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Abstract—Wireless sensor networks (WSNs) have been increas-
ingly available for critical applications such as security surveillance
and environmental monitoring. An important performance mea-
sure of such applications is sensing coverage that characterizes how
well a sensing field is monitored by a network. Although advanced
collaborative signal processing algorithms have been adopted by
many existing WSNs, most previous analytical studies on sensing
coverage are conducted based on overly simplistic sensing models
(e.g., the disc model) that do not capture the stochastic nature of
sensing. In this paper, we attempt to bridge this gap by exploring
the fundamental limits of coverage based on stochastic data fu-
sion models that fuse noisy measurements of multiple sensors. We
derive the scaling laws between coverage, network density, and
signal-to-noise ratio (SNR). We show that data fusion can signif-
icantly improve sensing coverage by exploiting the collaboration
among sensors when several physical properties of the target signal
are known. In particular, for signal path loss exponent of (typ-
ically between 2.0 and 5.0), � � �

� �

�
�, where � and �

are the densities of uniformly deployed sensors that achieve full
coverage under the fusion and disc models, respectively. Moreover,
data fusion can also reduce network density for regularly deployed
networks and mobile networks where mobile sensors can relocate
to fill coverage holes. Our results help understand the limitations
of the previous analytical results based on the disc model and pro-
vide key insights into the design of WSNs that adopt data fusion al-
gorithms. Our analyses are verified through extensive simulations
based on both synthetic data sets and data traces collected in a real
deployment for vehicle detection.

Index Terms—Coverage, data fusion, mobility, performance
limits, target detection, wireless sensor network (WSN).

I. INTRODUCTION

R ECENT years have witnessed the deployments of
wireless sensor networks (WSNs) for many critical

applications such as security surveillance [1], environmental
monitoring [2], and target detection/tracking [3]. Many of these
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applications involve a large number of sensors distributed in
a vast geographical area. As a result, the cost of deploying
these networks into the physical environment is high. A key
challenge is thus to predict and understand the expected sensing
performance of these WSNs. A fundamental performance
measure of WSNs is sensing coverage that characterizes how
well a sensing field is monitored by a network. Many recent
studies are focused on analyzing the coverage performance of
large-scale WSNs [4]–[10].

Despite the significant progress, a key challenge faced by
the research on sensing coverage is the obvious discrepancy
between the advanced information processing schemes adopted
by existing sensor networks and the overly simplistic sensing
models widely assumed in the previous analytical studies. On
the one hand, many WSN applications are designed based on
collaborative signal processing algorithms that improve the
sensing performance of a network by jointly processing the
noisy measurements of multiple sensors. In practice, various
stochastic data fusion schemes have been employed by sensor
network systems for event monitoring, detection, localization,
and classification [1], [3], [11]–[16]. On the other hand, col-
laborative signal processing algorithms such as data fusion
often have complex complications to the network-level sensing
performance such as coverage. As a result, most analytical
studies on sensing coverage are conducted based on overly
simplistic sensing models [4]–[8], [10], [17]–[21]. In particular,
the sensing region of a sensor is often modeled as a disc with
radius centered at the position of the sensor, where is
referred to as the sensing range. A sensor deterministically
detects the targets (events) within its sensing range. Although
such a model allows a geometric treatment to the coverage
problem, it fails to capture the stochastic nature of sensing.

To illustrate the inaccuracy of the disc sensing model, we plot
the sensing performance of an acoustic sensor in Fig. 1 using
the data traces collected from a real vehicle detection experi-
ment [11]. In the experiment, the sensor detects moving vehicles
by comparing its signal energy measurement against a threshold
(denoted by ). Fig. 1(a) plots the probability that the sensor de-
tects a vehicle (denoted by ) versus the distance from the ve-
hicle. No clear cutoff boundary between successful and unsuc-
cessful sensing of the target can be seen in Fig. 1(a). A similar
result is observed for the relationship between the sensor’s false
alarm rate (denoted by ) and the detection threshold shown
in Fig. 1(b). Note that is the probability of making a positive
decision when no vehicle is present.

In this paper, we develop an analytical framework to explore
the fundamental limits of coverage of large-scale WSNs based
on stochastic data fusion models. To characterize the inherent
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Fig. 1. Sensing performance of an acoustic sensor in detecting vehicle. (a) De-
tection probability versus the distance from the vehicle. (b) False alarm rate
versus detection threshold.

stochastic nature of sensing, we propose a new coverage mea-
sure called -coverage, where and are the upper and
lower bounds on the system false alarm rate and detection prob-
ability, respectively. Compared to the classical definition of cov-
erage, -coverage explicitly captures the performance re-
quirements imposed by sensing applications. For instance, the
full (0.05, 0.9)-coverage of a region ensures that the probability
of detecting any event occurring in the region is no lower than
90% and that no more than 5% of the network reports are false
alarms.

The main focus of this paper is to investigate the fundamental
scaling laws between coverage, network density, and signal-to-
noise ratio (SNR). To the best of our knowledge, this work is
the first to study the coverage performance of large-scale WSNs
based on collaborative sensing models. Our results not only
help understand the limitations of the existing analytical re-
sults based on the disc model, but also provide key insights into
designing and analyzing the large-scale WSNs that adopt sto-
chastic fusion algorithms. The main contributions of this paper
are as follows.

• We derive the -coverage of random networks under
both data fusion and probabilistic disc models. The existing
analytical results based on the classical disc model can be
naturally extended to the context of stochastic event detec-
tion. With these results, we can compute the minimum net-
work density before the deployment or turn on the fewest
sensors of an existing network to achieve a desired level of
sensing coverage.

• We study the fundamental scaling laws of -coverage.
Let and denote the minimum network densities for
achieving full coverage under the disc and fusion models,
respectively. For randomly deployed networks, we prove
that , where is the radius of
sensing disc and is the fusion range within which the
measurements of all sensors are fused.1 As fusion range
can be much greater than sensing range, is much smaller
than . Furthermore, when the optimal fusion range is
adopted, , where is the signal’s path
loss exponent that typically ranges from 2.0 to 5.0. In par-
ticular, when (which typically holds for acoustic

1We adopt the following asymptotic notation: 1) ���� � ������� means
that ���� is the asymptotic upper bound of ����; 2) ���� � ������� means
that ���� is the asymptotic tight bound of ����.

