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Abstract—Wireless sensor networks (WSNs) are typically com-
posed of low-cost sensors that are deeply integrated with phys-
ical environments. As a result, the sensing performance of a
WSN is inevitably undermined by various physical uncertainties,
which include stochastic sensor noises, unpredictable environment
changes and dynamics of the monitored phenomenon. Traditional
solutions (e.g., sensor calibration and collaborative signal pro-
cessing) work in an open-loop fashion and hence fail to adapt
to these uncertainties after system deployment. In this paper,
we propose an adaptive system-level calibration approach for a
class of sensor networks that employ data fusion to improve
system sensing performance. Our approach features a feedback
control loop that exploits sensor heterogeneity to deal with the
aforementioned uncertainties in calibrating system performance.
In contrast to existing heuristic based solutions, our control-
theoretical calibration algorithm can ensure provable system
stability and convergence. We also systematically analyze the
impacts of communication reliability and delay, and propose an
optimal routing algorithm that minimizes the impact of packet loss
on system stability. Our approach is evaluated by both experiments
on a testbed of Tmotes as well as extensive simulations based on
data traces gathered from a real vehicle detection experiment.
The results demonstrate that our calibration algorithm enables
a network to maintain the optimal detection performance in the
presence of various system and environmental dynamics.

I. INTRODUCTION

Wireless sensor networks (WSNs) are increasingly deployed

in mission-critical applications such as target detection [1],

localization [2] and security surveillance [3]. In these applica-

tions, low-cost sensors are deeply embedded in physical envi-

ronments and often suffer significant performance variations.

In particular, the sensing performance of a sensor network

is greatly affected by stochastic sensor noises, unpredictable

environment changes and dynamics of the monitored physical

process. In order to achieve desirable system performance,

the operational parameters of a network must be dynamically

calibrated in response to these uncertainties.

Several approaches have been proposed to deal with the

aforementioned uncertainties faced by WSNs. Advanced collab-

orative signal processing algorithms such as data fusion [4] can

mitigate the impact of noise by jointly considering the measure-

ments of multiple sensors. However, these algorithms are not

designed to handle hardware biases or environmental dynamics.

Sensor calibration [5]–[7] can correct hardware biases by tuning

each individual sensor based on ground truth information about

physical processes. However, the ground truth information is

often unknown or subject to dynamic evolution in reality, which

often leads to unpredictable system performance at run time.

In this paper, we exploit the heterogeneity of WSNs

to achieve adaptive calibration performance for surveillance

WSNs. Many practical WSNs have multiple sensor modalities.

For instance, a typical surveillance system [8] has both low-

end passive infrared sensors and high-quality pan-tilt-zoom

cameras. Low-end sensors consume less energy but often have

limited sensing capability such as high false alarm rate. In con-

trast, high-quality sensors can yield high-fidelity measurements

at the price of high energy consumption. In our calibration

approach, low-end sensors collaboratively detect targets through

data fusion [4]. When a positive detection consensus is reached

by low-end sensors, high-quality sensors are activated to make a

high-fidelity detection. The low-end sensors are then iteratively

calibrated according to the detection results of high-quality sen-

sors. In particular, the high-quality sensors are allowed to sleep

for most of the time and only activated when a possible target

is detected by low-end sensors. Such a two-tier calibration

framework can significantly reduce system energy consumption

while maintaining satisfactory surveillance performance.

Several challenges must be addressed for calibrating the

system performance of heterogeneous WSNs. First, the system

detection performance is tightly coupled with the measurements

of low-end sensors that are often corrupted by random noises

from physical environment and sensor hardware. The stochas-

tics in sensor measurements must be carefully considered in or-

der to achieve the optimal detection performance. Second, in an

adaptive calibration process, there exist fundamental trade-offs

between the system stability and the delay of response to system

and environmental dynamics. The trade-offs must be balanced

to maintain satisfactory system stability and timeliness. Third,

the system calibration performance is inherently impacted by

the underlying communication network. An adaptive calibration

algorithm must account for various dynamic characteristics of

wireless communications, such as link reliability, delay, and

routing quality.

We make the following major contributions in this paper.

• We propose a novel approach that exploits sensor het-

erogeneity for adaptively calibrating the performance of

fusion-based WSNs. In our approach, high-quality sensors

are activated by low-end sensors only when a possible

target is present. The sensing results of high-quality sen-

sors are then fed back to low-end sensors for tuning their

performance.

• We formally formulate the problem of adaptive calibration

for target detection as a control problem. The system ob-



jective is to maximize the detection performance and adapt

to changeable network conditions and physical environ-

ments. We develop an adaptive calibration algorithm based

on control theory. We also systematically analyze the

impacts of communication reliability and delay. Moreover,

we propose an optimal routing algorithm that minimizes

the impact of packet loss on system stability.

• We implement the adaptive calibration algorithm on a

testbed composed of Tmotes [9] and a webcam. We also

conduct extensive trace-driven simulations using real data

traces collected by 17 sensors in a vehicle detection ex-

periment [10]. The results demonstrate that the calibrated

network maintains optimal detection performance in the

presence of various system and environmental dynamics.

The rest of this paper is organized as follows. Section II

reviews related work. Section III introduces the preliminaries

and Section IV formally formulates the adaptive calibration

problem. Section V models the system detection performance

of a fusion-based WSN. Section VI develops the adaptive cali-

bration algorithm based on control theory. Section VII discusses

the impacts of communication performance. Section VIII and

IX present the experiment results of testbed and trace-driven

simulations, respectively. Section X concludes this paper.

