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Abstract. Video segmentation is an important phase in video based
traffic surveillance applications. The basic task of traffic video segmen-
tation is to classify pixels in the current frame to road background or
moving vehicles, and casting shadows should be taken into account if
exists. In this paper, a modified online EM procedure is proposed to
construct Adaptive-K Gaussian Mixture Model (AKGMM) in which the
dimension of the parameter space at each pixel can adaptively reflects
the complexity of pattern at the pixel. A heuristic background com-
ponents selection rule is developed to make pixel classification decision
based on the proposed model. Our approach is demonstrated to be more
adaptive, accurate and robust than some existing similar pixel modeling
approaches through experimental results.

1 Introduction

In video based surveillance applications, a basic and important approach called
background subtraction is widely employed to segment moving objects in the
camera’s field-of-view through the difference between a reference frame, often
called background image, and the current frame [I]. The accuracy of the back-
ground image quite impacts on output quality of the whole system, but the
task to retrieve an accurate background is usually overlooked in many video
based surveillance systems. It is complicated to develop a background modeling
procedure that keeps robust in changeful environment and for longtime span.

The simplest background reconstruction scheme adopts the average of all his-
torical frames as the background image, which contains both real background
component and foreground component. Consequently, the arithmetic average
method causes confusion. As an improved version, Running Gaussian Average
[1] is employed instead of arithmetic average, for each pixel (z,y), current back-
ground value B;(z,y) is given by

Bj(z,y) = al(z,y) + (1 — a)Bj1(z,y), (1)

where I(xz,y) is current intensity, B;_1(x,y) is last background value and « is a
learning rate often chosen as trade-off between the stability of background and
the adaptability for quick environmental changes. Confusion problem also can
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not be avoided in this approach. Autoscope system [2] adopts such approach but
a background suppression procedure is needed to eliminate the confusion. Tem-
poral Median Filter [I], a nonparametric, welcomed and applicable approach,
uses temporal median value of recent intensities in a length-limited moving win-
dow as the background at each pixel. Temporal Median Filter can generate an
accurate background image under the assumption that the probability of real
background in sight is over 0.5 in initialization phase, and the computational load
of Temporal Media Filter is predictable. But it will totally fail when foreground
takes up more time than background. N. Friedman et al. [3] first use Gaussian
Mixture Model (GMM) to model the pixel process. Their model contains only
three Gaussian components corresponding to road background, moving vehicles
and dynamic casting shadows. Meaning of their approach lies in pixel modeling
and a wise EM framework to train GMM, but it is not clear if the real scene
doesn’t fit such a three components pattern. C. Stauffer et al. [5], [6] work out a
successful improvement based on N. Friedman et al.’s model. They model each
pixel process as a GMM with K Gaussian components, where the constant K is
from 3 to 5, and then employ a heuristic rule to estimate background image. In
their approach, the number of components, K, is a pre-defined constant for each
pixel. Reversible Jump Markov chain Monte Carlo (RJMCMC) methods can be
used to construct GMM with an unknown number of components [I0], but there
is no realtime version of RIMCMC for video processing. In this paper, we try
to present an engineering oriented and realtime approach to construct GMM
with an unknown number of components through a modified EM procedure.
As a result, complicated regions in the video is described by more components
adaptively, and simple regions with fewer components vice versa.

The rest of this paper is organized as follows: Section [2] briefly introduces
GMM modeling using EM algorithm. AKGMM learned by a modified EM pro-
cedure and a heuristic background components selection rule are proposed in
Section [Bl In section [, comparative experimental results are analyzed and sec-
tion [Bl concludes this paper.

2 Related Work

Parametric probabilistic approaches in image processing usually treat each pixel
independently and try to construct a statistical model for each pixel [3], [4],
[6]. GMM is such a prevalent model usually trained using an iterative proce-
dure called Expectation Maximum algorithm (EM algorithm). EM algorithm is
introduced briefly in this section.

