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Abstract—Current data centers often adopt conservative and
static settings for cooling and air circulation systems, leading to
excessive energy consumption. This paper presents the design and
evaluation of PTEC – a system for predictive thermal and energy
control in data centers. PTEC leverages the server built-in sensors
and monitoring utilities, as well as a wireless sensor network, to
monitor both the cyber and physical status of a data center. By
predicting the temperature evolution of a data center in real time,
PTEC finds the temperature setpoints, the cold air supply rates,
and the speeds of server internal fans to minimize the expected total
energy consumption of cooling and circulation systems. Moreover,
PTEC enforces the upper bounds on server inlet temperatures and
their temporal variations to prevent server overheating and reduce
server hardware failure rate. We evaluated PTEC on a hardware
testbed consisting of 15 servers and a total of 23 temperature and
power sensors, as well as through Computational Fluid Dynamics
(CFD) simulations based on real data traces collected from a data
center with 229 servers. The experimental results show that PTEC
can reduce the cooling and circulation energy consumption by more
than 30%, compared with baseline thermal control strategies.

I. INTRODUCTION

Thermal and energy management has become a key challenge

in the design and operation of data centers. A recent worldwide

data center survey shows that the non-computing energy takes

average 45% and up to 60% of total energy [4]. One of the

key reasons for these data centers to have excessive energy

consumption is the inefficient operation of Computer Room

Air Conditioning (CRAC) systems. Because of the lack of

visibility in the operating conditions, the CRAC systems often

use unnecessarily low temperature setpoints to reduce the risk

of server overheating. Due to such a conservative strategy,

the CRAC systems can account for up to half of the energy

consumption of a data center [23]. Moreover, data centers

usually maintain unnecessarily high levels of air circulation by

adopting static settings or simplistic control strategies for the

circulation systems including server fans. As a result, the server

fans can take up to 23% of server power consumption [25]. Thus,

improving the efficiency of cooling and circulation systems plays

an important role in reducing the total energy consumption of a

data center.

Various efforts have been made to improve data center energy

efficiency. New green data center technologies have proven

their effectiveness in a few latest industrial scale data centers.

For instance, the new Google data centers reduce the non-

computing energy ratios down to about 10% [1]. However, these

technologies require a clean slate redesign and hence are cost

prohibitive to apply in existing data centers. A recent survey

reveals that 85% of existing data centers have non-computing

energy ratios higher than 40% [4]. Therefore, low-cost effective

thermal management systems that can retrofit existing data

centers with better energy efficiency are highly appealing. Data

center operational guidelines have been revised recently to

avoid overly conservative settings. For instance, the American

Society of Heating, Refrigerating and Air Conditioning Engi-

neers (ASHRAE) recommends to increase the environmental

temperatures in data centers up to 27◦C to reduce cooling energy

consumption [2]. However, without a real-time thermal control

system that ensures the thermal safety, the higher environmental

temperature setpoints will increase the risk of server overheating.

In fact, a survey in 2013 shows that 90% of data centers still

operate under 24◦C [5].

A variety of thermal control schemes have been recently

proposed to prevent thermal emergencies in a data center while

reducing the energy costs. The existing approaches either op-

timize a single thermal variable (e.g., server workload, CRAC

setpoint, or fan speed, etc.) [7] [19] or a combination of them

[6] [14] to minimize the energy costs. However, most of these

approaches are based on a reactive scheme, which reactively

controls the cooling systems to eliminate detected hot spots.

Unfortunately, this approach often cannot achieve desirable

energy efficiency, primarily due to the complex thermodynamics

of data centers. For instance, the heat generated by increased

server workload takes substantial delays to be recirculated to

the server inlets. To react to the detected hot spots at the

server inlets, the CRAC systems need to adopt sufficiently low

temperature setpoints, which, however, significantly downgrade

their energy efficiency [19].

In contrast to the existing reactive thermal control schemes,

this paper proposes a proactive approach to prevent potential

future hot spots. Specifically, our approach predicts the energy

consumption and thermal conditions resulted by each possible

CRAC/circulation control action in real time, and then executes

the best one. We need to address two major challenges to

realize such a proactive control scheme. First, the thermal

characteristics of a data center are inherently affected by both

physical (e.g., complex airflows) and cyber (e.g., dynamic server

workloads) factors. In particular, the temperature evolution, the

energy consumption of CRAC/fan systems, and their control

decisions are tightly coupled together. Moreover, the control

decisions not only need to improve the energy efficiency, but also

must account for servers’ thermal safety requirements. Second,

a large number of variables in a data center may affect the

temperatures and the total energy consumption, including the fan

speed of each server and the temperature setpoint of each CRAC

system. The global energy optimization based on all control-

lable variables often has prohibitive computational complexity.

Moreover, to ensure system reliability even in certain thermal

emergencies, the thermal control system should not resort to the

computing resources of the monitored data center.

This paper presents a real-time Predictive Thermal and Energy
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Control (PTEC) system that improves the energy efficiency

of both the cooling and circulation systems of a data center,

while meeting a set of thermal safety requirements. PTEC

leverages the server built-in sensors and monitoring utilities, as

well as an external easy-to-deploy wireless sensor network to

monitor both the cyber and physical status of a data center,

which includes CPU utilization, dynamic air flow, temperature

distribution, and CRAC/fan settings. Based on these measure-

ments, PTEC predicts the server inlet temperatures in real time

and proactively controls the temperature setpoints and blower

speeds of CRAC systems, and the speeds of server fans, to

reduce their overall energy consumption. PTEC enforces a set

of thermal safety requirements including the upper bounds

on server inlet temperatures and their temporal variations. A

high inlet temperature directly indicates server overheating and

potential server shutdowns, while a high temporal variation of

server temperature can significantly increase hardware failure

rate [12]. To make the energy optimization problem tractable,

PTEC adopts a coordinated control approach. Specifically, a

novel dynamic fan speed control algorithm is first developed to

automatically control the server fans based on the server CPU

utilization and the inlet temperature. Then, PTEC searches for

the temperature setpoints and blower speeds of CRAC systems to

minimize the overall energy consumption of CRAC systems and

server fans. Moreover, we propose a partition-based algorithm,

which divides the CRAC systems to multiple regions based on

their spatial thermal correlations with the servers, to reduce the

computational overhead of PTEC for large-scale data centers.