II. RELATED WORK

Sensor calibration is a fundamental problem in WSNs. Early

works focus on calibrating individual sensors to output accu-

rate readings. For instance, in [5], each chemical sensor is

carefully calibrated in controlled environments to obtain the

mapping from its reading to the true value. Recent system-

level calibration approaches aim to optimize the overall system

performance. In [6], the biases of light sensors are estimated

by solving the equations that correlate the sensor biases with

the sensor measurements. Similarly, in [7], the operational

parameters of ranging sensors are estimated by regression

based on pair-wise range measurements. The above approaches

calibrate sensors according to known ground truth inputs. In

contrast, our approach exploits the sensor heterogeneity and

does not require the ground truth inputs.

Feedback control has been widely adopted to improve the

adaptability of computing systems and networks [11]. Recently,

it is employed to develop various protocols for WSNs, such

as MAC-layer [12], energy management [13] and topology

control [14] protocols. Different from these works, we develop

a control-theoretical calibration algorithm that maximizes the

system detection performance of surveillance WSNs under

changeable network conditions and physical environments.

Data fusion [4] has been proposed as an effective signal pro-

cessing technique to improve the system detection performance

of surveillance applications [3], [15]. Most previous works [4],

[16] focus on analyzing the optimal fusion strategies of a given

network. In our recent works [17], [18], we investigate the

impact of data fusion on coverage and detection delay of WSNs.

In this paper, we aim to adaptively calibrate the fusion param-

eters to increase system sensing performance in the presence

of dynamics of environment and monitored phenomenon.

III. PRELIMINARIES

In this section, we present the preliminaries of our work,

which include sensor measurement, data fusion and Bayesian

detection models.

A. Sensor Measurement Model

We assume that sensors perform detection by measuring the

energy of signals, e.g., acoustic signal, emitted by the target.

Let si denote the signal energy received by sensor i. The signal

energy si varies with the target and sensor i due to several

affecting issues. First, the signal energy si depends on the

source energy of the target and the signal path loss. The signal

path loss is determined by the distance from the target and the

physical environments such as terrain. Second, it is affected by

the systematic bias of the sensor.

The sensor measurements are contaminated by additive ran-

dom noises from sensor hardware or environment. Depending

on the hypothesis that the target is absent (H0) or present (H1),

the measurement of sensor i, denoted by yi, is given by
{

H0 : yi = ni,

H1 : yi = si + ni,

where ni is the energy of noise experienced by sensor i. We

assume that the noise ni at each sensor i follows the normal

distribution, i.e., ni ∼ N (µi, σ
2
i ), where µi and σ2

i are the mean

and variance of ni, respectively. We assume that the noises,

{ni|∀i}, are spatially independent across sensors.

The above stochastic sensor measurement model has been

widely adopted in the literature of multi-sensor signal detection

[2], [4], [16], [17], [19] and also empirically verified [2], [20].

Many previous works [2], [16], [17], [19] based on the above

sensor measurement model assume that the signal energies

{si|∀i} and noise profiles {µi, σ
2
i |∀i} are known a priori.

However, these parameters are often difficult to estimate and

also subject to change due to the dynamics of target and

environment. In this paper, we assume that they are unknown

to the network.

Table I summarizes the notation used in this paper.

B. Multi-sensor Data Fusion Model

Data fusion [4] has been proposed as an effective signal

processing technique to improve the system performance of

sensor networks. A sensor network that employs data fusion is

often organized into clusters. The cluster head is responsible for

making a decision regarding the presence of target by fusing

the information gathered by member sensors. As sensors can

only carry out limited processing due to resource constraints,

we adopt a simple data fusion scheme as follows. The cluster

head makes the detection decision according to the sum of

measurements reported by member sensors. Such a data fusion

model has been widely adopted by previous literature on

signal detection [16], [17]. Suppose there are N sensors in

a cluster, the sum of measurements, denoted by Y , is given

by Y =
PN

i=1 yi. Let eH(Y ) represent the detection decision

rule adopted by the cluster head. Therefore, eH(Y ) ∈ { eH0, eH1},



TABLE I
SUMMARY OF NOTATION

Symbol Definition

H0 / H1 the ground truth that the target is absent / present

eH0 / eH1 cluster head’s decision that the target is absent / present

µi, σ2
i noise mean and variance of sensor i, respectively

si the signal energy received by sensor i

ni noise energy of sensor i, ni ∼ N (µi, σ
2
i )

yi signal energy measurement of sensor i

N the number of sensors in the cluster concerned

Y fused measurement, Y =
PN

i=1 yi

µ / σ2 / S µ =
PN

i=1 µi, σ2 =
PN

i=1 σ2
i , S =

PN
i=1 si

Cij the cost of deciding eHi when the ground truth is Hj

m the number of detections in a calibration cycle

PF L/PML false alarm rate/missing probability of low-end sensors

PF H /PMH false alarm rate/missing probability of high-quality sensor

Pa target appearance probability, Pa = P(H1)

D the lower bound of target appearance time

where eH0 and eH1 are the detection decisions that the target is

absent and present, respectively.