Considering the values of a particular pixel over time as a pixel process, its
history becomes

X = {xj = Ij(x’y)};'l:la (2)
where I;(x,y) is grayscale or color vector at time j for pixel (z,y). A mixture

model of Gaussian distributions can be set up on x at this pixel to gain on the
underlying PDF [7],



Traffic Video Segmentation Using Adaptive-K Gaussian Mixture Model 127

Fig. 1. A pixel process is constituted by values of a particular pixel over time. For each
pixel in the frame, a statistical model is built upon the corresponding pixel process.

K
f(2]@) = win(z|65), (3)
=1

where w; is the normalized weight of i*" Gaussian component C;, so Zfil w; = 1;
n(z|©;) is PDF for C; which can be replaced by

1) = ——expl-g (L) (1)

Theoretically, the Maximum-Likelihood root of parameters © = {w;, Qi}fil
can be found but in hidden form [7]. In practice, mixture models can be learned
using EM [3], [8]. Because of the requirement of realtime system, an online EM
version [3], [9] was proposed which converges to local expectation maximum
point with high probability. In this variant of EM, three sufficient statistics, N;,
Si, Z; are considered, where N; represents the count of samples belonging to
C;; S; is the sum of these samples, S; = szeci x;; Z; represents the sum of
the outer product of these samples, Z; = ije c; :1:? /mn. Consequently, the model
parameters can be calculated from these sufficient statistics as follow,

Ni Si 2 1 2
- 22{21 Nka Mi = Ni, 0; = Nz Zz g - (5)

When a new sample z; comes in, these sufficient statistics are updated as

follow,

Wi

N/ =N/7' 4+ P(X € Ci|X = 2;,0771),
Sl =857+ a;P(X € G|X =x;,007Y), (6)
Z! =771+ 22P(X € Ci|X = x;,0771),

where

P(X S Cl,X = IEJ|@) _ wm(:z:ﬂ@z)

P(X € Gi|X = 2;,0) = P(X = z;|0) f(z510) ,

(7)

and we choose {Nio, S? , Z? 1K | as initial values of these sufficient statistics. From
the updated {N7,S?, Z/}K |, we can compute ©7. If the underlying PDF is
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stationary, ©7 will converge to local expectation maximum point with high prob-
ability in long run [3], [9].

3 Adaptive-K Gaussian Mixture Model

R. Bowden et al. have successfully segmented low resolution targets using C.
Stauffer et al.’s fixed K model [I1], and they argue that it is not suitable for
large scale targets segmentation [II]. The detailed information of large moving
objects’ appearance, i.e., color, texture and etc, makes the pattern of pixels in
the track of objects much complicated. In other words, the objects’ track regions
hold a complex pattern mixed with background components and kinds of object
appearance components, but other regions hold just a stable background pattern.
And in practice, the difference among different regions, which is impacted by
many factors, i.e., acquisition noise, light reflection, camera’s oscillation caused
by wind, is also complicated. It is not suitable to describe every pixel in field-of-
view using a mixture model with fixed K Gaussian components as C. Stauffer
et al. did [B], [6]. We try to describe those pixels with complex pattern using
more Gaussian components adaptively, in other words, bigger K at those pixels,
and those simple pixels using fewer components vise versa. In such strategy, a
more accurate description of the monitoring region is expected. In video based
traffic surveillance applications, vehicles which are relatively large size targets
are tracked.

3.1 Pixel Modeling

When the first video frame comes in, a new Gaussian component is created at
each pixel with the current grayscale as its mean value, an initially high variance,
and low prior weight. In the following, at each pixel, a new instance is used for
updating the model using (@) if a match is found. A match is defined as a pixel
value within 2.5 standard variance of a component. If no match is found, a new
Gaussian component is created and no existing component is disposed.

Then, two problems arise: those three sufficient statistics, {N;, S;, Z;}, increase
unlimitedly while more frames are captured; K may also increase unlimitedly
at a particular pixel, so the computational load will increase drastically. Firstly,
if Zfil N/7' < L, {N;,S;, Z;} are updated using (B); otherwise we define a
forgetting rate as follow,

— ZiiilNg_l 8
TR v

then those sufficient statistics are updated using
N/ = BIN] 1+ P(X € Gi|X = 2,6 )),

SI =PI +a;P(X € Ci| X = z;,0971)], 9)
Z] = B1ZI7 + 22P(X € Ci|X = 2;,6071)].
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As a result, Zfil N; will be a constant near by L which is an equivalent time
constant.

