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Abstract Wireless sensor networks (WSNs) have been increasingly available for

critical applications such as security surveillance and environmental monitoring. As

a fundamental performance measure of WSNs, coverage characterizes how well a

sensing field is monitored by a network. Two facets of coverage, i.e., spatial cover-

age and temporal coverage, quantify the percentage of area that is well monitored

by the network and the timeliness of the network in detecting targets appearing in

the sensing field, respectively. Although advanced collaborative signal processing

algorithms have been adopted by many existing WSNs, most previous analytical

studies on spatiotemporal coverage of WSNs are conducted based on overly sim-

plistic sensing models (e.g., the disc model) that do not capture the stochastic nature

of sensing. In this chapter, we attempt to bridge this gap by exploring the funda-

mental limits of spatiotemporal coverage based on stochastic data fusion models

that fuse noisy measurements of multiple sensors. We derive the scaling laws be-

tween spatiotemporal coverage, network density, and signal-to-noise ratio (SNR).

We show that data fusion can significantly improve spatiotemporal coverage by ex-

ploiting the collaboration among sensors when several physical properties of the

target signal are known. In particular, for signal path loss exponent of k (typically

between 2.0 and 5.0), we prove that ρf/ρd = O(δ2/k), where ρf and ρd are the

densities of uniformly deployed sensors that achieve full spatial coverage or mini-

mum detection delay under the fusion and disc models, respectively, and δ is SNR.

Our results help understand the limitations of the previous analytical results based

on the disc model and provide key insights into the design of WSNs that adopt data
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fusion algorithms. Our analyses are verified through extensive simulations based on

both synthetic data sets and data traces collected in a real deployment for vehicle

detection.

Key words: Coverage, target detection, data fusion, performance limit

1 Introduction

Recent years have witnessed the deployments of wireless sensor networks (WSNs)

for many critical applications such as security surveillance [20], environmental

monitoring [30], and target detection/tracking [26]. Many of these applications in-

volve a large number of sensors distributed in a vast geographical area. As a result,

the cost of deploying these networks into the physical environment is high. A key

challenge is thus to predict and understand the expected sensing performance of

these WSNs. A fundamental performance measure of WSNs is coverage that char-

acterizes how well a sensing field is monitored by a network. The coverage of a

network has two facets, i.e., spatial coverage and temporal coverage. The spatial

coverage quantifies the percentage of area that is well monitored by the network.

The temporal coverage quantifies the timeliness of the network in detecting targets

appearing in the sensing field. Many recent studies are focused on analyzing the spa-

tiotemporal coverage performance of large-scale WSNs [4, 23, 46, 38, 52, 50, 29].

Despite the significant progress, a key challenge faced by the research on spa-

tiotemporal coverage is the obvious discrepancy between the advanced information

processing schemes adopted by existing sensor networks and the overly simplistic

sensing models widely assumed in the previous analytical studies. On the one hand,

many WSN applications are designed based on collaborative signal processing al-

gorithms that improve the sensing performance of a network by jointly processing

the noisy measurements of multiple sensors. In practice, various stochastic data

fusion schemes have been employed by sensor network systems for event monitor-

ing, detection, localization, and classification [20, 26, 14, 13, 10, 39, 25, 34]. On

the other hand, collaborative signal processing algorithms such as data fusion often

have complex complications to the network-level sensing performance such as cov-

erage. As a result, most analytical studies on spatiotemporal coverage are conducted

based on overly simplistic sensing models [4, 3, 47, 18, 29, 23, 46, 38, 52, 22, 28].

In particular, the sensing region of a sensor is often modeled as a disc with radius

r centered at the position of the sensor, where r is referred to as the sensing range.

A sensor deterministically detects the targets (events) within its sensing range. In

Section 2, we will briefly survey the studies that are based on this disc model. Al-

though such a model allows a geometric treatment to the coverage problem, it fails

to capture the stochastic nature of sensing.