The detection of a target is inherently stochastic due to the

random noises in sensor measurements. The system detection

performance is characterized by two metrics, namely, the false

alarm rate (denoted by PF ) and missing probability (denoted

by PM ). PF is the probability of deciding eH1 when no target

is present, and PM is the probability of deciding eH0 when

a target is present. Formally, PF = P( eH(Y ) = eH1|H0) and

PM = P( eH(Y ) = eH0|H1).

C. Bayesian Detection Model

Bayesian criterion [21] is a widely adopted decision cri-

terion for detection systems [4]. The objective of Bayesian

detection is to minimize the expected cost or risk in making

decisions. Under the data fusion model in Section III-B, the

Bayesian detection is formally stated as follows. Let c( eH(Y )|Y )

denote the expected cost due to making decisions according

to the decision rule eH(Y ) when the fused measurement is

Y . Specifically, c( eH0|Y ) = C00P(H0|Y ) + C01P(H1|Y ) and

c( eH1|Y ) = C10P(H0|Y ) + C11P(H1|Y ), where Cij is the cost

of deciding H̃i when the ground truth is Hj and P(Hj|Y )

is the posterior probability of the ground truth Hj when the

fused measurement is Y . Note that the costs, i.e., Cij , are

constants specified by user. The expected cost over all possible

measurements is given by

E[c] =

∫ ∞

−∞

c(H̃(Y )|Y )p(Y )dY, (1)

where p(Y ) is the probability density function (PDF) of

Y . Note that p(Y ) = p(Y |H0)P(H0) + p(Y |H1)P(H1), where

p(Y |Hj) is the likelihood given ground truth Hj . The Bayesian

detection is the detection rule H̃(Y ) that minimizes E[c] [21].

In practice, the costs, i.e., Cij , can be defined according to

various system objectives. For instance, by letting C00 = C11 =
0 and C10 = C01 = 1, E[c] equals the expected probability

that the detector makes wrong decisions over all possible

measurements [21], i.e., the average error rate. Moreover, by
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Fig. 1. The illustration of system architecture. The system composed of a
number of low-end sensors and a high-quality sensor detects whether a vehicle
is present in the rectangular surveillance region.

letting Cij be the energy consumed in the operations triggered

by deciding eHi when the ground truth is Hj , E[c] is the average

energy consumed by the system due to detection.

IV. PROBLEM FORMULATION

This section formulates our problem. Section IV-A presents

the network and target models. Section IV-B formally formu-

lates the closed-loop calibration problem. Section IV-C presents

the overview of our approach to the problem.

A. Network and Target Models

We assume that a heterogeneous WSN is composed of low-

end and high-quality sensors. The objective is to detect targets

that randomly appear. The low-end sensors (e.g., MICA motes)

often have low manufacturing cost and energy consumption.

However, they usually have limited sensing capability such

as high false alarm rate [3]. To improve the system detection

performance, the low-end sensors collaboratively detect targets

by fusing their measurements as stated in Section III-B. The

high-quality sensors (e.g., cameras [8] and active radars [22])

are capable of high-accuracy and complex surveillance such as

target tracking and classification. In this paper, they are only

required to detect whether a target is present and the detection

results are used to calibrate the low-end sensors to achieve

desirable detection performance. The high-quality sensors often

have higher manufacturing cost and consume more energy.

Due to the high cost, we assume that there is only one high-

quality sensor in the network. We note that our approach can be

easily extended to the scenarios of multiple high-quality sensors

where they may fuse their measurements to yield a detection

result.

We now illustrate the system architecture using an example.

In Fig. 1, a heterogeneous WSN is deployed to detect whether

a vehicle is present in the surveillance region. The low-end

sensors transmit their measurements to the cluster head through

multi-hop paths. The cluster head fuses the received measure-

ments to make a detection decision regarding the presence

of the vehicle. The camera can accurately detect the vehicle

via image processing techniques. However, the camera often

consumes much energy in capturing and processing images.

The objective is to calibrate the low-end sensors according

to the detection results of the camera such that the detection

performance of the system is maximized. Moreover, the system



should be able to adapt to the unpredictable and dynamic

changes of the target profiles and physical environments.

Before formally formulating the problem, we make the

following assumptions. First, the probability that a target is

present at any time instance is Pa which is known or can be

estimated from detection history. Second, the target appearance

time is lower-bounded by constant D. Third, the false alarm rate

and missing probability of the high-quality sensor, denoted by

PF H and PMH , are known. For instance, PF H and PMH can be

measured via offline experiments. Due to the high accuracy of

the high-quality sensor, both PF H and PMH are close to zero.

B. Closed-loop Calibration Problem

The optimal Bayesian detector has been extensively studied

in previous literature [4], [21]. We now investigate the optimal

detection rule for low-end sensors under the assumptions made

in Section III. Suppose there are N low-end sensors. Denote

S =
PN

i=1 si, µ =
PN

i=1 µi and σ2 =
PN

i=1 σ2
i . The optimal

detection rule eH(Y ) for low-end sensors that minimizes the

expected cost E[c] is given by the following threshold-based

decision (the derivation can be found in the appendix):

Y

eH(Y )= eH1

≷
eH(Y )= eH0

Topt, (2)

where Y is the sum of the measurements from low-end sensors

and the optimal detection threshold Topt is given by

Topt =
δσ2

2S
+ µ +

S

2
, (3)

δ = 2 ln

(
1 − Pa

Pa

·
C10 − C00

C01 − C11

)
. (4)

Note that δ is a known constant as long as Pa and {Cij |i, j ∈
{0, 1}} are given.