Secondly, every L frames, each Gaussian component is checked at any pixel
whether coefficient of some component Cy, that is wyg, is below a pre-defined
threshold wr. If inequality wy < wr holds, component Cy is discarded because
the inequality means there are too few evidences to support that component
which is inspired by low-probability events. 1/L is a reasonable value for wr,
because a component supported by less than one evidence in L frames shouldn’t
be maintained. After a number of frames are processed, K will adaptively reflects
the complexity of pattern at each pixel, in other words, we can set up a more
accurate description of the monitoring region. In this case, computational cost is
mainly allocated for complicated regions, such as tracks of the moving objects.
Figure shows a K-image formed by the components’ number at each pixel,
where grayscale encodes K accumulated by 200 frames using AKGMM. As our
expectation, pixels in the three lanes have more Gaussian components than pixels
in other areas, i.e., barriers by the road.

PDF at picl(170168)

Fig.2. (a) Monitoring scene on a highway; (b) shows a image formed by the com-
ponents’ number where grayscale encodes K; (c) is the background image formed by
mean value of the first Gaussian component at each pixel; (d) plots PDF at point A
labeled in (a)

3.2 Background Estimation

For GMM, measurement w/o is proposed to be positively related to the prob-
ability of being background component [5], [6]. Heuristically, C. Stauffer et al.
select the first B components in the sequence of all components ordered by w/c
as background, where

b
B = argmin w; >T). 10

gmi (; ) (10)
In such strategy, T is a threshold related to occupancy in traffic applications.
Such background estimation may fail in some cases, i.e., large flow volume, traffic

jam, if the background is just judged from occupancy.
A searching procedure is developed to estimate background in our framework.
Assume the first component in the sequence of components ordered by w/c must
be a part of background, and background components set B includes only the
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first component initially while the other components are labeled non-background.
In the iterative searching phase, a non-background component C\y, is labeled
background and included into B if

tnb € [ty — 30b, b + 30p], 3IC, € B, (11)

where (1, is mean value of Chy,; Cyp is some background component with mean
value up, and standard variance op. The iteration ends until no such compo-
nent Chp can be found. If a background image is needed, we choose the mean
value of the first component of B, in which elements are also ordered by w/o, at
any pixel to form the background image. Figure [2(c)| shows such a background
image accumulated by the first 100 frames. Figu plots PDF at point A
labeled in Fig in which five components are included. Solid line represents
two background components selected by our searching procedure, and dotted
line represents the other three non-background components. Our experimental
results will show that our simple iterative procedure generates accurate back-
ground model in many traffic cases.

3.3 Foreground Segmentation

In terms of the background components set B updated in the previous searching
procedure, a new grayscale at pixel (x,y) is identified as moving vehicle if the
current grayscale matches no component in B when dynamic casting shadow is
out of consideration.

If vehicles cast moving shadows, non-background pixels should be segmented
into vehicles and their casting shadows, otherwise the foreground segmentation
will be enlarged wrongly. Many shadow detection algorithms are proposed, but
most of them are too complex. In our framework, we adopt a simple shadow
detection algorithm called Normalized Cross-Correlation algorithm (NCC algo-
rithm) proposed by Julio et al. [I2] to refine the segmentation if dynamic casting
shadow exists. NCC explores the relationship between casting shadow and back-
ground, that is, the intensity of shadowed pixel is linear to the corresponding
background, so the background image provided by AKGMM is used to detect
shadows.

An example of the segmentation refinement applied to the original frame with
shadow is depicted in Fig In this figure, white areas correspond to moving
vehicles and gray areas correspond to shadow detection. Figure shows the
final foreground segmentation result after applying morphological operators to
eliminate gaps and isolated pixels.

4 Experimental Results

Following comparative experiments demonstrate the performance of our pro-
posed algorithm on two groups of traffic image sequences. Dataset A is recorded
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Fig. 3. Segmentation result using AKGMM and NCC. (a) is the original frame; (b)
shows the segmentation (shadowed pixels are represented by light gray); (c) is mor-
phological post-processing result after shadow removal.

on a highway; dataset B is by an intersection on a ground road, and the camera
oscillates drastically in the wind. The video size is 320x240 and shadow detection
is incorporated in following experiments. In order to distinguish our framework
from C. Stauffer et al.’s, we name their model Fixed-K Gaussian Mixture Model
(FKGMM) in the following.