TABLE I
NETWORK DENSITIES FOR ACHIEVING FULL COVERAGE

signals), . For regularly deployed networks
(e.g., grid networks), we prove that . The above re-
sults show that data fusion can effectively reduce the net-
work density compared to the disc model. Furthermore,
the existing analytical results based on the disc model sig-
nificantly overestimate the network density required for
achieving coverage.

• We study the impact of SNR on the network density when
full coverage is required. Both for randomly and regularly
deployed networks, we prove that .
This result suggests that data fusion is more effective in
reducing the density of low-SNR network deployments,
while the disc model is suitable only when the SNR is suf-
ficiently high.

• Besides static networks, we also study the coverage perfor-
mance of mobile networks, in which mobile sensors relo-
cate themselves to fill coverage holes after the initial de-
ployment. We extend a relocation strategy that is based on
the disc model [18] to the data fusion model. We show
that data fusion results in lower network density without
increasing the moving distance of mobile sensors.

• To verify our analyses, we conduct extensive simulations
based on both synthetic data sets and real data traces col-
lected from 20 sensors. The simulation results validate our
analytical results under a variety of realistic settings.

Table I summarizes the main results of this paper.

II. RELATED WORK

Many sensor network systems have incorporated various
data fusion schemes to improve the system performance.
In the surveillance system based on MICA2 motes [1], the
system false alarm rate is reduced by fusing the detection
decisions made by multiple sensors. In the DARPA SensIT
project [11], advanced data fusion techniques have been em-
ployed in a number of algorithms and protocols designed for
target detection [3], [13], localization [14], [15], and classifi-
cation [11], [12]. Despite the wide adoption of data fusion in
practice, the performance analysis of large-scale fusion-based
WSNs has received little attention.

There is vast literature on stochastic signal detection based
on multisensor data fusion. Early works [22], [23] focus on
small-scale powerful sensor networks (e.g., several radars). The
theories on decentralized detection are surveyed in [24]. Recent
studies on data fusion have considered the specific properties
of WSNs such as sensors’ spatial distribution [11], [12], [16],
limited sensing/communication capability [13], and sensor
failure [25]. However, these studies focus on analyzing the
optimal fusion strategies that maximize the system performance
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of a given network. In contrast, this paper explores the funda-
mental limits of sensing coverage of WSNs that are designed
based on existing data fusion strategies.

As one of the most fundamental issues in WSNs, the cov-
erage problem has attracted significant research attention. Pre-
vious works fall into two categories—namely, coverage mainte-
nance algorithms/protocols and theoretical analysis of coverage
performance. These two categories are reviewed briefly as fol-
lows, respectively.

Early work [26]–[28] quantifies sensing coverage by the
length of target’s path where the accumulative observations of
sensors are maximum or minimum [26]–[28]. However, these
works focus on devising algorithms for finding the target’s
paths with certain level of coverage. Several algorithms and
protocols [9], [29] are designed to maintain sensing coverage
using the minimum number of sensors. However, the effec-
tiveness of these schemes largely relies on the assumption that
sensors have circular sensing regions and deterministic sensing
capability. Several recent studies [30]–[33] on the coverage
problem have adopted probabilistic sensing models. The nu-
merical results in [33] show that the coverage of a network can
be expanded by the cooperation of sensors through data fusion.
However, these studies do not quantify the improvement of cov-
erage due to data fusion techniques. Different from our focus
on analyzing the fundamental limits of coverage in WSNs,
all of these studies aim to devise algorithms and protocols for
coverage maintenance.

Theoretical studies of the coverage of large-scale WSNs
have been conducted in [4]–[8], [10], and [19]–[21]. Most
works [5]–[8], [20], [21] focus on deriving the asymptotic
coverage of WSNs. The critical conditions for full -coverage
(i.e., any physical point is within the sensing range of at
least sensors) over a bounded square area [5]–[8] or barrier
area [20], [21] are derived for various sensor deployment strate-
gies. The coverage of randomly deployed networks is studied in
[10]. The existing theoretical results on coverage for both static
and mobile sensors/targets are surveyed in [4]. However, all the
above theoretical studies are based on the deterministic disc
model. In this paper, we compare our results obtained under a
data fusion model against the results from [4] and [10].

Recent works [18], [34], [35] have exploited sensor mobility
to reduce network density in achieving coverage. In such a
scheme, randomly distributed mobile sensors can relocate
themselves to fill coverage holes in the initial network de-
ployment. A sensor relocation strategy is proposed in [18] to
achieve full coverage with bounded moving distance of mobile
sensors. In this paper, we extend the strategy to the data fusion
model. The coverage of mobile WSNs with random sensor
mobility has been studied based on the disc model in [36].
In this paper, we focus on quantifying the improvement of
coverage in the mobile networks with limited sensor mobility
due to data fusion.

III. BACKGROUND AND PROBLEM DEFINITION

In this section, we first describe the preliminaries of our work,
which include sensor measurement, network, and data fusion
models. We then introduce the problem definition.

A. Sensor Measurement and Network Models

We assume that sensors perform detection by measuring
the energy of signals emitted by the target.2 The energy of
most physical signals (e.g., acoustic and electromagnetic
signals) attenuates with the distance from the signal source.
Suppose sensor is meters away from the target that emits
a signal of energy . The attenuated signal energy at the
position of sensor is given by , where is
a decreasing function satisfying , , and

. The is referred to as the signal decay
function. Depending on the environment, e.g., atmosphere
conditions, the signal’s path loss exponent typically ranges
from 2.0 to 5.0 [15], [37]. We note that the theoretical results
derived in this paper do not depend on the closed-form formula
of . We adopt the following signal decay function in the
simulations conducted in this paper:

(1)

The sensor measurements are contaminated by additive
random noises from sensor hardware or environment. De-
pending on the hypothesis that the target is absent or
present , the measurement of sensor , denoted by , is
given by

where is the energy of noise experienced by sensor . We
assume that the noise at each sensor follows the normal
distribution, i.e., , where and are the
mean and variance of , respectively. We assume that the
noises, , are spatially independent across sensors.
Therefore, the noises at sensors are independent and identically
distributed (i.i.d.) Gaussian noises. In the presence of target,
the measurement of sensor follows the normal distribution,
i.e., . Due to the independence of
noises, the sensors’ measurements, , are spatially
independent but not identically distributed as sensors receive
different signal energies from the target. We define the peak
signal-to-noise ratio (PSNR) as , which quantifies the
noise level. The symbols used in this paper are summarized in
the supplementary file containing appendixes of this paper.3

The above signal decay and additive i.i.d. Gaussian noise
models have been widely adopted in the literature of multisensor
signal detection [10], [13]–[16], [22], [23], [28], [32], [33] and
also have been empirically verified [15], [37]. In practice, the
parameters of these models (i.e., , , , and ) can be es-
timated using the training data collected by the existing WSN
or several in situ sensors before the large-scale deployment. The
normal distribution might be an approximation to the real noise
distribution in practice. As discussed in Appendix-E of the sup-
plementary file, the assumption of i.i.d. Gaussian noises can be
relaxed to any i.i.d. noises.