In the above optimal detection rule, the optimal detection

threshold Topt is often unknown and cannot be easily estimated

in practice. First, µ and σ2 are the sums of noise means

and variances at all low-end sensors, respectively. Although

the noise means and variances can be estimated offline (e.g.,

in laboratory), they may change at run time. For instance,

the noise profiles would change with environmental conditions

(e.g., wind) as well as the electronic noise in sensor hardware

affected by ambient temperatures. Second, S is the sum of

signals received by low-end sensors and hence is affected by

the source energy and physical position of the target. However,

both the source energy and position of the target are unknown

and changeable in practice. Moreover, if the ground truth

information is not available, the detection approaches based on

the µ, σ2 and S that are estimated from noisy measurements

will lead to circular reasoning. As a result, implementing the

optimal detection rule based on unknown µ, σ2 and S is largely

unpractical in practice.

In this paper, we exploit sensor heterogeneity to overcome

the difficulties caused by the unknown variables µ, σ2 and

S. As the high-quality sensor can detect the target accurately,

the detection results can be fed back to calibrate the low-end

sensors when the target profiles and environment conditions

have changed. Specifically, the detection threshold at the cluster

head, denoted by T , is iteratively calibrated according to the

feedback of the high-quality sensor, such that the network

achieves the optimal detection performance. Our problem is

formally formulated as follows.

Problem 1. To find a stable and converging calibration algo-

rithm for the detection threshold T at the cluster head based on

the feedback of high-quality sensor, such that the expected cost

due to detections, i.e., E[c] which is given by (1), is minimized.

We define stability and convergence based on control theories

[23] as follows. The closed-loop system is stable if the system

output E[c] is bounded given bounded inputs µ, σ2 and S.

Furthermore, the system converges if the system output E[c]
converges to its theoretical minimum if all inputs are fixed.

Moreover, in order to improve the real-time performance of

the system, we expect that the output E[c] converges as soon

as possible when the inputs have changed.

C. Approach Overview

Feedback control has been widely employed to improve the

system adaptability of networks [11]. In Problem 1, the system

objective is to adapt to the unpredictable and dynamic changes

of target profiles and physical environments. We face several

major challenges in implementing the closed-loop calibration.

First, the relationship between the detection performance of

low-end sensors and their stochastic measurements must be

carefully considered to minimize the expected cost E[c]. Sec-

ond, the high-quality sensor should sleep for most of the time

when no target is present due to its high energy consumption.

To address these challenges, we propose a calibration approach

that features feedback control loop to adaptively calibrate the

detection threshold T , where the controller is implemented

by the calibration algorithm located at the cluster head. The

overview of our approach is as follows.

The detection threshold T is calibrated iteratively for every

calibration cycle. Each calibration cycle comprises a number

of detections. In each detection, the cluster head fuses the

measurements received from the low-end sensors to make a

detection decision by comparing against the current detection

threshold T . Only if the cluster head makes a positive detection

decision, the high-quality sensor is activated to make a detection

and reports its decision to the cluster head. Such an on-demand

activation scheme enables the high-quality sensor to sleep when

no target is present. At the end of each calibration cycle,

the cluster head estimates the detection performance of low-

end sensors, which is characterized by the false alarm rate

and missing probability, according to the detection history and

the feedback of the high-quality sensor. The cluster head then

calibrates the detection threshold T according to the difference

between the estimated and the optimal detection performances.

In the rest of this paper, we first derive the closed-form

expressions of the false alarm rate and missing probability of

low-end sensors in Section V. We then develop an adaptive



calibration algorithm based on feedback control theory in Sec-

tion VI. Moreover, we analyze the impacts of communication

performance on our algorithm in Section VII.

V. PERFORMANCE MODELING

In this section, we first derive the theoretical expressions of

the system false alarm rate and missing probability of low-end

sensors. We then derive the estimators of the two probabilities

based on the feedback of the high-quality sensor.

A. Detection Performance of Low-end Sensors

We now derive the false alarm rate and missing probability

of low-end sensors. Recall the distributions of Y |H0 and Y |H1

that are derived in the appendix, i.e., Y |H0 ∼ N (µ, σ2) and

Y |H1 ∼ N (µ + S, σ2). The system false alarm rate and missing

probability of low-end sensors (denoted by PFL and PML)

are given by PF L = P(Y ≥ T |H0) = Q
`

T−µ

σ

´

and PML =

P(Y ≤ T |H1) = Q
`

−T−µ−S

σ

´

, respectively, where Q(·) is the

complementary cumulative distribution function of the standard

normal distribution, i.e., Q(x) =
R +∞

t=x
1√
2π

exp
“

− t2

2

”

dt. We

now investigate the relationship between PFL and PML when

the expected cost E[c] is minimized which is the objective of

Problem 1. Let Q−1(·) denote the inverse function of Q(·). We

have the following lemma.

Lemma 1. The expected cost E[c] is minimized if and only if

V = δ, where V =
`

Q−1(PF L)
´2−

`

Q−1(PML)
´2

and δ is given

by (4).

Proof: From the expressions of PFL and PML, we have

V =
(
Q−1(PFL)

)2
−

(
Q−1(PML)

)2

=

(
T − µ

σ

)2

−

(
−

T − µ − S

σ

)2

=
2S

σ2
· T −

2µS + S2

σ2
. (5)

As discussed in Section IV-B, E[c] is minimized if and only if

T = Topt, where Topt is given by (3). By replacing T in (5)

with Topt, we have V = δ. Moreover, as V is a linear function

of T , E[c] is minimized if and only if V = δ.