We prototyped PTEC and deployed it on a hardware testbed

consisting of 15 servers and a total of 23 temperature and

power sensors. The results show that PTEC can reduce the

cooling and circulation energy consumption by up to 34% and

30%, compared with an overcooling strategy and a reactive

control strategy, respectively. We also conducted trace-driven

Computational Fluid Dynamics (CFD) simulations for an exist-

ing data center with 229 servers to validate the effectiveness and

scalability of PTEC.

II. RELATED WORK

Existing data center thermal control approaches can be

broadly divided into two categories. The first category of ap-

proaches minimizes the energy consumption or a cost function

by controlling a single type of thermal variables, e.g., server

workloads [19], CRAC setpoints [7], fan speeds [25], CPU fre-

quencies [17], or the number of virtual machines [16]. Thermal-

aware load balancing (e.g., [19]) can prevent hotspots and help

increase room temperature for energy saving. In [7], CRAC

systems are controlled to maintain the temperatures of selected

locations at their setpoints. In [25], fan speeds of blade servers

are controlled to minimize the total fan power consumption

subject to an upper bound on CPU temperatures. In [17], the

sum of CPU frequencies is maximized under a certain power

budget. All the above approaches focus on controlling one type

of thermal variables to reduce the power consumption.

The second category of approaches controls multiple types

of thermal variables to reduce the overall power consump-

tion. In [22], server fan speeds, CPU power states and work-

load migration are controlled to minimize the overall power

consumption within a blade server enclosure. In [21], server

thermal management policies are selected based on predicted

temperatures. However, these two approaches [21] [22] do not

consider the cooling energy consumption. In [6], computing

jobs are assigned to the servers with the highest cooling ef-

ficiencies. The CRAC setpoints are then calculated based on

the job assignment to ensure thermal safety for servers. The

approach in [20] minimizes the cost of electricity and quality

of service degradation while maintaining the server temperature

within a predefined range. In [14], the CRAC setpoints are first

determined based on data center utilization levels, and then a

feedback server fan control approach is applied to achieve a

trade-off between server leakage power and fan power. However,

it does not minimize the overall energy consumption of CRAC

systems and server fans. The approach in [18] minimizes a

holistic cost metric, accounting for the availabilities and prices

of the traditional/renewable electricity sources, multiple cooling

options, and data center workload status. However, this approach

accounts for neither the variability of fan power, nor the complex

dynamics of server temperatures. In [27], floor-mounted adaptive

vent tiles and CRAC cooling provision are controlled to reduce

the cooling cost. However, the server fan power consumption

is not considered. Moreover, their approach cannot be readily

applied to other cooling structures such as in-row cooling that

is commonly adopted in data centers.

III. PROBLEM STATEMENT AND APPROACH OVERVIEW

A. Problem Statement

The CRAC systems are the major source of energy con-

sumption in many existing data centers [23]. Another thermal-

related source of energy consumption is the server fans, which

can take up to 23% of server power [25]. It has been shown

that the cooling efficiency of a CRAC system increases with

its temperature setpoint [19]. With a higher setpoint, a CRAC

system can remove the same amount of heat with up to 40%

less energy consumption [19]. However, a higher CRAC setpoint

increases the likelihood of server overheating and heat-induced

server shutdown. Moreover, it may adversely increase server

fan speeds for removing the heat generated by the servers,

resulting in higher overall energy consumption. This paper

aims to design a control system to reduce the overall energy

consumption of CRAC systems and server fans, subject to a

set of thermal requirements including upper bounds on server

inlet temperatures and their temporal variations. Upper-bounding

them can prevent server overheating and severe temperature

fluctuations that can cause high hardware failure rates [12].

A CRAC and server fan control system has to address the

following two fundamental issues. First, the data center has

complex thermodynamics and tight thermal coupling among the

servers, the CRAC systems, and the physical environment. It

is challenging to accurately model the thermodynamics, which,

however, is the base for designing an effective thermal control

system. Second, to adapt to the unpredictable dynamics of the

data center, the control system must run in a real-time manner.

However, the optimal control algorithm is computation-intensive

due to the complex and non-linear relationships among control

actions, energy efficiency, and thermal conditions.

This paper designs a data center thermal and energy control

system based on a predictive scheme. This design choice is
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Fig. 1. PTEC system architecture.

based on the key observation that there are various time delays

in the data center thermodynamics. For instance, the extra

heat generated by suddenly increased server workload takes a

considerable delay to be recirculated by the server fans and the

CRAC systems to the server inlets. Moreover, due to limited

cooling capacity, it typically takes a considerable delay for a

CRAC system to reach the new temperature setpoint. Thus, it

is desirable to proactively control the CRAC/fan systems in an

energy-efficient manner to prevent potential future hot spots.

B. Approach Overview

Fig. 1 illustrates the architecture of PTEC based on a predic-

tive control scheme. It consists of three major components:

Sensing and monitoring: PTEC periodically collects the mea-

surements of the variables that affect the temperatures in a data

center, which include server status (CPU utilizations, system

temperatures, fan speeds, and powers) and CRAC status (powers,

temperature setpoints, and blower speeds) from the built-in

sensors and monitoring utilities, and a few critical temperatures

(e.g., server inlet and CRAC return hot air temperatures) from

a small number of wireless sensors. These wireless sensors,

powered by either onboard batteries or USB interface of servers,

can self-organize into a network for data collection. Therefore,

the overhead of sensor installation process is small. Fig. 9 shows

the sensor deployment on a single rack testbed.

Real-time temperature prediction: The system can rapidly

predict the evolution of temperature distribution based on the

collected sensor data and a candidate CRAC/fan control solution.

Such a real-time prediction enables the system to assess a large

number of candidate control solutions during runtime.

Predictive controller: We model the power consumption of

server fans and CRAC systems. Based on the models, we

formally formulate the problem of minimizing the predicted

overall energy consumption of server fans and CRAC systems,

subject to a set of thermal safety requirements. A predictive

controller assesses the temperature evolution in the future for

each candidate control solution and chooses the most energy-

efficient one. The solution comprises the temperature setpoints,

blower speeds of CRAC systems, and server fan speeds.

IV. POWER CONSUMPTION MODELS

A. Server Fan Power Consumption Model

Air circulation is critical for cooling servers in a data center.