2Several types of sensors (e.g., acoustic sensor) only sample signal intensity
at a given sampling rate. The signal energy can be obtained by preprocessing
the time series of a given interval, which has been commonly adopted to avoid
the transmission of raw data [11]–[15].

3Due to space limitations, all appendixes are omitted and can be found in the
supplementary file of this paper.
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Sensors are deployed in a vast two-dimensional geograph-
ical region. We consider two deployment schemes, i.e., random
and regular networks. In the random networks, the positions
of sensors are uniformly and independently distributed in the
region. Such a deployment scenario can be modeled as a sta-
tionary two-dimensional Poisson point process. Let denote the
density of the underlying Poisson point process. The number of
sensors located in a region , , follows the Poisson dis-
tribution with mean of , i.e., , where

represents the area of the region . We note that the uni-
form sensor distribution has been widely adopted in the perfor-
mance analysis of large-scale WSNs [4]–[7], [10]. Therefore,
this assumption allows us to compare our results to previous an-
alytical results. In the regular networks, sensors are deployed at
grid points in the vast region. Note that the grid deployment has
also been widely adopted in theoretical studies [7], [18] and real
systems [38].

B. Data Fusion Model

Data fusion can improve the performance of detection sys-
tems by jointly considering the noisy measurements of multiple
sensors. There exist two basic data fusion schemes—namely,
decision fusion and value fusion. In decision fusion, each sensor
makes a local decision based on its measurements and sends
its decision to the cluster head, which makes a system deci-
sion according to the local decisions. The optimal decision fu-
sion rule has been obtained in [22]. In value fusion, each sensor
sends its measurements to the cluster head, which makes the
detection decision based on the received measurements. In this
paper, we focus on value fusion, as it usually has better detec-
tion performance than decision fusion [23]. We will discuss how
to extend the results of this paper to address a decision fusion
model in Appendix-E of the supplementary file. Under the as-
sumptions made in Section III-A, the optimal value fusion rule
is to compare a weighted sum of sensors’ measurements, i.e.,

, to a threshold. The derivation of this optimal
value fusion rule is in Appendix-B of the supplementary file.
However, as sensor measurements contain both noise and signal
energy, the weight , i.e., the SNR received by sensor , is un-
known. A practical solution is to adopt equal constant weights
for all sensors’ measurements [13], [16], [33]. Since the mea-
surements from different sensors are treated equally, the sensors
far away from the target should be excluded from data fusion as
their measurements suffer low SNRs. Therefore, we adopt a fu-
sion scheme as follows.

For any physical point , the sensors within a distance of
meters from form a cluster and fuse their measurements

to detect whether a target is present at . is referred to as the
fusion range, and denotes the set of sensors within the fu-
sion range of . The number of sensors in is represented by

. A cluster head is elected to make the detection decision
by comparing the sum of measurements reported by member
sensors in against a detection threshold . Let denote
the fusion statistic, i.e., . If , the cluster
head decides ; otherwise, it decides .

We assume that the cluster head makes a detection based
on snapshot measurements from member sensors without using

temporal samples to refine the detection decision. Note that such
a snapshot scheme is widely adopted in previous works on target
surveillance [13]–[16], [33]. Fusion range is an important de-
sign parameter of our data fusion model. As SNR received by
sensor decays with distance from the target, fusion range lower-
bounds the quality of information that is fused at the cluster
head. In Section V-B, we will discuss how to choose the op-
timal fusion range. The above data fusion model is consistent
with the fusion schemes adopted in [13], [16], and [33]. If more
efficient fusion models are employed, the scaling laws proved
in this paper still hold as discussed in Appendix-E of the sup-
plementary file.

We assume that the target keeps stationary after appearance
and the position of a possible target can be obtained through a
localization algorithm. For instance, the target position can be
estimated as the geometric center of a number of sensors with
the largest measurements. Such a simple localization algorithm
is employed in the simulations conducted in this paper. The lo-
calized position may not be the exact target position, and the
distance between them is referred to as localization error. We
assume that the localization error is upper-bounded by a con-
stant . The localization error is accounted for in the following
analyses. However, we show that it has no impact on the asymp-
totic results derived in this paper.

The above data fusion model can be used for target detection
as follows. The detection can be executed periodically or
triggered by user queries. In a detection process, each sensor
makes a snapshot measurement, and a cluster is formed by the
sensors within the fusion range from the possible target to make
a detection decision. The cluster formation may be initiated by
the sensor that has the largest measurement. Such a scheme can
be implemented by several dynamic clustering algorithms [39].
The fusion range can be used as an input parameter of
the clustering algorithm. The communication topology of the
cluster can be a multihop tree rooted at the cluster head. As the
fusion statistic is an aggregation of sensors’ measurements,
it can be computed efficiently along the routing path to the
cluster head. In Section VIII-B, we will discuss the delay of
aggregating sensors’ measurements.

C. Problem Definition

The detection of a target is inherently stochastic due to the
noise in sensor measurements. The detection performance is
usually characterized by two metrics—namely, the false alarm
rate (denoted by ) and detection probability (denoted by ).

is the probability of making a positive decision when no
target is present, and is the probability that a present target
is correctly detected. In stochastic detection, positive detection
decisions may be false alarms caused by the noise in sensor mea-
surements. In particular, although the detection probability can
be improved by setting lower detection thresholds, the fidelity
of detection results may be unacceptable because of high false
alarm rates. Therefore, together with characterize the
sensing quality provided by the network. For a physical point ,
we denote the probability of successfully detecting a target lo-
cated at as . Note that is the probability of making
positive decision when no target is present, and hence is loca-
tion-independent.
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Fig. 2. (a) Coverage under the disc model, where � � �� m that is computed
by (2). (b) Coverage under the fusion model, where grayscale represents � .