We note that δ is a known constant which is independent of

the unknown variables µ, σ2 and S. From Lemma 1, Problem 1

can be reduced to the following problem.

Problem 2. To find the stable and converging calibration

algorithm for the detection threshold T at the cluster head

based on the feedback of high-quality sensor, such that V = δ,

where V =
`

Q−1(PF L)
´2−

`

Q−1(PML)
´2

and δ is given by (4).

In Section VI, we will develop a calibration algorithm based

on feedback control theory to solve Problem 2.

B. Feedback of High-quality Sensor

The objective of system detection performance defined in

Problem 2 is to ensure V = δ where V is computed by PFL

and PML. In this section, we derive the estimators of PFL and

PML based on the detection history of low-end sensors and the

feedback of the high-quality sensor.

Suppose each calibration cycle comprises m detections. The

low-end sensors fuse their measurements to make a detection

for every D seconds such that each sensor can sample at

least one measurement when the target is present. Note that

D is the lower bound of target appearance time. At the end

of a calibration cycle, the cluster head counts the numbers of

positive and negative decisions made by the high-quality sensor

and estimates PFL and PML based on the counts. We note that

the high-quality sensor may make wrong detection decisions

where the false alarm rate and missing probability are PFH

and PMH , respectively, as assumed in Section IV-A. Therefore,

our estimators account for the inaccuracy of the high-quality

sensor.

We define the following notation subject to a calibration

cycle: 1) nf1 and nd1 are the numbers of false alarms and

correct detections made by the cluster head, respectively, which

are unknown; 2) nf2 and nd2 are the numbers of positive

decisions made by the cluster head but regarded to be false

alarms and correct detections by the high-quality sensor, re-

spectively, which can be counted by the cluster head. We have

the following equations,

nf2 ≃ nf1(1 − PFH) + nd1PMH , (6)

nd2 ≃ nf1PFH + nd1(1 − PMH). (7)

In (6), nf1(1−PF H) represents the number of false alarms that

are correctly identified by the high-quality sensor, and nd1PMH

represents the number of correct detections that are wrongly

classified as false alarms. In (7), nf1PF H represents the number

of false alarms that are wrongly classified as correct detections,

and nd1(1−PMH) represents the number of detections that are

correctly identified. From (6) and (7), the unknown nf1 and

nd1 can be estimated as

nf1≃
nf2(1−PMH)−nd2PMH

1−PFH−PMH

,

nd1≃
nd2(1−PFH)−nf2PFH

1−PFH−PMH

.

Therefore, the estimates of PFL and PML, denoted by P̃FL

and P̃ML, respectively, are given by

P̃FL =
nf1

m − m · Pa

, P̃ML =
m · Pa − nd1

m · Pa

. (8)

Note that m·Pa is the expected number of target appearances in

a calibration cycle. The major errors of the above estimates are

caused by the difference between the mean value m·Pa and the

true number of target appearances which is a binomial random

variable. The relative estimation errors of (8) are O
“

1√
m

”

.

The error analysis is omitted due to space limit and can be

found in [24]. Hence, we can choose m to achieve any required

estimation accuracy [24]. The impact of m on the calibration

performance is also evaluated in Section IX.

VI. ADAPTIVE CALIBRATION ALGORITHM

In this section, we first derive the control law to solve Prob-

lem 2 based on feedback control theory. We then implement

the control law as an adaptive calibration algorithm.
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Fig. 2. The closed-loop system for minimizing E[c], where Gc(z), Gp(z) and
H(z) represent the transfer functions of the calibration algorithm, the network
of low-end sensors and the feedback of the high-quality sensor, respectively.

A. Control Law

The performance objective of Problem 2 is to ensure V = δ,

where V is a function of the detection threshold T given by (5)

and can be estimated based on the feedback of the high-quality

sensor as discussed in Section V-B. Moreover, the detection

threshold T is calibrated for every calibration cycle. Therefore,

Problem 2 is a typical discrete-time control problem [23], in

which δ is the reference, T is the control input and V is

the controlled variable. The block diagram of the feedback

control loop is shown in Fig. 2, where Gc(z), Gp(z) and H(z)
represent the transfer functions of the calibration algorithm (i.e.,

controller), the network of low-end sensors and the feedback

of the high-quality sensor, respectively.

We now derive the expressions of Gp(z) and H(z), and

design Gc(z) to solve Problem 2. By taking z-transform [23]

to (5), we get the transfer function Gp(z) as Gp(z) = 2S
σ2 . At

the end of a calibration cycle, the cluster head estimates V

based on the feedback of the high-quality sensor as discussed

in Section V-B. Accordingly, the feedback of the high-quality

sensor will take effect in the next calibration cycle. Therefore,

the H(z) has a component of z−1 that represents a delay of

one calibration cycle. As discussed in Section V-B, we can

ignore the inaccuracy in estimating V if m is large. Hence,

H(z) = z−1. As the system to be controlled, i.e., Gp(z), is a

zero-order system, a first-order controller is sufficient to achieve

the stability and convergence of the closed-loop system [23].

Hence, we let Gc(z) be

Gc(z) =
a

1 − b · z−1
, (9)

where a > 0 and b > 0. The coefficients a and b should

be chosen to ensure system stability and convergence. In

Section VI-B, we will discuss how to determine a and b based

on stability and convergence analyses.