To illustrate the inaccuracy of the disc sensing model, we plot the sensing per-

formance of an acoustic sensor in Fig. 1 using the data traces collected from a real

vehicle detection experiment [14]. In the experiment, the sensor detects moving ve-
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Fig. 1 Sensing performance of an acoustic sensor in detecting vehicle. (a) Detection probability

vs. the distance from the vehicle; (b) False alarm rate vs. detection threshold.

hicles by comparing its signal energy measurement against a threshold (denoted by

t). Fig. 1(a) plots the probability that the sensor detects a vehicle (denoted by PD)

versus the distance from the vehicle. No clear cut-off boundary between success-

ful and unsuccessful sensing of the target can be seen in Fig. 1(a). Similar result is

observed for the relationship between the sensor’s false alarm rate (denoted by PF )

and the detection threshold shown in Fig. 1(b). Note that PF is the probability of

making a positive decision when no vehicle is present.

In this work, we develop an analytical framework to explore the fundamental

limits of spatiotemporal coverage of large-scale WSNs based on stochastic data fu-

sion models. To characterize the inherent stochastic nature of sensing, we propose

new measures for quantifying spatiotemporal coverage. Specifically, the spatial cov-

erage is defined as the fraction of area in which the target can be detected with a

false alarm rate of at most α and a detection probability of at least β. Similarly, to

quantify the fundamental trade-off between detection delay and false alarm rate, we

propose a new metric called α-delay that is defined as the delay of detecting a target

subject to the false alarm rate boundα. The temporal coverage is then defined as the

reciprocal of α-delay. Compared with the classical definitions of spatial and tempo-

ral coverage, these new definitions explicitly capture the performance requirements

imposed by sensing applications. For instance, the full spatial coverage of a region

with α = 5% and β = 90% ensures that the probability of detecting any event

occurring in the region is no lower than 90% and no more than 5% of the network

reports are false alarms. Moreover, in the asymptotic case where α-delay is mini-

mized, any target can be detected almost surely once after its appearance, while the

false alarm rate is no greater than α.

The main focus of this paper is to investigate the fundamental scaling laws be-

tween spatiotemporal coverage, network density, and signal-to-noise ratio (SNR).

To the best of our knowledge, this work is the first to study the spatiotemporal

coverage performance of large-scale WSNs based on collaborative sensing mod-

els. Our results not only help understand the limitations of the existing analytical

results based on the disc model but also provide key insights into designing and
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analyzing the large-scale WSNs that adopt stochastic fusion algorithms. The main

contributions of this work are as follows:

• We derive the spatiotemporal coverage of random networks under both data fu-

sion and probabilistic disc models. The existing analytical results based on the

classical disc model can be naturally extended to the context of stochastic event

detection. With these results, we can compute the minimum network density

before the deployment or turn on the fewest sensors of an existing network to

achieve a desired level of spatiotemporal coverage.

• We study the fundamental scaling laws of spatiotemporal coverage. Let ρd and

ρf denote the minimum network densities for achieving full spatial coverage or

minimum detection delay under the disc and fusion models, respectively. For ran-

domly deployed networks, we prove that ρf = O(2r
2

R2 · ρd) where r is the radius

of sensing disc and R is the fusion range within which the measurements of all

sensors are fused. As fusion range can be much greater than sensing range, ρf is

much smaller than ρd. This result shows that data fusion can effectively reduce

the network density compared with the disc model. Furthermore, the existing an-

alytical results based on the disc model significantly overestimate the network

density required for achieving coverage.

• We study the impact of SNR on the network density when full spatial coverage or

minimum detection delay is required. For randomly deployed networks, we prove

that
ρf

ρd
= O(δ2/k), where δ is SNR and k is the signal’s path loss exponent that

typically ranges from 2.0 to 5.0. This result suggests that data fusion is more

effective in reducing the density of low-SNR network deployments, while the

disc model is suitable only when the SNR is sufficiently high.

• To verify our analyses, we conduct extensive simulations based on both synthetic

data sets and real data traces collected from 20 sensors. The simulation results

validate our analytical results under a variety of realistic settings.

This chapter is organized as follows. Section 2 reviews the related literature on

spatiotemporal coverage and detection delay. Section 3 introduces background and

Section 4 derives the spatiotemporal coverage of WSNs. Section 5.1 and Section 5.2

study the impact of data fusion on spatial and temporal coverage, respectively.

