Application-Layer Clock Synchronization for Wearables Using Skin Electric Potentials Induced by Powerline Radiation

Zhenyu YanNanyang Technological UniversityYang LiIllinois at SingaporeRui TanNanyang Technological UniversityJun HuangPeking University

Tight Clock Synchronization for Wearables

Multiple real-time audio streams [PATENT US 20150092642 A1] Muscle fatigue & activation monitoring [UbiComp'15, IPSN'16] (Multi-user) gaming [atomicbands]

Accuracy vs. Universality

Millisecond accuracy

 Can be achieved by design
 Customized protocols

- Universality
 - Diversified brands/platforms

As App developers, can we tightly sync heterogeneous wearables?

Network Time Protocol (NTP)

Universality

Power grid freq. [SenSys'09, RTSS'16]

Light flickering [MobiCom'12] FM Radio Data System [MobiSys'11]

 highest accuracy (sub-μs)
 bulky hardware and high energy consumption

FTSP, RBS, TPSN

GPS, atomic clock

Accuracy

4

Network Time Protocol (NTP)

Universality

Network Time Protocol (NTP) runs at application layer

sub-second accuracy
 (due to asymmetric connections)

6

Power grid freq. [SenSys'09, RTSS'16] Light flickering [MobiCom'12] FM Radio Data System [MobiSys'11]

FTSP, RBS, TPSN

GPS, atomic clock

Accuracy

Network Time Protocol (NTP)

Universality

FM Radio Data System [MobiSys'11]

ms accuracy
extra sensors
(large coil, FM receiver)

7

FTSP, RBS, TPSN

GPS, atomic clock

Accuracy

Universality

Network Time Protocol (NTP) Our approach

> Power grid freq. [SenSys'09, RTSS'16] Light flickering [MobiCom'12] FM Radio Data System [MobiSys'11]

> > FTSP, RBS, TPSN

GPS, atomic clock

ms accuracy

application-layer (a mobile App)

Minimum/no hardware requirement

_

Accuracy

An external signal?

- Widely available to human body area
- Highly synchronous
 - different wearables
 - different persons
 - different locations
- Easy capture by wearables

Outline

- Background and related work
- Skin electric potential (SEP)
- TouchSync
- Evaluation

Powerline Electromagnetic Radiation (EMR) [IPSN '17]

Powerline EMR (50Hz or 60Hz)

A conductive wire attached to an analog-to-digital converter (ADC) pin

SEPs on Different Human Bodies

- Same frequency with constant phase difference
- different DC lines

SEPs on Moving Bodies

- changing envelopes
- floating DC lines

average time displacement of two SEPs

diff

move

SEPs at Different Wearing Positions

*the other node keeps on the wrist

Outline

- Background and related work
- Skin electric potential (SEP)
- TouchSync
- Evaluation

SEP Processing Pipeline

18

TouchSync Protocol

Analysis – phase difference

Analysis – round trip time

Round Trip Time (RTT) = $(\theta_q + \theta_p) + (i + j) \times T = (t_4 - t_1) - (t_3 - t_2)$

Analysis – clock offset estimation

Estimated clock offset $\delta = t_1 - t_2 + \theta_q + i \times T$

Integer Ambiguity Solver (IAS)

unit: millisecond

Convergence Speed

Outline

- Background and related work
- Skin electric potential (SEP)
- TouchSync
- Evaluation

Experiment Setup

Conductive probe

Each FLORA node:

- MCU (8 MHz, 2.5 KB RAM)
 - 10-bit ADC
- BLE
- Lithium-ion polymer battery
- SEP sampling rate: 333 Hz

Ground truth:

- Raspberry Pi
 - Use GPIO to send a rising edge to FLORAs to get groundtruth offset of two nodes

Experiments

- 13.6m (44.6ft.) \mathbf{M} Ξ. fridge dining 2.8 table 13.6m (44.6ft.) TV stand Home
- Four environments: lab, home, office, corridor
- **51** Experiment Locations

Result:

• Average error: 0.78 ms

unit: milliseconds

TouchSync-over-Internet

Summary - TouchSync

- Universality
 - standard system APIs to sample ADC and transmit packets
 - runs as a mobile App
- Accuracy
 - milliseconds
 - up to city scale