B. Stability and Convergence Analyses

We first analyze the system stability. The closed-loop transfer

function, denoted by Tc(z), is given by

Tc(z) =
Gc(z)Gp(z)

1 + Gc(z)Gp(z)H(z)
=

2aS
σ2 · z

z −
(
b − 2aS

σ2

) .

The closed-loop system has a pole at z = b− 2aS
σ2 . From control

theory [23], if the pole is within the unit circle centered at the

origin, i.e.,
˛

˛b − 2aS

σ2

˛

˛ < 1, the system is stable. Therefore, the

sufficient condition for stability is σ2

2S
(b − 1) < a < σ2

2S
(b + 1).

We then analyze the steady-state error of the system. The

open-loop transfer function, denoted by To(z), is given by

To(z) = Gc(z)Gp(z)H(z) =
2aS

σ2(z − b)
.

By letting b = 1, the system is a type I system [23], of which the

controlled variable V can converge to the reference δ provided

that the system is stable. Therefore, by replacing b with 1, the

condition for both stability and convergence is 0 < a < σ2

S
.

Accordingly, only a is left to be determined.

Finally, we discuss the transient response of the system,

which characterizes how fast the closed-loop system converges.

There exists a fundamental trade-off between the stability

and transient response performance [23]. Particularly for our

problem, the system converges faster for larger a at the price

of worse system stability. Therefore, the best setting for a is

a value close to the upper bound σ2

S
. However, σ2 and S

are often unknown and changeable at run time as discussed

in Section IV-B. We now propose an approach to adaptively

estimate the upper bound σ2

S
. The details are as follows.

From (5), the control input T and the controlled variable V

have a linear relationship with slope of K = 2S
σ2 . We employ

the exponential moving average [25] to estimate and update

the slope K . Specifically, in the kth calibration cycle, the slope

K is estimated as K = V [k−1]−V [k−2]
T [k−1]−T [k−2]

, where T [k − 1] is the

detection threshold set by the calibration algorithm in the (k−
1)th calibration cycle, and V [k−1] is the corresponding output

of low-end sensors. We note that V [k−1] is obtained in the kth

calibration cycle due to the delay of feedback. The exponential

moving average of K in the kth calibration cycle, denoted by

K[k], is updated by K[k] = (1 − α) · K[k − 1] + α · K, where

α is a weight in (0, 1). Note that the moving average K can

quickly adapt to the change of K by setting a large α. However,

doing so reduces the algorithm robustness to errors such as the

inaccuracy in estimating V . The upper bound σ2

S
is estimated as

σ2

S
= 2

K[k]
and a is set to be β · 2

K[k]
, where β is a coefficient in

(0, 1). Note that β is set to be 0.5 in the experiments conducted

in this paper. The K[0] can be set to be a large enough value

such that the system is stable initially.

C. Adaptive Calibration Algorithm

In this section, we implement the control law derived in

Section VI-A in time domain. According to Fig. 2, we have

Gc(z) = T (z)
δ−H(z)V (z)

. By replacing Gc(z) with (9) and H(z) =

z−1, we have T (z) = b·z−1T (z)+a·
`

δ − z−1V (z)
´

and its imple-

mentation in time domain is T [k] = b ·T [k−1]+a ·(δ−V [k−1]),

where V [k − 1] =
“

Q−1( ePF L)
”2

−
“

Q−1( ePML)
”2

, T [k − 1]

and T [k] are the detection thresholds in the (k − 1)th and kth

calibration cycle, respectively. The estimates ePF L and ePML are

computed using (8) when the detection threshold is T [k − 1].
As discussed in Section VI-B, b = 1 and a is updated for each

calibration cycle to ensure system stability and convergence.

VII. IMPACT OF COMMUNICATION PERFORMANCE

The adaptive calibration algorithm in Section VI is impacted

by communication performance. In this section, we investigate



the impacts caused by packet loss and feedback delay.

A. Packet Loss and Optimal Routing Algorithm

In this section, we first analyze the impact of packet loss

in the wireless communication among low-end sensors, and

then propose an optimal routing algorithm to minimize the

impact. From the analysis in Section VI-A, the system stability

is affected by the upper bound σ2

S
. In the case of stochastic

packet loss, both the aggregated signal energies and noise

variances, i.e., S and σ2, can change rapidly. The closed-loop

system can become unstable due to the rapid changes of S

and σ2. We study the impact of packet loss by investigating

the relative deviations of S and σ2, which characterize the

magnitude of changes caused by stochastic packet loss. Let

pi denote the end-to-end packet reception rate (PRR) of the

multi-hop path from sensor i to the cluster head. We assume

that pi ∈ [0.5, 1]. Let ui ∈ {0, 1} denote the packet delivery

state of sensor i in a transmission, which is a Bernoulli random

variable with success probability of pi. In the presence of packet

loss, S =
∑N

i=1 siui. We assume that si has non-zero lower

and upper bounds, denoted by smin and smax, respectively.

Hence, we have E[S] =
PN

i=1 siE[ui] =
PN

i=1 sipi ≥ N·smin
2

and

Var[S] =
PN

i=1 s2
i Var[ui] =

PN

i=1 s2
i pi(1 − pi) ≤ N·s2

max
4

. The

relative standard deviation (RSD) [25] of S satisfies RSD(S) =√
Var[S]

E[S]
≤ smax

smin
· 1√

N
, i.e., RSD(S) = O

“

1√
N

”

. Therefore, the

impact of packet loss can be mitigated by deploying more low-

end sensors. The derivation of RSD(σ2) is similar and hence

omitted here.

