Impact of Signal Delay Attack on Voltage Control for Electrified Railways

Hoang Hai Nguyen¹ **Rui Tan¹** David K. Y. Yau^{1,2}

¹Advanced Digital Sciences Center (Singapore), University of Illinois at Urbana-Champaign

²Singapore University of Technology and Design

Motivation

3rd largest cluster of cyber-physical attacks [U.S. CERT / ICS-CERT, 2013]

2014 Moscow derailment [Image from USNews]

- Cyber-attacks on industrial control systems
 - Dragonfly, Stuxnet
 - 11 transportation intrusions in 2013
- Voltage control in traction power systems
 - Cybernated, safety-critical
 - Voltage drop before Moscow derailment

https://ics-cert.us-cert.gov/sites/default/files/ICS-CERT_Monitor_April-June2013_3.pdf

Background

- AC traction power systems
 - Up to 50 kV
 - Substations connected to utility grid or **dedicated power grid**
- Large voltage fluctuations
 - Trains: moving loads
 - De-accelerating trains: moving generators
 - Train shift between sections causes step change

Background

- AC traction power systems
 - Up to 50 kV
 - Substations connected to utility grid or dedicated power grid
- Large voltage fluctuations
 - Trains: moving loads
 - De-accelerating trains: moving generators
 - Train shift between sections causes step change

• State-space model for multi-bus power grid

 $\mathbf{x}[k] \approx \mathbf{x}[k-1] + \mathbf{C}\mathbf{u}[k] + \mathbf{B}(\mathbf{q}[k] - \mathbf{q}[k-1])$

• State-space model for multi-bus power grid

• State-space model for multi-bus power grid

– Maintain **x** at nominal \mathbf{x}_0 when **q** changes

• State-space model for multi-bus power grid

- Maintain **x** at nominal \mathbf{x}_0 when **q** changes
- Control algorithm

$$\mathbf{u}[k] = \boldsymbol{\alpha} \mathbf{C}^{-1}(\mathbf{x}_0 - \mathbf{x}[k])$$

- BIBO stable if $0 < \alpha < 2$
- Similar controls applied in practice

Signal Delay Attack

Controller uses old voltage measurements
 u[k] = αC⁻¹(x₀ - x[k - τ])

Signal Delay Attack

- Controller uses old voltage measurements
 u[k] = αC⁻¹(x₀ x[k τ])
 - Network congestion, time desynchronization
 - Easier than data integrity attacks

Impact of Attack on Stability

• System state transform

$$\mathbf{y}[n] = \left[\mathbf{x}[n] - \mathbf{x}_0, \mathbf{x}[n-1] - \mathbf{x}_0, \cdots, \mathbf{x}[n-\tau] - \mathbf{x}_0\right]$$

New state transition model

$$\mathbf{y}[n+1] = \mathbf{G} \cdot \mathbf{y}[n] \qquad \mathbf{G} = \begin{bmatrix} \mathbf{I} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & -\alpha \mathbf{I} \\ \mathbf{I} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{I} & \mathbf{0} \end{bmatrix}$$

• G's characteristic polynomial

$$\lambda^{\tau+1} - \lambda^{\tau} + \alpha = 0$$

- Stable: All roots in unit circle of complex plane

Impact of Attack on Stability

• System state transform

$$\mathbf{y}[n] = \left[\mathbf{x}[n] - \mathbf{x}_0, \mathbf{x}[n-1] - \mathbf{x}_0, \cdots, \mathbf{x}[n-\tau] - \mathbf{x}_0\right]$$

New state transition model

$$\mathbf{y}[n+1] = \mathbf{G} \cdot \mathbf{y}[n] \qquad \mathbf{G} = \begin{bmatrix} \mathbf{I} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & -\alpha \mathbf{I} \\ \mathbf{I} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{I} & \mathbf{0} \end{bmatrix}$$

• G's characteristic polynomial $\lambda^{\tau+1} - \lambda^{\tau} + \alpha = 0$ $u[n] = \alpha C^{-1}(\mathbf{x}_0 - \mathbf{x}[n - \tau])$

- Stable: All roots in unit circle of complex plane

Stable Region

- $\lambda^{\tau+1} \lambda^{\tau} + \alpha = 0$
 - No closed-form solutions
 - Jury test

Stable Region

- $\lambda^{\tau+1} \lambda^{\tau} + \alpha = 0$
 - No closed-form solutions
 - Jury test

When no attack

- Faster convergence
- Smaller fluctuation

Stable Region

- $\lambda^{\tau+1} \lambda^{\tau} + \alpha = 0$
 - No closed-form solutions
 - Jury test

When no attack

- Faster convergence
- Smaller fluctuation

Trade-off btw control performance and tolerable malicious delay

An Example

- PowerWorld simulations
 - 37-bus power system
 - 10 feeder buses under voltage control

Analysis Verification

- Approximations in system modeling
 - Affect accuracy of stability analysis

Summary and Future Work

- Stability condition of voltage control under signal delay attack
- Trade-off between
 - Voltage convergence speed when no attack
 - Tolerable time delay in terms of stability
- Future work
 - Other voltage control approaches
 - Attack mitigation