Our focus is to study the coverage of large-scale WSNs.
We introduce a concept called -coverage that quantifies
the fraction of the surveillance region where and are
bounded by and , respectively.

Definition 1 ( -Coverage): Given two constants
and where , a physical point is
-covered if the false alarm rate and detection proba-

bility satisfy

The -coverage of a region is defined as the fraction of
points in the region that are -covered.

The full coverage of a region refers to the case where the
-coverage of the region approaches one, i.e., the false

alarm rate is below and the probability of detecting a target
present at any location is above . Under the Gaussian noise
assumption made in Section III-A, for any detector.
Hence, the requirement of and where can be al-
ways met, which results in the meaningless full coverage. The
details of this issue will be discussed in Section IV. In practice,
mission-critical surveillance applications [1], [11], [38], [40] re-
quire a low false alarm rate and a high detection
probability .

We now illustrate the -coverage by an example, where
(i.e., 30 dB), , , and m.

Fig. 2 illustrates the coverage under the disc and fusion models.
In Fig. 2(b), when a target (represented by the triangle) is
present, the sensors within the fusion range from it fuse their
measurements to make a detection. The gray area is -cov-
ered, where grayscale represents the value of at each point.
As shown in Fig. 2(a), the covered region under the disc model
is simply the union of all sensing discs. As a result, when a
high level of coverage is required, a large number of extra
sensors must be deployed to eliminate small uncovered areas
surrounded by sensing discs. In contrast, data fusion can effec-
tively expand the covered region by exploiting the collaboration
among neighboring sensors.

In the rest of this paper, we consider the following problems.
1) Although a number of analytical results on cov-

erage [4]–[10], [29] have been obtained under the classical
disc model, are they still applicable under the definition
of -coverage that explicitly captures the stochastic
nature of sensing? To answer this question, we propose a
probabilistic disc model such that the existing results can

be naturally extended to the context of stochastic detection
(Section IV).

2) How to quantify the -coverage when sensors can col-
laborate through data fusion? Answering this question en-
ables us to evaluate the coverage performance of a network.
Moreover, it allows us to deploy or turn on fewest sensors
for achieving a given level of coverage (Section V).

3) What are the scaling laws between coverage, network
density, and SNR under both the disc and fusion models?
The results will provide important insights into under-
standing the limitation of analytical results based on the
disc model and the impact of data fusion on the coverage
of large-scale random (Section VI) and regular/mobile
(Section VII) WSNs.

IV. COVERAGE UNDER PROBABILISTIC DISC MODEL

As the classical disc model deterministically treats the de-
tection performance of sensors, existing results based on this
model [4]–[10], [29], cannot be readily applied to analyze
the performance or guide the design of real-world WSNs. In
this section, we extend the classical disc model based on the
stochastic detection theory [23] to capture several realistic
sensing characteristics and study the -coverage under the
extended model.

In the probabilistic disc model, we choose the sensing range
such that: 1) the probability of detecting any target within the
sensing range is no lower than ; and 2) the false alarm rate is
no greater than . As the probabilistic disc model ignores the
detection probability outside the sensing range of a sensor, the
detection capability of a sensor under this model is lower than in
reality. However, this model preserves the boundary of sensing
region defined in the classical disc model. Hence, the existing
results based on the classical disc model [4]–[10], [29] can be
naturally extended to the context of stochastic detection.

We now discuss how to choose the sensing range under the
probabilistic disc model. The optimal Bayesian detection rule
for a single sensor is to compare its measurement to a de-
tection threshold [23]. If exceeds , sensor decides ;
otherwise, it decides . Therefore, the and of sensor
are given by and

, where is
the probability notation and is the complementary cumu-
lative distribution function of the standard normal distribution,
i.e., . As is nondecreasing
function of [23], it is maximized when is set to be the
upper bound . Hence, the optimal detection threshold can be
solved from as , where is
the inverse function of . By solving where
and , we have

(2)

where is the inverse function of . If the target is
more than meters from the sensor, the detection performance
requirements, i.e., and , cannot be satisfied by setting any
detection threshold. Note that a similar definition of sensing
range is proposed in [33] for stochastic detection. From (2), the
sensing range of a sensor varies with the user requirements (i.e.,
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and ) and PSNR . For instance, the sensing range is 3.8 m
if , , (i.e., 17 dB), and is given by
(1) with . Note that the setting is consistent with
the measurements from the vehicle detection experiments based
on MICA2 [40] and ExScal [38] motes. As is a decreasing
function, is also a decreasing function. Therefore, in-
creases with the PSNR according to (2). This conforms to the
intuition that a sensor can detect a farther target if the noise level
is lower (i.e., a greater ). Note that if , by setting ,
the requirement and can be always satisfied
where the target can appear at any position. Hence, the sensing
range is infinity, which results in the meaningless full cov-
erage. Therefore, we have the constraint in Definition 1.

We now extend the coverage of random networks [4], [10] de-
rived under the classical disc model to -coverage. Under
both the classical and probabilistic disc models, a location is
regarded as being covered if it is within at least one sensor’s
sensing range. Accordingly, the area of the union of all sen-
sors’ sensing ranges is regarded as being covered by the net-
work. The coverage of random networks under the classical disc
model has been extensively studied based on the stochastic ge-
ometry theory [4], [10]. Specifically, the coverage of a network
deployed according to a Poisson point process of density is
given by

(3)

If the sensing range is chosen by (2), (3) computes the
-coverage of a random network under the probabilistic

disc model. This result will be used as the basis for studying
the impact of data fusion on network coverage in Section VI.

For regular networks, it has been shown in [18] that the neces-
sary and sufficient condition for achieving full coverage under
the classical disc model is , where is the grid side
length. Hence, under the probabilistic disc model, the minimum
network density for achieving full coverage of a regular network
is

(4)

where is given by (2).
Although the probabilistic disc model captures the stochastic

nature of sensing, it has two similar major limitations as the clas-
sical disc model. First, as the disc model ignores the sensing
capability outside the sensing range of a sensor, it cannot accu-
rately quantify the real sensing performance of a sensor. Second,
as the disc model does not exploit the collaboration among sen-
sors, the existing analytical results based on the disc model may
significantly underestimate the system sensing performance that
a WSN can achieve. The above two results [i.e., (3) and (4)] will
be used as the baselines to study the impact of data fusion on
coverage of random and regular networks in Sections VI and
VII, respectively.