A server system is typically equipped with several internal fans

for cooling different components, such as power supply unit and
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CPU. A server fan often regulates its speed according to the duty

cycle of a pulse width modulation (PWM) signal. Most servers

control the fan speed using a simple native algorithm, which

linearly increases the PWM duty cycle based on the server inlet

temperature [3]. In Fig. 2, curve r1 illustrates the input and out-

put of the algorithm, which is parameterized by two thresholds

V1 and W1. When the server inlet temperature is lower than V1,

the algorithm sets a minimal PWM duty cycle to maintain the

lowest allowed fan speed. When the inlet temperature exceeds

V1, the algorithm increases the PWM duty cycle (and hence the

fan speed) linearly with the inlet temperature. When the inlet

temperature exceeds W1, the algorithm sets the maximal PWM

duty cycle, maintaining the full fan speed.

The relationship between the fan power and the PWM duty

cycle can be estimated from either off-line experiments or on-

line measurements. We conduct an experiment to measure the

power of a server fan (Delta Electronics BFB1012EH) under

various PMW duty cycles. The results are shown in Fig. 3. Let

D(T ) denote the PWM duty cycle determined by the native

control algorithm, where T is the inlet temperature. We adopt

a discrete-time model with equal time steps. Let tn denote

the time instant of the n-th time step. For the l-th server, let

PFl(D(Tl(tn)) denote the instantaneous power of its fan at

time instant tn, where Tl is the inlet temperature. Therefore,

with the predicted inlet temperature Tl(tn+k) at time instant

tn+k, the predicted server fan instantaneous power is given by

PFl(D(Tl(tn+k)), which is abbreviated as PFl(tn, k) hereafter.

B. CRAC Power Consumption Model

The power of a CRAC system is mainly determined by its

temperature setpoint, blower speed, and return hot air temper-

ature. At time instant tn, the power consumption of the j-

th CRAC system is denoted as PCj(Sj(tn), Bj(tn), THj(tn)),
where Sj(tn), Bj(tn), and THj(tn) represent the temperature

setpoint, the blower speed, and the return hot air temperature for

this CRAC system. For a CRAC system with continuous setpoint

and blower speed, the parameters of PCj can be obtained by

interpolation based on off-line measurements. With the predicted

return hot air temperature THj(tn+k) at time instant tn+k, the

predicted instantaneous power of the j-th CRAC system is given
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Fig. 5. Predictive control scheme.

by PCj(Sj(tn+k), Bj(tn+k), THj(tn+k)), which is abbreviated

as PCj(tn, k) hereafter.

As an example, we empirically study the power consumption

model of a Tripp Lite SRCOOL12K air conditioner (AC), which

is specially designed for data centers. The resulted model will be

also used in our testbed experiments in Section VII. This AC has

three selectable blower speeds and a maximum cooling power of

1.5 kW. Fig. 4 shows that the power of this AC almost linearly

increases with the return hot air temperature when the compres-

sor is not in a transient state. When the compressor is off, its

power is almost constant (not shown in Fig. 4) if the blower

speed is fixed. Moreover, as different blower speeds result in

less than 10W power difference regardless of the compressor

status, we round up the power consumption of the blower to

its maximal value to simplify the model. When the compressor

transits from off to on, there is a spike of transient power.

However, this spike lasts for about 15 seconds only and takes

about 0.5% of the total energy under normal settings. Therefore,

it is neglected in our power consumption model. This AC does

not allow us to program the temperature setpoint. Therefore, for

this particular AC, we only control the on/off states of the blower

and the compressor. As a result, the status of this AC can be

represented by two binary variables, which are the compressor

status S ∈ {0, 1} and the blower status B ∈ {0, 1}, where 0

and 1 represent off and on states. The instantaneous power of

this AC can be described by PC = B · [S · (ω1TH + ω0) + ω2],
where the parameters ω0, ω1, and ω2 can be estimated from the

data shown in Fig. 4.

V. DESIGN OF PTEC

A. Problem Formulation

PTEC adopts a predictive control scheme illustrated in Fig. 5.

Suppose the current time instant is tn. The time interval between

tn and tn+1 is referred to as a time step, which is the period

for sensor sampling and temperature prediction. Our system

collects measurements from sensors at the beginning of every

time step. A control cycle is defined as m consecutive time

steps. At the beginning of each control cycle, PTEC determines

the CRAC settings and the server fan speeds to minimize the

predicted overall power consumption of the CRAC systems and

server fans subject to a set of thermal requirements during the

following K time steps (i.e., from tn to tn+K), where K is

the optimization horizon. Based on this scheme, this section

formulates the predictive control problem.

For a total of J CRAC systems and L servers, the predicted

average power consumption during the future K time steps is

P (tn) =
1

K

K∑

k=1




J∑

j=1

PCj(tn, k) +
L∑

l=1

PFl(tn, k)


 , (1)

where PCj is the power consumption of the j-th CRAC system

and PFl is the fan power consumption of the l-th server. We note

that the server temperatures also affect the leakage powers of

server electronics. However, their temperature-induced changes

are negligible compared to the power consumption of server

fans [12]. Therefore, our objective function in Eq. (1) does not

account for server leakage power.

PTEC enforces that the servers will not be overheated in the

future K time steps. Let Tl,k and TU denote the inlet temperature

of the l-th server at time instant tn+k and the maximum allowed

temperature (MAT) at any server inlet, respectively. PTEC aims

to ensure Tl,k < TU , ∀l ∈ [1, L] and ∀k ∈ [1,K]. A challenge

in the design of any predictive control system is how to cope

with prediction errors [10] [15]. Let T̂l,k denote the predicted

inlet temperature for the l-th server at the prediction horizon k.

We assume that the prediction error (i.e., T̂l,k − Tl,k) follows

the normal distribution N (µl,k, σ
2
l,k), which will be empiri-

cally estimated in Section V-B. Thus, the actual temperature

Tl,k ∼ N (T̂l,k − µl,k, σ
2
l,k). PTEC requires that the actual

temperature Tl,k is lower than TU with a confidence level α,

i.e., Pr(Tl,k < TU ) > α. Therefore, the upper bound for T̂l,k,

denoted by T̃l,k, can be derived as

T̃l,k = TU + µl,k − σl,kQ
−1(1− α), (2)

where Q(·) is the Q-function of the standard normal distribution,

i.e., Q(x) = 1√
2π

∫ +∞
x

exp(− z2

2 )dz. The parameters µl,k and

σ2
l,k should be estimated for each server l and prediction horizon

k. They can be continuously updated using the most recent

historical measurements. Note that the above approach can be

extended to address other random distributions for the prediction

error, given the distribution of Tl,k that is derived from T̂l,k and

the prediction error’s distribution.