We now propose an optimal routing algorithm that minimizes

RSD(S). As ∂E[S]
∂pi

> 0 and ∂Var[S]
∂pi

≤ 0 for pi ∈ [0.5, 1],
∂RSD(S)

∂pi
≤ 0. Therefore, RSD(S) is minimized when each pi

is maximized separately. Let Ri denote the routing path from

sensor i to the cluster head and p(h) denote the PRR of hop

h ∈ Ri. Accordingly, pi =
Q

∀h∈Ri
p(h) and the optimal routing

path that maximizes pi is given by argminRi

P

∀h∈Ri
− log p(h),

i.e., the shortest path from sensor i to the cluster head where

the cost of hop h is − log p(h). The evaluation of the impact of

packet loss as well as routing algorithms on the performance

of the calibration algorithm can be found in a technical report

[24].

B. Impact of Feedback Delay

In this section, we analyze the impact of feedback delay

on system stability. Suppose the feedback is delayed for d

calibration cycles where d is an unknown integer. Therefore,

the transfer function of the feedback is H(z) = z−d. Several

practical issues can attribute to the feedback delay, such as the

communication delay due to the low duty cycle of sensors.

We adopt a widely used technique called the Jury test [23] to

analyze the stability of our algorithm. The details are omitted

due to space limit and can be found in [24]. Fig. 3 plots the

regions of a in (9) for system stability when d is from 1 to 5.

We can see from the figure that the stability condition becomes

more critical for larger d. This is consistent with the intuition

in control theory that the system stability decreases with the

delay in the closed-loop. The evaluation of the impact of d

can be found in a technical report [24]. The result shows that

the feedback delay has little impact on the performance of our

calibration algorithm when d is up to 10.

VIII. TESTBED EXPERIMENTS

To evaluate the performance of our adaptive calibration

approach, we have conducted both experiments on a testbed

of Tmotes as well as extensive trace-driven simulations based

on real data traces. We first present the testbed experiments in

this section and then the trace-driven simulations in Section IX.

A. Experiment Methodology and Settings

In our experiments, five Tmotes [9] are attached against

the LCD screen of a desktop computer to detect a light spot

displayed on the LCD. The light spot simulates the target that

randomly appears, and its display is controlled by a program.

We note that such an experimental methodology is also em-

ployed in previous works [26]. The system objective is to adapt

to the intensity change of the light spot that randomly appears

in each time slot with a probability of Pa = 50%. The length of

a time slot is one second. The motes measure light intensity for

every 250 milliseconds via the on-board Hamamatsu S1087-01

light sensors [9] and transmit the measurements to the sink node

that is connected to a laptop computer. Note that the motes are

not synchronized. NesC language is used to program the motes,

and Java is used to implement the calibration algorithms that

run on the laptop. The sink fuses the readings received within

every 250 milliseconds and detects the light spot. A webcam is

attached against the LCD and used as the high-quality sensor.

When the webcam is triggered by the sink to make a detection,

it computes the average intensity over all pixels and makes

the detection decision by comparing against a threshold. The

threshold is set to be 175 in our experiments. The webcam’s

false alarm rate and missing probability, i.e., PFH and PMH ,

are 3.3% and 1.4%, respectively, which are estimated offline.

The length of a calibration cycle, i.e., m, is 200 detections. The

detection threshold T at the sink is initially set to be zero. We

let C00 = C11 = 0 and C10 = C01 = 1. Hence, the cost metric

given by (1) is the average error rate of the motes, which is

denoted by PE .

We employ a heuristic calibration approach as the baseline,

in which the webcam is also activated to make a detection

when the cluster head makes a positive decision. The details

of the heuristic approach are as follows. Let H̃ ′
0 and H̃ ′

1

represent the negative and positive detection decisions of the

webcam, respectively. The mean and variance of the fused

noise, i.e., µ and σ2, are estimated as E[Y | eH0 ∨ ( eH1 ∧ eH ′
0)]

and Var[Y | eH0 ∨ ( eH1 ∧ eH ′
0)], respectively. The aggregated signal

energies is estimated as S = E[Y | eH1 ∧ eH ′
1] − µ. The detection

threshold is then set according to the optimal formula (3)

with the estimated S, µ and σ2. The heuristic calibration

approach is a typical way to use the feedback of the high-

quality sensor. However, it does not exploit the relationship

between the detection performance of low-end sensors and their

stochastic measurements.
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Fig. 5. Convergence of various calibration approaches.

B. Experiment Results

We first evaluate the sensor measurements. Fig. 4 plots the

cumulative distribution functions (CDFs) of the fused measure-

ment when the light spot is present as well as the normal

distribution N (3829, 12072), respectively. We note that the

fused measurement is a discrete random variable. We can see

from Fig. 4 that the distribution of the fused measurement can

be approximated by the normal distribution, which is consistent

with the assumptions in Section III.