V. COVERAGE OF RANDOM NETWORKS UNDER DATA

FUSION MODEL

In this section, we first derive the -coverage of random
networks under the fusion model, then illustrate the analytical
results using numerical examples.

A. Deriving Coverage of Random Networks Under Data
Fusion Model

We have the following lemma regarding the -coverage
of random networks. Due to space limitations, all proofs are
omitted and can be found in Appendix-C from the supplemen-
tary file of this paper.

Lemma 1: The -coverage of a uniformly deployed net-
work under the data fusion model, denoted by , is

(5)

where is an arbitrary physical point in the network.
As is an arbitrary point in the network, is a Poisson

random variable, i.e., . Moreover,
are also random variables. However, we have no closed-

form formula for computing (5) due to the difficulty of deriving
the cumulative distribution function of . We
now give an approximation to (5) in the following lemma.

Lemma 2: Let and denote the mean and variance of
for arbitrary point , respectively. The -cov-

erage of a uniformly deployed network under the data fusion
model can be approximated by

(6)

where

The derivation of and as well as the proof of Lemma 2
are in Appendix-C.2 of the supplementary file. The
and are given by and

. As Central Limit
Theorem (CLT) is applied in the derivation of (6), this approx-
imation is accurate when [41]. This condition can
be easily met in many applications. For example, it is shown
in [40] that the detection probability is only about 40% when
four MICA2 motes are deployed in a m region. Sup-
pose m and the network density is the same as in [40],

will be about 50. With the approximate formula, we can
evaluate the coverage performance of an existing network or
compute the minimum network density to achieve the desired
level of coverage under the fusion model. Our simulation results
in Section IX show that (6) can provide accurate prediction of
coverage under the fusion model. We note that the localization
error has little impact on the accuracy of the approximate
formula when . Recent sensor network localization
protocols can achieve a precision within 0.5 m in large-scale
outdoor deployments [42].

We now derive the lower bound of -coverage under the
fusion model, which will be used in the derivations of scaling
laws in Section VI. We denote as the cumulative dis-
tribution function of the Poisson distribution , which is
formally given by .
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Fig. 3. Coverage versus fusion range �� � ��� � � ����. (a) � � �. (b) � � �		.

Lemma 3: The lower bound of -coverage of a uni-
formly deployed network under the data fusion model, denoted
by , is given by

(7)

where

(8)

When is large enough

(9)

It is important to note that is a sufficient con-
dition that point is -covered.

B. Numerical Examples

In this section, we provide several numerical results to help
understand the coverage performance of random networks
under the data fusion model. We adopt the signal decay func-
tion given by (1) with . Fig. 3 plots the approximate
coverage computed by (6) for various PSNRs. We can see from
Fig. 3 that the coverage initially increases with fusion range ,
but decreases to zero eventually. Intuitively, as the fusion range
increases, more sensors contribute to the data fusion resulting
in better sensing quality. However, as becomes very large,
the aggregate noise starts to cancel out the benefit because
the target signal decreases quickly with the distance from the
target. In other words, the measurements of sensors far away
from the target contain low-quality information, and hence
fusing them leads to lower detection performance. Moreover,
we can see the same behavior for different settings of PSNR.
An important question is thus how to choose the optimal fusion
range (denoted by ) that maximizes the coverage. First,
the can be obtained through numerical experiments.
Fig. 4 plots the optimal fusion ranges under different network
densities, which are obtained by numerically maximizing
the coverage. Second, it is possible to obtain the analytical

by solving . For instance, when the signal
decay function is given by (1) with , satisfies

, and hence increases with net-
work density . The intuition behind this increasing relationship
is as follows. Due to the increased network density, the effect to
system sensing performance brought by the increased sensors
in the ring area between the original fusion region (i.e., )

Fig. 4. Optimal fusion range versus density �� � ��� � � ����.

and an enlarged fusion region (i.e., ) is positive.
Hence, increasing fusion range is beneficial when the network
density is increased.

VI. IMPACT OF DATA FUSION ON COVERAGE OF

RANDOM NETWORKS

Many mission-critical applications require a high level of
coverage over the surveillance region. As an asymptotic case,
full coverage is required, i.e., any target/event present in the
region can be detected with a probability of at least while
the false alarm rate is below . For random networks, a higher
level of coverage always requires more sensors. Therefore, the
network density for achieving full coverage is an important cost
metric for mission-critical applications.

Under the disc model, the sensing regions of randomly de-
ployed sensors inevitably overlap with each other when a high-
level coverage is required. According to (3), we have

. If is close to 1, a large number of
extra sensors (i.e., ) are required to eliminate a small uncov-
ered area (i.e., ). Moreover, the situation gets worse when
increases. In this section, we are interested in how much network
density can be reduced by adopting data fusion. Specifically, we
study the asymptotic relationships between the network densi-
ties for achieving full coverage under the probabilistic disc and
data fusion models. The results provide important insights into
understanding the limitation of the disc model and the impact of
data fusion on coverage of random networks.

A. Full Coverage of Random Networks Using Fixed Fusion
Range

We first study the relationship between the network densities
for achieving full coverage under the disc and fusion models
when fusion range is a constant. We have the following
theorem.

Theorem 1: For uniformly deployed networks, let and
denote the minimum network densities required to achieve the
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-coverage of under the disc and fusion models, respec-
tively. If the fusion range is fixed, we have

(10)

Theorem 1 shows that in order to achieve full coverage, is
smaller than if . According to (2), sensing range
is a constant independent of network density. On the one hand,
fusion range is a design parameter of the fusion model, which
is mainly constrained by the communication overhead. In prac-
tice, the condition can be easily satisfied. For in-
stance, the acoustic sensor on MICA2 motes has a sensing range
of 3–5 m if a high performance (e.g., and ) is
required [40]. On the other hand, the fusion range can be set to
be much larger. For example, Fig. 4 shows that ranges from
5 to 100 m when network density increases from to
0.1. Therefore, according to Theorem 1, the fusion model with
the optimal fusion range can significantly reduce network den-
sity for achieving a high level of coverage.