A data center should be prevented from significant tem-

perature variation. The probability of a server outage can be

doubled when the temporal temperature variation increases by

50% [12]. PTEC computes the temperature variation over a

moving window with size of w ≥ K, from time instant

tn−(w−K) to tn+K . The values before the time instant tn are

historical measurements and the values after that are predicted

temperatures. We use the relative standard deviation (RSD)

to quantify the temperature variation, i.e., RSD = σT /µT ,

where σT and µT are the standard deviation and mean of the

temperatures in the moving window. We denote RSDl the RSD

for the l-th server. PTEC requires that the RSD of each server is

upper-bounded by a constant RSDU specified by the data center

operator. For instance, the setting RSDU = 0.04 can maintain a

satisfactorily low fluctuation-induced hardware error rate [12].

We now formally formulate the thermal and energy control

problem that minimizes the power consumption of CRACs and

server fans. For a total of J CRACs and L servers, let D, S,

and B denote the vectors of server fan PWM duty cycles, CRAC

temperature setpoints and blower speeds over the optimization

horizon, respectively, i.e., D = [D1, . . . , DL], S = [S1, . . . , SJ ],
and B = [B1, . . . , BJ ]. We formulate the problem as follows:

Problem 1: To find D, S, and B to minimize the predicted

average power consumption given by Eq. (1), subject to that,

∀l ∈ [1, L], ∀k ∈ [1,K],

1) the predicted inlet temperatures are lower than an upper

bound: T̂l,k ≤ T̃l,k, where T̃l,k is given by Eq. (2); and
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2) the RSDs of the inlet temperature are lower than an upper

bound: RSDl ≤ RSDU .

PTEC solves Problem 1 at the beginning of each control cycle

and controls the CRAC systems and server fans according to

the solution. Problem 1 is a non-linear constrained optimization

problem with prohibitive computational complexity due to the

complex thermal interactions between CRAC systems and server

fans. In particular, the exhaustive search has an exponential

complexity with respect to the total number of CRAC systems

and server fans. To make the problem tractable and achieve

satisfactory real-time performance, we propose a coordinated

control approach. Specifically, the servers will control the fan

speeds autonomously according to server inlet temperatures and

CPU utilizations, by using an algorithm in Section V-C. Thus,

the variables of Problem 1 are reduced to S and B only. It

is important to note that, when PTEC assesses each candidate

solution 〈S,B〉, the resulted fan speeds under the autonomous

control algorithm will be used to calculate the predicted average

power consumption, inlet temperatures, and RSDs. Thus, this

coordinated control approach accounts for the interdependence

between server fans and CRAC systems. Therefore, it does not

substantially degrade the solution quality.

B. Real-Time Temperature Prediction

PTEC integrates a real-time data-driven temperature predic-

tion algorithm [10] that predicts server inlet temperatures based

on cyber and physical status of the data center. This section

briefly reviews the algorithm. The input of the algorithm in-

cludes the temperatures at a set of selected locations, e.g., server

inlets and CRAC hot air return registers, measured by either a

deployed wireless sensor network or server built-in sensors. For

a total of D temperatures, we define the temperature distribution

T = [T1;T2; . . . ;TD] ∈ R
D×1, where Td is the temperature at

the d-th location in the data center. The temperature distribution

is predicted by a set of thermal variables that significantly

affect T and are monitored by sensors. They include the CRAC

setpoints S and blower speeds B, server fan speed control

settings R, and CPU utilizations U. Moreover, the historical

temperature distributions also largely affect the temperature

distributions in the near future. Therefore, we define the state

of the monitored data center at a time instant, denoted by p,

as a collection of thermal variables, i.e., p = [S;B;R;T;U].
The state p is measured every time step. At the beginning of a

control cycle, the temperature distribution at time instant tn+k,

denoted by T(tn+k), is predicted based on the most recent R
states. By setting increasing prediction horizon k, the algorithm

predicts the temporal evolution of T. This machine-learning-

based prediction algorithm, which is trained with data from real

sensors and off-line CFD simulations, achieves a desirable trade-

off between prediction fidelity and computation overhead. It is
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shown that the average prediction errors are less than 1◦C when

the prediction horizon k = 10 minutes for a production data

center [10]. Moreover, its high-speed feature allows PTEC to

iteratively search for the best control solution (cf. Section V-D).

Our temperature prediction approach assumes a fixed CPU

utilization during the prediction horizon. By integrating existing

server workload prediction algorithms (e.g., [13]), the accuracy

of temperature prediction can be improved under dynamic

workload. For instance, if the server workload is predicted to

change significantly at time instant tn+K′ , where 0 < K ′ < K,

the temperature distributions T(tn+k) where K ′ ≤ k ≤ K
can be predicted based on the state pn+K′ that incorporates

predicted workload.

Fig. 6 shows the histograms of temperature prediction errors

for a server inlet. The errors can be well characterized by

normal distributions. Consistent with intuition, the error variance

increases with the prediction horizon. The error means and

variances for different prediction horizons are used in Eq. (2).

C. Dynamic Fan Speed Control

The main purpose of server fan is to prevent the internal

electronic components, e.g., CPU, from overheating. A key

drawback of the native fan speed control approach discussed in

Section IV-A is the neglect of the server status (e.g., CPU uti-

lization) that also affects component temperatures. For instance,

the fan may run at an unnecessarily high speed when the server

is idle. Several existing fan control algorithms [14] [26] account

for the CPU workload. However, it is often difficult to predict

the fan power consumption when the system is operated under

these algorithms. Thus, they cannot be readily integrated with

PTEC that aims to minimize the total power consumption of

CRAC systems and server fans.

Our new fan speed control approach, called Dynamic Fan

Speed Control (DFSC), jointly considers CPU utilization and

inlet temperature. Fig. 7 shows the minimal fan speeds (in PWM

duty cycle) to meet two given upper bounds of CPU temperature

(46◦C and 40◦C) versus server inlet temperature, under various

CPU utilizations. We can observe that the minimal fan speed

has a near-linear relationship with the inlet temperature. More

importantly, such a relationship varies with the CPU utilization.

