 0 < α < 2

– Similar controls applied in practice

u[k] = αC−1(x0 − x[k])



Signal Delay Attack
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• Controller uses old voltage measurements

– Network congestion, time desynchronization

– Easier than data integrity attacks

u[k] = αC-1(x0 – x[k – τ])

sensorsnetworks



Impact of Attack on Stability

• System state transform

– New state transition model
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• G’s characteristic polynomial

– Stable: All roots in unit circle of complex plane
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Stable Region

• λτ+1 – λτ + α = 0

– No closed-form solutions

– Jury test
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When no attack

• Faster convergence

• Smaller fluctuation

Trade-off btw control performance and tolerable malicious delay



An Example

Voltage
α=0.2

α=0.8

• PowerWorld simulations
– 37-bus power system

– 10 feeder buses under voltage control

No attack

Time step k

Voltage

deviation (p.u.)

Voltage

deviation (p.u.)

τ = 2

α=0.2

α=0.8

α=0.2



Analysis Verification

• Approximations in system modeling

– Affect accuracy of stability analysis

Malicious time delay τ
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Summary and Future Work

• Stability condition of voltage control under 

signal delay attack

• Trade-off between

– Voltage convergence speed when no attack– Voltage convergence speed when no attack

– Tolerable time delay in terms of stability

• Future work

– Other voltage control approaches

– Attack mitigation