B. Full Coverage of Random Networks Using Optimal Fusion
Range

As discussed in Section V-B, we can obtain the optimal fu-
sion range via numerical experiment or analysis. Data fusion
with the optimal fusion range allows the maximum number of
informative sensors to contribute to the detection. The scaling
law obtained with optimal fusion range will help us understand
the maximum performance gain by adopting the data fusion
model. The following theorem shows that further reduces to

as long as the fusion range is optimal.
Theorem 2: For uniformly deployed networks, let and

denote the minimum network densities required to achieve the
-coverage of under the disc and fusion models, respec-

tively. If the optimal fusion range is adopted, we have

(11)

Theorem 2 shows that if the optimal fusion range is adopted,
the fusion model can significantly reduce the network density
for achieving high coverage. In particular, from Theorem 2, the
density ratio when , which
means is insignificant compared to for achieving high cov-
erage. Theorem 2 is applicable to the scenarios where the phys-
ical signal follows the power-law decay with path loss exponent

, which are widely assumed and verified in practice. We note
that the path loss exponent typically ranges from 2.0 to 5.0
[15], [37]. In particular, the propagation of acoustic signals in
free space follows the inverse-square law, i.e., , and there-
fore .

C. Impact of Signal-to-Noise Ratio on Random Networks

In this section, we study the impact of PSNR on the results de-
rived in the previous sections. PSNR is an important system pa-
rameter that is determined by the property of target, noise level,
and sensitivity of sensors. We have the following corollary.

Corollary 1: For uniformly deployed networks, if the fusion
range is fixed, we have when .

Corollary 1 suggests that for a fixed , the relative cost be-
tween the fusion and disc models is affected by the PSNR .
Specifically, the fusion model requires fewer sensors to achieve
full coverage than the disc model if the PSNR is low. On the
other hand, the disc model suffices only if the PSNR is suffi-
ciently high. Intuitively, sensor collaboration is more advanta-
geous when the PSNR is low to moderate. However, when the
PSNR is sufficiently high, the detection performance of a single
sensor is satisfactory, and the collaboration among multiple sen-
sors may be unnecessary.

VII. IMPACT OF DATA FUSION ON COVERAGE OF REGULAR

AND MOBILE NETWORKS

It has been shown that random network deployments can
lead to undesirable overprovision of sensing coverage [18],
i.e., many fully covered areas have redundant sensors. In
Section VII-A, we will study the coverage of regular networks,
in which sensors are deployed at grid points. Our analysis
shows that the data fusion can still reduce the network den-
sity for achieving full coverage of regular networks. Recent
works [18], [34], [35] show that mobility can be introduced
to trade with network density in achieving coverage. In such
a scheme, randomly distributed mobile sensors relocate them-
selves to fill coverage holes in the initial network deployment.
In Section VII-B, we will extend a relocation strategy proposed
in [18] to the data fusion model. Our analysis shows that data
fusion results in lower network density without increasing the
moving distance of mobile sensors.

A. Full Coverage of Regular Networks

We have obtained the minimum network density for
achieving full coverage of regular networks under the proba-
bilistic disc model [given by (4)]. In this section, we first derive
the minimum network density required by the data fusion
model, and then study the ratio of network densities under the
disc and fusion models, respectively. The following lemma
gives the upper bound of network density for achieving full
coverage of regular networks under the fusion model.

Lemma 4: Let denote the minimum network density for
achieving full coverage of regular networks under the fusion
model. The upper bound of is given by

(12)

With the result in Lemma 4, we can study the ratio of network
densities under the disc and fusion models, respectively, which
is given by the following theorem.

Theorem 3: Let and denote the minimum network den-
sities for achieving full coverage of regular networks under the
disc and fusion models, respectively. If the localization error
is insignificant, there exists a fusion range such that .

Theorem 3 shows that by choosing a proper fusion range ,
the data fusion model requires fewer sensors to fully cover the
surveillance region. Moreover, we can draw the following ob-
servations from the proofs of Lemma 4 and Theorem 3. First,
Lemma 4 is based on the sufficient condition that point is

-covered, i.e., , where is given by



458 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 2, APRIL 2012

(8). However, from the proof of Lemma 3, this sufficient condi-
tion is conservative, as it assumes that all sensors are meters
from the point . Therefore, the bounds in both Lemma 4 and
Theorem 3 are conservative, and the fusion model can save more
sensors in practice than the prediction of above analytical re-
sults. In Section IX, simulations based on both synthetic data set
and real data traces show that the fusion model only requires half
of the sensors required by the disc model. Second, Theorem 3
is proved using a proper setting of that increases with the
SNR. However, as discussed in Section VI-A, the fusion range
is constrained by the communication overhead. For higher SNR,
fewer sensors are required to cover the region. However, at least
one sensor is required within the fusion range. Therefore, the fu-
sion model will saturate due to bounded fusion range when the
SNR becomes sufficiently high. The following corollary gives
the density ratio when the fusion model saturates in case of suf-
ficiently high SNRs.

Corollary 2: For regular networks, if the fusion range is
fixed, the ratio of densities for achieving full coverage satisfies

.
From Corollary 1 and 2, the network density ratio shows the

same trend in the case of sufficiently high SNRs. Hence, both for
the random and regular networks, the disc model suffices only
if the SNR is sufficiently high.

B. Full Coverage of Mobile Networks With Limited Mobility

Recent works [18], [34], [35] have exploited limited sensor
mobility to reduce the network density for achieving full
coverage under the disc model. In such a scheme, randomly
distributed mobile sensors relocate themselves to fill coverage
holes in the initial network deployment. In this section, we first
extend an existing mobile relocation strategy [18] to the proba-
bilistic disc and data fusion models, respectively, such that the
relocated networks provide full -coverage. Moreover, we
show that data fusion can reduce the network density without
increasing the moving distance of sensors.

We first briefly describe the mobile relocation strategy for
achieving -coverage proposed in [18]. Under the classical disc
model, a region is -covered if every point in the region is within
the sensing range of at least sensors. Suppose a mobile sensor
network is randomly deployed in a vast region of area . After
the initial deployment, the region is divided by grids of side
length , and the mobile sensors relocate themselves
such that each grid point has exactly one sensor in it. After
the mobile relocation, the region is fully -covered. Moreover,
the maximum distance that any mobile sensor has to move is

.
We now extend the above strategy to the probabilistic disc and

data fusion models, respectively. First, under the probabilistic
disc model, by replacing with 1 and with (2), the relocated
mobile network provides full -coverage, and the max-
imum moving distance is . Note that the grid side
length is . Second, under the data fusion model, by re-
placing with and with the fusion range , at least
sensors are within the fusion range of any point in the region
after relocation. As a result, the region is fully -covered.