Thus, DFSC reuses the native fan speed control algorithm but

adjusts its setting in response to the CPU utilization changes

while meeting a CPU temperature upper bound requirement.

Specifically, DFSC discretizes the CPU utilization into M
levels. The first level represents full utilization while the M -

th level represents idle. Each level is mapped to a setting of

two thresholds of the native control algorithm. As illustrated
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Fig. 8. Example of partitioning. The servers within an oval are associated
with the CRAC in the oval. Region g2 contains CRAC3 only since Server5
and Server6 are associated with CRAC3 only. CRAC1 forms a region since
Server3 is associated with CRAC1 only. No servers are associated with CRAC2
exclusively. Therefore, CRAC2 will be merged with CRAC1 to form region g1.

in Fig. 2, the setting for the i-th CPU utilization level is

denoted by ri = 〈Vi,Wi〉, where i ∈ [1,M ]. When the CPU

utilization is at the i-th level, the native algorithm will be

invoked with the setting ri. Under the setting r1, the CPU

temperature upper bound should be met when the server is fully

utilized. Similarly, under the setting rM , the CPU temperature

upper bound should be met when the server is idle. The settings

{r1, r2, . . . , rM} are hardware-dependent and can be empirically

measured, e.g., through off-line experiments, or provided by

hardware manufacturers. The servers can also run an on-line

feedback fan controller [14] for a certain period of time to

measure these settings when the CPU temperature is stable.

Once the settings are measured, the servers can start using

DFSC. In Fig. 7, the endpoints of dashed lines show the DFSC

settings with M = 3.

D. Predictive Controller

In our current implementation of PTEC, we use the con-

strained simulated annealing (CSA) algorithm [24] to search for

the CRAC setting (S and B) that minimizes Eq. (1) subject to

the thermal safety requirements. The CSA algorithm is more

efficient than the brute-force search and can asymptotically

converge to the optimal solution [24]. For instance, for 229

servers and 4 CRAC units, each of which has 6 different states

of setpoint and blower speed, it takes the CSA algorithm only 5

seconds on a 3.4GHz desktop computer to converge to a near-

optimal solution with an optimization horizon of 8.

We now discuss the settings of control cycle m and opti-

mization horizon K. First, intuitively, the system with a short

control cycle can respond to the thermal condition changes

quickly. However, a short control cycle allows less time for

solving the optimization problem. Second, it is desirable to

set a larger optimization horizon K such that the predictive

controller accounts for a longer period of thermal dynamics

into the future. However, its setting must also consider both the

prediction accuracy and the controller’s computational overhead.

Therefore, the settings for m and K should achieve a satisfactory

trade-off between control quality and computational overhead.

In our testbed experiment with 6 servers and a portable AC, the

control decision can be computed within a second when K is

set to 6 to 9 minutes. Therefore, we set m = 1 to 3 minutes

since the AC should not be switched frequently. Under these

settings, nearly 90% of prediction errors are within 1◦C.

E. Scalable Partition-Based Predictive Controller

Due to the non-convexity of Problem 1, the computational

overhead of CSA increases exponentially with the number of

CRAC systems. The resulted delay may jeopardize the real-time

performance of PTEC for large-scale data centers. This section

presents a partition-based algorithm that can significantly re-

duce the computational overhead while maintaining satisfactory

solution quality. It consists of an off-line stage and an on-line

stage. The off-line stage partitions the data center into several

regions based on the thermal correlation index (TCI) [7], which

characterizes the cooling effectiveness for a location provided by

a CRAC system. The on-line stage solves Problem 1 within each

region, and iteratively revises the sub-solution for each region to

meet the thermal requirements of the servers out of any regions.

The TCI for the l-th server and the j-th CRAC system is

defined as γl,j =
∆Tl

∆TCj
, where ∆TCj denotes a step change of

the supply air temperature of the j-th CRAC system and ∆Tl is

the resulted steady temperature change at the l-th server inlet. A

larger γl,j indicates a stronger capability of the CRAC system

to remove the heat from the server. TCI can be experimentally

measured by perturbing CRAC setpoints or numerically obtained

from Computational Fluid Dynamics simuations [7]. The l-th
server and the j-th CRAC system are associated if γl,j ≥ λ,

where λ ∈ (0, 1) is a threshold specified by the system operator.

Thus, the temperature at the l-th server’s inlet is mainly affected

by its associated CRAC systems. For instance, in Fig. 8, Server5

and Server6 are associated with CRAC3 only, and their inlet

temperatures are mainly affected by CRAC3.

The off-line stage partitions the data center into a number of

regions based on the TCIs. For a region denoted by g, let Cg

denote a set of CRAC systems in this region and Eg denote

a set of servers that are associated with the CRAC systems in

Cg exclusively. Formally, Eg = {l|γl,j ≥ λ, ∃j ∈ Cg, ∀l} ∩
{l|γl,j < λ, ∀j /∈ Cg, ∀l}. For example, the two dash-dotted

rectangles in Fig. 8 show two such regions, denoted as g1 and g2.

In this example, Cg1 = {CRAC1,CRAC2}, Cg2 = {CRAC3},

Eg1 = {Server1,Server2,Server3}, Eg2 = {Sever5,Server6}.

Let C and G denote the set of all CRAC systems and the set

of all regions. The off-line stage looks for a partition scheme to

minimize max∀g∈G |Cg| subject to 1)
⋃

g∈G
Cg = C, 2) Cg ∩

Ch = ∅, ∀g 6= h, and 3) Eg 6= ∅, ∀g ∈ G. As we will solve

Problem 1 within each region g in the on-line stage, the objective

of minimizing the maximum number of CRAC systems in any

region significantly reduces the computation overhead of the on-

line stage. We develop a heuristic algorithm based on an existing

independent set algorithm [9] to solve this partitioning problem.

The details of the algorithm are omitted due to space constraints

and can be found in [11]. We note that, some servers that are

associated with many CRAC systems may be out of any Eg , e.g.,

Server4 in Fig. 8. These servers are called ungrouped servers.

Based on the regions partitioned by the off-line stage, the on-

line stage solves Problem 1 as follows. Initially, for each region

g, Problem 1 is solved for Cg and Eg using the CSA algorithm.