4.1 Reflection

In this experiment, FKGMM maintains 3 components at each pixel, while the
average of components’ number in AKGMM is about 6. In the Fig we can
see there are more false alarm pixels in the output of FKGMM, and our shadow
areas have better texture than theirs. Whenever a large vehicle passes by the
camera, reflection from the large vehicle impacts on the quantification of the
camera in the whole field-of-view. Column 2 and 3 show the difference between
the two models in such case. In FKGMM, a meaningful component may be
substituted by a new one which is inspired by the sudden reflection to keep K as
a constant. Consequently, the sudden reflection is classified as dynamic casting
shadow. In contrast, AKGMM gives a more accurate background description,
and no component will be destroyed by the sudden reflection, so AKGMM works
better in such cases.

4.2 Camera’s Oscillation

In outdoor applications, camera’s oscillation caused by wind should be taken
into consideration. In this robustness experiment in case of camera’s oscillation, 5
components are maintained and the threshold 7" in (I0) is set to 0.5 for FKGMM.
The background selected by FKGMM will be unimodal at most pixels. As a
result, edges of the ground marks and static objects by the road are identified
as non-background because of the oscillation. By increasing T, FKGMM will
behave better because the background becomes multimodal, but the confusion
problem will occur as analyzed in next subsection. The K-image of AKGMM
depicted in Fig illuminates that these edges are described more accurately.
After an opening then a closing morphological operation, our framework takes
on better robustness than C. Stauffer et al.’s.
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Fig. 4. Corresponding segmentations on dataset A. Top row: the original images at
frames 1443, 2838, 2958. Middle row: the corresponding segmentation using C. Stauf-
fer et al.’s model (shadowed pixels are represented by light gray). Bottom row: the
segmentation using AKGMM.

()

Fig. 5. Segmentation on dataset B in case of camera’s oscillation. (a): the original image
at frame 422; (b)-(c): segmentation using FKGMM and corresponding morphological
post-processing result; (d): K-image of AKGMM,; (e)-(f): segmentation using AKGMM
and corresponding morphological post-processing result.
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4.3 Stationary Vehicles

In front of intersections, vehicles occasionally stop to wait for pass signal. To
detect stationary vehicles is a typical problem in video based traffic surveillance.
In dataset B, the vehicles stop for about 15 seconds, 375 frames equivalently,
every 45 seconds’ pass. Figure and Fig represent such a move-to-stop
process for about 4 seconds. The threshold T is adjusted to 0.9 to keep FKGMM
robust in oscillation. The Gaussian components which correspond to the station-
ary vehicles grow so quickly that these components are included into background
according to (). Consequently, the stationary vehicles incorporate into back-
ground as showed in Fig In our framework, the incorporation occurs pro-
vided that the stationary vehicles cover those pixels more frames than the time
constant L. By choosing an appropriate L, our system keeps robust both in
camera’s oscillation and stationary vehicles case.

Fig. 6. Segmentation on dataset B in case of stationary vehicles. (a): original image
at frame 1680; (b)-(c): segmentation of (a) using FKGMM and AKGMM; (d) original
image at frame 1768; (e)-(f): segmentation of (d) using FKGMM and AKGMM.

5 Conclusions and Future Work

A visual traffic surveillance application oriented, probabilistic approach based
large scale moving objects segmentation strategy is presented in this paper. In
our strategy, a modified online EM procedure is used to construct Adaptive-K
Gaussian Mixture Model at each pixel, and a heuristic background components
selection rule is developed to generate accurate background and make pixel classi-
fication decision. Our approach shows good performance in terms of adaptability,
accuracy and robustness, but the computational load is unpredictable because
of the very adaptability. We can constrain the computational load by apply-
ing our approach just in small Region of Interest (ROI). Reasonable heuristic
background estimation rules and adaptability for kinds of environmental changes
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ne

ed more study. Some intro-frame tasks, such as vehicle tracking, can be studied

based on the object segmentation.
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