We then evaluate the convergence of the calibration ap-

proaches. Fig. 5(a) plots the evolution of the detection thresh-

olds calibrated by various approaches. The offline optimal

approach computes the optimal detection threshold using (3)

based on the S, µ and σ2 that are estimated in extra offline ex-

periments. Note that the offline optimal approach is unpractical

in practice as discussed in Section IV-B. At the 20th calibration

cycle, we increase the intensity of the light spot to evaluate

the adaptability of the calibration approaches. As PE is the

cost metric, Fig. 5(b) plots the deviation of PE from that of

the offline optimal approach. From Fig. 5(a) and 5(b), we can

see that our approach converges to the optimal results after

8 calibration cycles. Moreover, our approach can response to

the target change within 3 calibration cycles. In contrast, the

heuristic approach has considerably large deviations from the

optimal results. Specifically, in Fig. 5(a), the average relative

errors of our approach and the heuristic approach after the 10th

calibration cycle are 12.8% and 30.5%, respectively.
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IX. TRACE-DRIVEN SIMULATIONS

A. Simulation Methodology and Settings

We use the real data traces collected in the DARPA SensIT

vehicle detection experiment [10], where 75 WINS NG 2.0

nodes are deployed to detect Amphibious Assault Vehicles

(AAVs) driving through a road section. We refer to [10] for

detailed setup of the experiment. The dataset used in our

simulations includes the ground truth data and the acoustic

time series recorded by 17 nodes at a frequency of 4960 Hz.

The ground truth data include the positions of sensors and the

trajectory of the AAV recorded by a GPS device. Fig. 6 [10]

shows the sensor deployment and the trajectory of an AAV run.

As the AAV is moving, the data traces cannot be directly used

to evaluate our calibration approach in detecting static target.

In the simulations, we assume that the target appears at a fixed

location shown in Fig. 6. A sensor’s measurement is set to be

the real measurement when the AAV is closest to the fixed

location. Besides the case of static target, we also evaluate our

approach in detecting moving target. The AAV is regarded to

be present when it is in the circular region shown in Fig. 6.

As it often takes tens of seconds for the AAV to drive through

the road section in Fig. 6, the sampling period of the sensors,

i.e., D, is set to be 15 seconds in the simulations. The target

appearance probability Pa is set to be 25%. As there is no extra

high-quality sensor such as camera in the SensIT experiment,

we use a pseudo camera in the simulations, which generates

random detection results based on the ground truth data. The

pseudo camera’s false alarm rate and missing probability, i.e.,

PFH and PMH , are both set to be 1%.

B. Simulation Results

In the first set of simulations, we evaluate the performance

of our calibration approach in detecting static and moving

targets. Fig. 8(a) plots the detection thresholds calibrated by

various approaches in detecting static targets with changing

noise level. The noise standard deviation of each sensor, i.e., σi,

decreases by 4 × 10−4 in each calibration cycle from the 10th

calibration cycle. Fig. 8(b) plots the results of detecting moving

targets. Note that calibrating the sensors for detecting moving

target is challenging as the aggregated signal energies, i.e., S,

significantly varies when the target is at different locations.

From the figures, we can see that our approach converges to

the optimal results after 10 calibration cycles and can adapt to
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changing noise level as well as moving target. Although the

heuristic approach has short rise time, it has considerably large

steady-state error.

From the error analysis in Section V-B, the number of

detections in a calibration cycle, i.e., m, affects the accuracy of

feedback. The second set of simulations evaluate the impact of

m on the performance of our calibration algorithm. We employ

the root mean square deviation (RMSD) of PE with respect

to the offline optimal approach as the performance metric.

Specifically, RMSD(PE) =
p

E[(PE − PE,opt)2], where PE,opt

is the average error rate of the offline optimal approach. Fig. 7

plots the RMSD of PE versus m. The system shows better

convergence for larger m, which is consistent with our analysis

in Section V-B. Moreover, our approach yields smaller RMSD

of PE than the heuristic approach under a wide range of m.

X. CONCLUSION

The sensing performance of a WSN is inevitably under-

mined by the physical uncertainties from environment and

the monitored phenomenon. In this paper, we propose an

adaptive calibration approach that exploits sensor heterogene-

ity to deal with these uncertainties. We develop a control-

theoretical calibration algorithm that ensures provable system

stability and convergence. Our algorithm accounts for various

communication issues such as packet loss, delay, and routing

quality. The experiment results on a testbed of Tmotes as

well as extensive trace-driven simulations demonstrate that the

calibrated network maintains the optimal detection performance

in the presence of various system and environmental dynamics.
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APPENDIX

The optimal decision rule eH(Y ) that minimizes E[c] is given

by the likelihood ratio test [21]: p(Y |H1)

p(Y |H0)

fH(Y )=fH1
≷

fH(Y )=fH0

P(H0)

P(H1)
·

C10−C00
C01−C11

.

We now derive the likelihoods p(Y |H0) and p(Y |H1). When the

target is present, Y |H0 =
PN

i=1ni ∼ N
`

µ, σ2
´

. When the target

is present, Y |H1 =
PN

i=1si +
PN

i=1ni ∼ N
`

µ+S, σ2
´

. Hence,

p(Y |H0) = φ(Y |µ, σ2) and p(Y |H1) = φ(Y |µ + S, σ2), where
φ(x|µ, σ2) is the PDF of the normal distribution N (µ, σ2), i.e.,

φ(x|µ, σ2) = 1√
2πσ

exp
“

− (x−µ)2

2σ2

”

. Therefore, the likelihood ratio

is
p(Y |H1)
p(Y |H0)

=exp
“

(2Y−2µ−S)S

2σ2

”

and the likelihood ratio test becomes

the rule in (2).