The solution for a region is called a sub-solution. The initial

solution for the data center thus comprises all sub-solutions.

However, this solution may not meet the thermal requirements

for the ungrouped servers. The on-line stage iteratively updates

the solution by solving Problem 1 for each region plus all these

ungrouped servers. As an ungrouped server is cooled by the

CRAC systems from multiple regions, its MAT constraint can

be relaxed in each region where it is associated with a CRAC

system. The relaxation in each iteration is as follows. For a
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prediction horizon k, the predicted inlet temperature T̂l,k of the

l-th ungrouped server can be computed based on the solution in

the previous iteration. If the predicted temperature T̂l,k exceeds

the upper bound T̃l,k given by Eq. (2), the deviation T̂l,k − T̃l,k

characterizes the amount of extra heat that needs to be removed

from the l-th server inlet [8]. PTEC allocates this extra heat to

each region g proportionally based on the total TCI of all CRAC

systems in g. This is achieved by relaxing the MAT constraint

for the l-th ungrouped server in each region g as T̃ g
l,k = T̂l,k −∑

j∈Cg
γl,j

∑
j∈C γl,j

· (T̂l,k − T̃l,k). Problem 1 is solved for each region g

with the relaxed MAT constraint T̃ g
l,k for each ungrouped server

l. The above process is repeated until all ungrouped servers’

thermal requirements are satisfied. The pseudocode of the on-

line stage and its convergence proof are omitted due to space

constraints and can be found in [11].

In the partition-based predictive controller, Problem 1 is

solved for each small region, resulting in significantly lower

computation overhead compared with that of solving Problem 1

for the whole data center. In Section VII-C, we will evaluate the

overhead and effectiveness of this approach.

VI. IMPLEMENTATION

A. Testbed and Sensor Deployment

We implemented PTEC on a single-rack testbed shown in

Fig. 9. It consists of a rack of 15 1U servers in a 5× 6 square

feet room insulated by foam boards. On the rack, 15 servers are

grouped every three servers with a 2U distance between every

adjacent two groups. Each server is equipped with 2 PWM-

controlled fans (Delta Electronics BFB1012EH) to cool the

internal components. Each fan consumes a maximum of 29.4W

input power and the two fans contribute up to 25% of total

power consumption of a server. Each server also has three on-

board temperature sensors to monitor the CPU and server inlet

temperatures. A Tripp Lite portable AC (SRCOOL12K) with a

rated power of 3.5 kW is placed aside the server rack within the

room. To enable its automatic control, we connect it to several

power relays, which can be remotely switched by a program. Its

return hot air register faces the side of server outlets, drawing

the hot air. It delivers cold air through a register located at the

bottom of the room in front of the rack, which is consistent

with the popular raised floor cooling design in production data

centers. However, due to this AC’s limited cooling capacity, up

to 6 servers can be running at the same time in our experiments.

A total of 15 Iris temperature sensors are mounted with brackets

at the outlets of the 5 group of servers. To monitor the AC status,

we place an Iris temperature sensor at the AC cold air register

and another at the hot air return register. To measure the power

consumption of the servers and AC, we attach a wireless power

meter for each server and AC. This small testbed allows us to

study the fine-grained performance of PTEC.

B. System Implementation

Our system consists of two data collection networks and

a base station that runs the predictive controller. The base

station collects the data from the wireless sensors connected

via 802.15.4 wireless links and the internal server sensors (inlet

temperature sensor and fan speed sensor) over the Ethernet.

Cold air
inlet
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Power 
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Hot air
return
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inlets
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Fig. 9. A single-rack testbed that consists of a base station, a portable AC, a
rack of 15 servers, and a total of 23 temperature/power sensors.
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Fig. 10. Server power and CPU temperatures under DFSC and the baseline
approach when the server is idle.

It also runs the optimization algorithm and sends the control

commands to the AC. The data collection is implemented with

JAVA on the base station, while the temperature prediction and

the predictive controller are implemented with MATLAB.

Sensor network. We use a single-hop network architecture,

where the base station sends the data collection requests to the

sensors sequentially and each sensor transmits the measurements

back. Every 30 seconds, the base station performs a round of

sequential data collection from all sensors. Note that a multi-

hop network topology can be used when more server racks are

monitored. As this collection scheme works in a time-division

fashion, the system experiences few collisions between the data

transmissions of different sensors. The programs on all wireless

sensors are implemented in TinyOS 2.1.

Server network. CPU utilization, on-board temperatures, fan

speeds and DFSC settings are important thermal variables from

each server. Data centers typically run various server monitoring

tools (e.g., atop, ganglia) that can collect on-board sensor

information. We implement a program to control and measure

the CPU utilization, and report on-board temperatures and

fan speeds from the lm-sensors utilities. The base station

leverages the existing Ethernet infrastructure to collect these on-

board sensor readings and DFSC settings.

Fan speed and AC control. A GNU BASH script running on

each server implements the DFSC algorithm. A separate wireless

connection is established between the base station and a TelosB

mote that connects to a power relay control circuit board of the

AC. When the mote receives the control signal from the base

station, it turns on/off the AC.

VII. PERFORMANCE EVALUATION

We evaluate the performance of PTEC with testbed experi-

ments in Section VII-A and VII-B2, and trace-driven Computa-

tional Fluid Dynamics simulations in Section VII-C.
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power; (b) CPU utilization; (c) Server power excluding non-idle CPU power;
(d) Server inlet temperature.

TABLE I
AVERAGE POWER CONSUMPTION (WATT)

A1 A2 A3 A4

AC power 903 639 931 1254

Server power 1065 1035 1077 1279

A. Effectiveness of DFSC

DFSC adopts two settings, i.e., r1 = 〈28◦C, 34◦C〉 and

r2 = 〈30◦C, 42◦C〉. We employ a baseline approach that

controls the fan speed solely based on the setting r1 to meet

the MAT requirement when the server is fully utilized. This

baseline is consistent with the static fan speed control scheme

used in most servers. As both algorithms adopt r1 when the CPU

is fully utilized, we compare them when the server is idle. The

two curves in Fig. 10(a) show the server power consumption

under the two approaches. The server power consumption of

the baseline increases with inlet temperature much faster than

DFSC. It reaches about 200W when the temperature is 34◦C. In

comparison, DFSC consumes less than 180W at the temperature

of 34◦C. Therefore, each individual idle server can save more

than 20W if TU is 34◦C. Moreover, as shown in Fig. 10(b),

the CPU temperatures under our DFSC approach are slightly

higher than those under the baseline approach. However, they are

still significantly lower than the maximum allowed temperature

of the CPUs (69◦C). This result shows that DFSC can save

significant amount of energy on the idle or low utilized servers.