Note that the grid side length is . The illustra-
tion of the two extended relocation strategies is in Appendix-D
of the supplementary file. As the relocated network is a grid
network, the results in Section VII-A also apply. Moreover,
the maximum moving distance under the data fusion model is

, which has the same order
with respect to the network size as under the probabilistic disc
model, i.e., . In Section IX, we will conduct simula-
tions to evaluate the maximum moving distance that any sensor
has to move as well as the total moving distance of all sensors.

VIII. IMPLICATIONS OF RESULTS AND DISCUSSIONS

In this section, we first summarize the implications of the
theoretical results in this paper, and then discuss several issues
that have not been addressed.

A. Implications of Results

1) Limitations of Disc Model: According to Theorem 2,
when the coverage of random networks approaches one,
increases significantly faster than , especially for a small
decay exponent. For instance, when (which typically
holds for acoustic signals), ). This result implies
that the existing analytical results based on the disc model
(e.g., [4]–[6], [8], [10]) significantly overestimate the network
density required for achieving full coverage of random net-
works. Moreover, Theorem 3 shows that the disc model also
leads to redundant deployment for regular networks. On the
other hand, Corollaries 1 and 2 show that the disc model may
lead to similar or even lower network density than the fusion
model if PSNR is sufficiently high. The noise experienced by
a sensor in real systems comes from various sources, e.g., the
random disturbances in the environment and the electronic
noise in sensor circuit. In practice, the PSNR in the applica-
tions based on low-cost sensors is usually low. For instance,
the PSNRs in the vehicle detection experiments based on
MICA2 [40] and ExScal [38] motes are about 50 (i.e., 17 dB).
In such a case, in order to achieve a high level of coverage with
random networks, if is set to be greater than 8 m.

2) Design of Data Fusion Algorithms: Our results provide
several important guidelines on the design of data fusion algo-
rithms for large-scale WSNs. First, data fusion is very effec-
tive in improving sensing coverage and reducing network den-
sity. In particular, Corollaries 1 and 2 suggest that the perfor-
mance gain of data fusion increases when the PSNR is lower.
Therefore, data fusion should be employed for low-SNR de-
ployments when a high level of coverage is required. Second,
Theorems 1 and 2 suggest that fusion range plays an important
role in the achievable performance of data fusion. As discussed
in Section V-B, the optimal fusion range that maximizes the cov-
erage of random networks increases with network density and
can be numerically computed. Although we have not derived
the optimal fusion range for regular networks, as discussed in
Section VII-A, the fusion range should also increase with SNR.
However, a larger fusion range may lead to longer transmission
distances and more sensors that take part in data fusion. Inves-
tigating the optimal fusion range under both coverage and com-
munication constraints is left for future work.
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Fig. 5. Number of deployed sensors versus achieved ��� ��-coverage. (a) Random networks. (b) Regular networks.

B. Discussions

Under the fusion model, the fusion statistic is the aggre-
gate function of the readings of the sensors taking part in fu-
sion. Aggregating readings of multiple sensors in a wireless
network may cause communication contention and packet de-
livery delay. In particular, we are interested in the detection la-
tency caused by the aggregation process, which determines the
minimum period with which the system can perform detection
repeatedly. Our analysis shows that the average detection la-
tency is , and a higher level of coverage is always
achieved at the price of longer detection latency. Besides the
issue of detection latency, we have extended several results in
this paper to other noise models, signal decay laws, and fusion
models. However, due to space limitations, the details of the de-
tection latency analysis and the extensions are omitted here and
can be found in Appendix-E of the supplementary file.

IX. SIMULATIONS

In this section, we conduct extensive simulations based
on real data traces as well as synthetic data to evaluate the
coverage performance in nonasymptotic and asymptotic cases,
respectively.

A. Trace-Driven Simulations

We first conduct simulations using the data traces collected
in a real vehicle detection experiment [11]. In the experiments,
75 WINS NG 2.0 nodes are deployed to detect military vehi-
cles driving through the surveillance region. We refer to [11]
for detailed setup of the experiments. The data set used in our
simulations includes the ground truth data and the acoustic time
series recorded by 20 nodes when a vehicle drives through. The
ground truth data include the positions of sensors and the trajec-
tory of the vehicle.

As this paper is focused on the coverage performance
of large-scale random and regular networks, the data traces
collected by a limited number of sensors with a particular
placement cannot be directly used to evaluate our results.
In order to extensively evaluate our results, we reuse the
sensors and rearrange their locations in our experiments to
simulate various network densities and sensor distributions.
The details of our simulation methodology are as follows.
Sensors’ sensing ranges under the probabilistic disc model
are determined individually to meet the detection performance
requirements . Specifically, according

to (2), within the sensing range
of sensor . In the simulation, the sensing range is esti-
mated as the maximum distance from the target satisfying

. The resulted sensing ranges
are from 22.5 to 59.2 m with the average of 43.2 m. Such a
significant variation is due to several issues including poor
calibration and complex terrain. In our simulation, we deploy
random or regular networks with size of m .
Each sensor in the simulation is associated with a real sensor
chosen at random. For each deployment, we evaluate the

-coverage under both the disc and fusion models. We
divide the region into 1000 1000 grids. Under the disc model,
the coverage is estimated as the ratio of grid points that are
covered by discs. Under the fusion model, the coverage is esti-
mated as the ratio of -covered grid points. Specifically,
for a target that appears at a grid point, each sensor makes a
measurement that is set to be the sum of a random noise and
the energy gathered by the associated real sensor at a similar
distance to vehicle in the data trace. From Lemma 1, in the
simulation, a grid point is regarded to be -covered if

. Therefore,
our simulation methodology only needs the noise variance .
The noise variance is estimated as using the sensor
measurements when no vehicle is present.