B. Effectiveness of Predictive Controller

In this experiment, we compare PTEC with two baselines.

The first baseline, referred to as max cooling, sets a fixed

low CRAC setpoint while the server fans maintain the full

speed. This baseline provides the maximum cooling capability

to prevent overheating. The second baseline, referred to as

reactive control, applies DFSC to control server fans and a

hysteresis principle to control the AC reactively, so that the inlet

temperatures are maintained within a range. Let R(TU , TB)
denote a reactive control strategy specified by two parameters,

i.e., the temperature upper bound TU and the temperature band

TB . Specifically, when the inlet temperature exceeds TU , the AC

starts to work until the inlet temperature is reduced to TU −TB .

Then, the AC is turned off.

1) Comparison with max cooling: Fig. 11 shows the com-

parison between PTEC and the max cooling scheme. The

optimization horizon K = 12 (6 minutes), the control cycle

length m = 2 (1 minute), and the MAT constraint TU = 33◦C.
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Fig. 12. Reactive control approach when the servers are idle. (a) AC power;
(b) Server power excluding non-idle CPU power; (c) Server inlet temperature.
Three periods are marked from B1 to B3.

We intentionally use a large RSDU to study the effect of

MAT constraint. The entire experiment comprises four periods,

i.e., A1 to A4. Periods A1 to A3 run PTEC and Period A4

runs the max cooling. In Period A1, the CPU is fully utilized

(Fig. 11(b)), which generates significant heat and may cause fast

temperature rise. In response to this high CPU utilization, DFSC

configures server fans to r1, resulting in an average server power

consumption of 170W (Fig. 11(c)). Note that, in Fig. 11(c), CPU

power consumption is not included and the power fluctuations

are mostly caused by the fan speed changes. In Fig. 11(d), we

can see that the MAT constraint is satisfied. When the system

enters Period A2, the server switches to idle state. With lower

CPU utilization, DFSC configures server fans to r2, resulting in

a relatively low server power consumption (Fig. 11(c)). Since

the CPU utilization is low in Period A2, the system maintains a

higher inlet temperature without overheating the servers. Thus,

the AC can be turned off more frequently to save energy. In

Period A3, the server CPU utilization becomes high again and

the inlet temperature is maintained at a lower level. In Period A4,

we apply the max cooling approach. Table I shows the average

AC and server power consumption during each period. PTEC in

Period A1 (i.e., full CPU utilization) and A2 (i.e., server idle)

reduces total power consumption by 22% and 34%, respectively,

compared with the max cooling in Period A4.

2) Comparison with reactive control: Fig. 12 shows the

experiment results for the reactive control. We start the control

with TU = 32◦C and TB = 3◦C. At about 50 minutes, we

increase TU to 33◦C. Under both settings, the inlet temperature

remains below TU . After 1.5 hours, we set TB = 2◦C. An

unexpected AC failure occurred in this experiment, during which

the AC failed to respond to the turning-on request due to a

wireless link disconnection. As a result, the servers increase the

fan speeds to respond to the increasing inlet temperatures caused

by the failure. In Fig. 13(c), the higher power consumption

indicates the higher fan speed. However, this failure lasts for

3 minutes only and does not affect the rest of the experiment.

After about 2.3 hours, the temperature exceeds TU for 2 minutes

even if the AC has been turned on to react to overshooting TU .

Thus, for the reactive control approach to cope with the dynamic

heat generated in a data center, TU should be sufficiently low

and TB should be sufficiently large. Such conservative settings

often lead to overcooling and excessive power consumption.

Fig. 13 shows the results of the inlet temperature of a server

under PTEC and the reactive control approach with TU = 33◦C.
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Control cycle length is set to m = 6 (3 minutes). It can be

seen that PTEC consistently maintains the temperature below

TU . The reactive control with TU = 33◦, however, exceeds

the MAT constraint TU frequently. By lowering the TU to

32◦C, the reactive control can maintain the temperature below

TU . Note that as all approaches adopt the DFSC, their fan

power consumptions are similar. Fig. 14 shows the AC power

consumption of PTEC and the reactive control approach when

the servers are idle. PTEC can reduce the power by up to 30%.

In addition, PTEC also reduces the power by up to 20% when

the servers are fully utilized.

C. Trace-Driven Computational Fluid Dynamics Simulations

In addition to the testbed evaluation, we study the per-

formance of PTEC by Computational Fluid Dynamics (CFD)

simulations driven by real workload data traces collected from

the High-Performance Computing Center (HPCC) of Michigan

State University. We use a commercial CFD software (ANSYS

Fluent) to model a part of this data center, which hosts five

racks of totally 229 servers. The racks are arranged in two rows

with a cold aisle between them. Two in-row CRAC systems

are installed for each row. Due to the lack of a complete CFD

model of HPCC, we model each CRAC system as a cooling

unit with three discrete cooling powers, i.e., 24 kW (rated power

of each CRAC system in HPCC), 17 kW, and 9.6 kW. Thus,

PTEC selects a cooling power instead of tuning temperature

setpoint. Moreover, each CRAC system has two blower speeds.

The simulations are driven by the server workload traces of these

229 servers. A time step is 5 minutes. Other settings are: m = 4
(20 minutes), K = 8 (40 minutes), and w = 18 (1.5 hours).

Fig. 15(a) shows the results of server inlet temperatures under

PTEC. Initially, we set TU = 26◦C. We can see that PTEC

controls the server inlet temperatures at around 26◦C. At about

1.3 hours and 2.3 hours, we set TU = 22◦C and TU = 26◦C,

respectively. All inlet temperatures are maintained at around TU .

Fig. 15(b) shows the resulting CRAC power consumption. After

we increase TU from 22◦C to 26◦C at about 2.3 hours, PTEC

controls the CRAC systems to gradually increase the server inlet

temperatures without violating the RSD requirement, and the

CRAC power consumption is reduced by up to 35%.
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Fig. 16. Temperature control under dynamic CPU utilizations.