Fig. 5(a) plots the the numbers of uniformly deployed sen-
sors under the disc and fusion models as well as the corre-
sponding density ratio versus the achieved -coverage. We
can see that the disc model suffices if a moderate level of cov-
erage is required. However, the fusion model is more effective
for achieving high coverage. In particular, the fusion model with
a fusion range of 200 m saves more than 50% sensors when the
coverage is greater than 0.75. We note that the average number
of sensors taking part in data fusion is within 30 and hence
will not introduce high communication overhead. According to
Theorem 1, the limit of is when the coverage
approaches one. We will evaluate the coverage performance in
asymptotic case through simulations based on synthetic data in
Section IX-B. Fig. 5(b) plots the results of regular networks. We
can see that Fig. 5(b) shows a similar trend as Fig. 5(a). More-
over, the density ratio for achieving a high level of coverage
(i.e., 0.99) is consistent with Theorem 3. The network density
under the fusion model is to in Fig. 5(a),
and to in Fig. 5(b). These densities
are in the same order with that of the real deployment in [11],
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Fig. 6. Simulation results of random networks. (a) Coverage versus network density �� � �� � � � m�. (b) Density ratio � �� versus coverage in ��� scale
with various PSNRs. (c)

�
� versus � with optimal fusion range � �� � ��.

i.e., . Note that the network density can be up to
[38] in practice.

B. Simulations Based on Synthetic Data

1) Numerical Settings: In addition to trace-driven simula-
tions, we also conduct extensive simulations based on synthetic
data. These simulations allow us to evaluate the theoretical re-
sults in a wide range of settings. We adopt the signal decay
function in (1) with . Both the mean and variance of the
Gaussian noise generator, and , are set to be 1. We set the
orginal energy of target, , to be 4, 50, and 5000 so that the
SNRs in the simulations are consistent with several real experi-
ments, i.e., 0–10 dB in [43], around 17 dB in [40] and [38], and
over 30 dB in [11].

As proved in Lemma 1, it suffices to measure the probability
that a point is covered for evaluating the coverage of a random
network. Hence, we let the target appear at a fixed point and
deploy random networks with size of centered at . For
each deployment, is estimated as the fraction of succesful
detections. The -coverage is estimated as the fraction of
deployments whose is greater than . We also evaluate
the impact of localization error by integrating a simple local-
ization algorithm. Specifically, for each detection, if a sensor’s
reading exceeds , it will take part in the target lo-
calization. The target is localized as the geometric center of the
sensors participating in the localization.

For a regular network, it suffices to measure the fraction of
covered area in a grid for evaluating the coverage of the whole
network. In our simulations, we find the minimum network den-
sity with which 10 10 points in the grid are covered.

2) Simulation Results of Random Networks: We first present
the simulation results if sensors are randomly deployed. The
first set of simulations evaluate the accuracy of the approximate
formula given in Lemma 2. Fig. 6(a) plots the analytical and
measured coverage versus network density. The curves labeled
with SIM-LOC and SIM represent the measured results with
and without accounting for localization error, respectively. We
can see that the simulation result matches well with the analyt-
ical result given by (6). A network density of 0.8 is enough to
provide high coverage under the fusion model, where the SNR
is very low . When there is localization error, a max-
imum deviation of about 0.2 from the analytical result can be
seen from Fig. 6(a). The coverage decreases in the presence of
localization error as sensors received weaker signals when the

target cannot be accurately localized. However, the impact of
localization error diminishes when .

The second set of simulations evaluates the impact of SNR
on the asymptotic network densities. Fig. 6(b) plots the network
density ratio versus the achieved coverage under various
PSNRs, where is computed by (3) and is obtained in sim-
ulations, respectively. The -axis is plotted in scale. We
can see that the density ratio increases with the coverage, i.e.,
the fusion model becomes more effective for achieving higher
coverage. Moreover, the density ratio decreases with the PSNR,
which conforms to the result of Corollary 1. For instance, to
achieve a coverage of 0.99, the density ratio is about
8 when . The density ratio decreases to about 2 when

. When , the disc model suffices. These results
are consistent with the analysis in Section VI-C.

The third set of simulations evaluates the asymptotic relation-
ship between and when the fusion range is optimized. In
Fig. 6(c), the - and -axis of each data point represent the re-
quired network densities for achieving the same coverage that
approaches to one under the disc and fusion models, respec-
tively. Note that the -axis is plotted in square-root scale. The
optimal fusion range plotted in Fig. 6(c) is computed for
each given by numerically maximizing (6). We can see from
Fig. 6(c) that the relationship between and is convex and
therefore conforms to the theoretical result ac-
cording to Theorem 2. Moreover, increases with , which
is also consistent with the analysis in Section VI-B.

3) Simulation Results of Regular and Mobile Networks: We
now present the simulation results when sensors are deployed
at grid points. We first measure the minimum network densi-
ties for achieving full coverage under disc and fusion models,
respectively. For the fusion model, we numerically find the op-
timal fusion range that minimizes the network density for
achieving full coverage. Fig. 7(a) plots the network density ratio
and the corresponding versus the PSNR. We can see that
the fusion model can reduce 100% of sensors compared to the
disc model in a wide range of PSNRs, i.e., from 15 to 37 dB.
The fusion model is more effective in the case of low PSNRs,
i.e., from 4 to 10 dB. Note that the increases with the
PSNR. The above results are consistent with the analysis in
Section VII-A.

We then evaluate the moving distances of mobile sensors in
relocation with various settings of SNR. We employ a greedy
relocation algorithm [18], [35]. Specifically, in each round, the
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Fig. 7. Simulation results of regular and mobile networks. (a) Density ratio of regular networks versus PSNR with optimal fusion range. (b) Total moving distance
of mobile sensors versus network size. (c) Maximum moving distance of mobile sensors versus network size.

sensor that is closest to any grid point is relocated to the grid
point. Fig. 7(b) plots the total moving distance of all sensors
versus the network area. We can see that the fusion model out-
performs the disc model when SNR is low, and the two models
are comparable when SNR is high. Fig. 7(c) plots the max-
imum moving distance of sensors. We can see that the maximum
moving distances under the two models are in the same order
with respect to network size. This result is consistent with the
analysis in Section VII-B.

X. CONCLUSION

Sensing coverage is an important performance requirement
of many critical sensor network applications. In this paper, we
explore the fundamental limits of coverage based on stochastic
data fusion models that jointly process noisy measurements of
sensors. The scaling laws between coverage, network density,
and SNR are derived. Data fusion is shown to significantly im-
prove sensing coverage by exploiting the collaboration among
sensors. Our results help understand the limitations of the ex-
isting analytical results based on the disc model and provide key
insights into the design and analysis of WSNs that adopt data fu-
sion algorithms. Our analyses are verified through simulations
based on both synthetic data sets and data traces collected in a
real deployment for vehicle detection.
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