We now evaluate the effectiveness of PTEC under dynamic

CPU utilization. The real CPU utilization traces span 96 hours.

We select a portion of 24 hours that exhibit the highest dynamic

levels to drive the simulation. For clear illustration, Fig. 16

shows the results of only three racks. The average CPU uti-

lizations of these three racks are shown in Fig. 16(b). Initially,

we set TU = 24◦C. Since the average utilizations of all three

racks are high, PTEC keeps relatively low inlet temperatures to

prevent overheating. At the 5.2 hours, we increase TU to 25◦C.

Since the CPU utilization is still high, PTEC cannot further

increase the inlet temperatures. After about 6 hours, the CPU

utilization of Rack3 drops significantly. PTEC is then able to

increase the inlet temperature without violating the new TU .

After 8 hours, PTEC reduces the inlet temperatures in response

to the increased utilization of Rack3. After about 14 hours, we

set TU = 26◦C. Initially, the inlet temperatures are maintained

at a low level due to the high CPU utilization. After 16 hours,

PTEC gradually increases the inlet temperatures close to TU

in response to the reduced CPU utilizations. This experiment

shows that PTEC can well adapt to the dynamics of realistic

data center server workload.

We also compare PTEC with a baseline approach that is a

variant of an existing representative control approach TAPO

[14]. TAPO uses a fixed low CRAC temperature setpoint TL

if the CPU utilization is higher than a predefined threshold u.

Otherwise, it uses a fixed high CRAC temperature setpoint TH .

In our simulations, we set TL = 22◦C and TH = 26◦C. In

[14], the threshold u is 0.5. Under this setting, as shown in

Fig. 16(c), TAPO always uses TL since the CPU utilizations in

the simulation never drop below 0.5. By setting u = 0.81, the

cooling power consumption under TAPO is comparable to that

under PTEC. This result shows that the setpoints of TAPO need

to be manually tuned to achieve the desirable performance. As

the CPU utilization is unpredictable in real data centers, TAPO

may not well adapt to dynamic CPU utilization.

We finally evaluate the partition-based algorithm in Sec-

tion V-E. We partition HPCC to four regions, each of which con-

tains one CRAC system. We compare our approach with a brute-



10

0 1 2
0.7

0.8

0.9

1

Temperature overshoot (°C)

C
D

F

 

 

Brute−force

Partition

Fig. 17. CDF of temperature over-
shoot.

1 2 3 4
0

20

40

60

80

Number of CRACs

E
x

ec
u

ti
o

n
 t

im
e 

(s
)

 

 

Partition

Brute−force

Fig. 18. Average execution time
vs. the number of CRACs.

40

80

100

P
o
w

er
 

(k
W

)

 

 

0 0.5 1 1.5 2 2.5 3 3.5
0

50

100

Time (hours)

E
x
ec

u
ti

o
n
 

ti
m

e 
(s

)

 

 

Partition Brute−force

Partition Brute−force

(b)

(a)

Fig. 19. Performance comparison between the brute-force and partition-based
approaches. (a) power; (b) execution time.

force approach that exhaustively searches the optimal solution

to Problem 1 for the whole data center. Fig. 17 shows the Cum-

mulative Distribution Function (CDF) of the inlet temperature

overshoots over TU in a 12-hour simulation. For the brute-force

approach, 90% of temperatures do not exceed TU , and more

than 95% of all temperatures fall within 1◦C above TU . The

performance of our approach is slightly lower than the brute-

force approach. As shown in Fig. 17, for a temperature overshoot

of 1◦C, the two approaches are comparable. In practice, we

can set 1◦C safety margin between the setpoint and the over-

heating temperature. Fig. 19 shows that our approach achieves

comparable total power consumption and reduces the execution

time significantly, compared with the brute-force approach. The

average execution time of our approach is only 5% of that of the

brute-force approach. Moreover, Fig. 18 shows that the execution

time on an Intel Core i7-2600K 3.4GHz CPU of the brute-force

approach increases exponentially with the number of CRAC

systems. On the contrary, the execution time of our approach

increases slowly and linearly with the number of CRACs. These

results show that our approach can find near-optimal solutions

with satisfactory scalability. The low computational overhead

enables PTEC to be implemented on portable hardware without

relying on the computing infrastructure of monitored data center.

VIII. CONCLUSION

This paper presents the design and evaluation of PTEC – a

system for predictive thermal and energy control in data centers.

PTEC leverages the server built-in sensors and monitoring

utilities, as well as a wireless sensor network to monitor the

thermal and power conditions of a data center. Based on the

sensor data, it predicts the server temperatures in real time,

and optimizes temperature setpoints and cold air supply rates

of cooling systems, as well as the speeds of server internal fans,

to minimize their overall energy consumption. Moreover, PTEC

enforces a set of thermal safety requirements including the upper

bounds on server inlet temperatures and their variations, to pre-

vent server overheating and reduce server hardware failure rate.

Experiments on a small hardware testbed and trace-driven CFD

simulations based on a production data center show that PTEC

can reduce the cooling and circulation energy consumption by

up to 34% and 30%, compared with an overcooling strategy and

a reactive control strategy, respectively.

ACKNOWLEDGMENT

This research was supported in part by the U.S. National

Science Foundation under grants CNS-0954039 (CAREER

Award), CNS-1218475, NS-1218154 and CNS-1143607 (CA-

REER Award), in part by Singapore’s Agency for Science, Tech-

nology and Research under the Human Sixth Sense Programme.

REFERENCES

[1] http://www.google.com/about/datacenters/.
[2] ASHRAE 2011 thermal guidelines for data processing environments.
[3] Fancontrol. http://linux.die.net/man/8/fancontrol.
[4] Uptime institute 2012 data center industry survey, 2012.
[5] Uptime institute 2013 data center industry survey, 2013.
[6] A. Banerjee, T. Mukherjee, G. Varsamopoulos, and S. K. S. Gupta.

Cooling-aware and thermal-aware workload placement for green hpc data
centers. In IGCC, 2010.

[7] C. E. Bash, C. D. Patel, and R. K. Sharma. Dynamic thermal management
of air cooled data centers. In Thermal and Thermomechanical Phenomena

in Electronics System, 2006.
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