Section 6 discusses the implications of results and several open issues. Section 7

presents the results of performance evaluation. Section 8 concludes this chapter.

2 Related Work

2.1 Coverage

As one of the most fundamental issues in WSNs, the coverage problem has attracted

significant research attention. Previous works fall into two categories, namely, theo-

retical analysis of coverage performance and coverage maintenance algorithms/protocols.
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These two categories are reviewed briefly as follows, respectively. As this chapter

falls into the category of the theoretical analysis of coverage performance, our re-

view will be mainly focused on this category.

2.1.1 Analysis of Coverage

Theoretical studies of the coverage of large-scale WSNs have been conducted in

[4, 29, 23, 18, 46, 38, 52, 22, 28]. Most works [23, 46, 38, 52, 22, 28] focus on

deriving the asymptotic coverage of WSNs. The k-coverage is a coverage model

widely used in these studies. Specifically, a network provides k-coverage if any

physical point is within the sensing range of at least k sensors.

Kumar et al. [23] consider duty-cycled WSNs that are deployed on a
√
n× √

n
grids, random uniform and Poisson with density n. Each sensor independently

sleeps in each time slot with probability of p. They prove that the critical value

of the function npπr2/ log(np) is 1 for the event of k-coverage, where r is the sen-

sor’s sensing range. In other words, when the network size n increases, to ensure

k-coverage, r has an asymptotic lower bound of
√

log np
np .

Wan et al. [46] assume that the sensors are deployed as either a Poisson point pro-

cess or a uniform point process in a square or disk region. They study two asymptotic

scaling laws: (i) how the probability of k-coverage changes with the sensing range

and the number of sensors, when the region to be covered is a unit square or disk;

and (ii) how the probability of k-coverage changes with the area of the region to be

covered and the number of sensors, when the sensors have unit sensing range. The

upper and lower bounds for the probability of k-coverage are derived. Moreover, the

asymptotic conditions for the k-coverage with high probability are also derived.

Shakkottai et al. [38] consider that n sensors are deployed at the grid points of

a unit square area. They prove the necessary and sufficient conditions for the 1-

coverage and network connectivity, i.e., p · r has an order of log n
n , where p is the

probability that a sensor is active. They also derive the order of the number of hop

counts from any active node to another, which is
√

n/ logn. This study assumes

that the sensing range and communication range are the same, which is a limitation

of this study.

Zhang et al. [52] consider a Poisson sensor deployment with density λ in a square

region with side length l, where each sensor covers a unit disk. They derive the

necessary and sufficient condition of λ for k-coverage when l increases, i.e., λ =
log l2 +(k+1) log log l2 + c(l) where c(l) → +∞ as l → ∞. Based on this result,

they prove that the upper bound of the network lifetime is kT where T is the lifetime

of a single sensor, if λ = log l2 + (k + 1) log log l2 + c(l) where c(l) → −∞ as

l → ∞.

The above studies [23, 46, 38, 52] focus on the full k-coverage over all region,

i.e., every physical point is covered by at least k sensors. In [22], Kumar et al. study

the k-barrier coverage problem: when an intruder crosses a belt area deployed with

sensors, it can be detected with high probability by at least k sensors. Different

from the full k-coverage, k-barrier coverage does not require that each physical
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point in the monitored region is covered by k sensors. If sensors are stealthy, the

k-barrier coverage is defined as weak k-barrier coverage; otherwise, it is defined

as strong k-barrier coverage. The critical conditions for weak and strong k-barrier

coverage are derived by Kumar et al. in [22] and Liu et al. in [28], respectively.

The critical conditions can be used to compute the minimum number of sensors to

provide barrier coverage with high probability.

Ammari et al. [2] study the critical phase transitions for coverage and connectiv-

ity based on percolation theory. Specifically, the sensing-coverage phase transition

is the abrupt change from small fragmented covered areas to a single large covered

area, when more sensors are continuously added to a WSN. Similarly, the network-

connectivity phase transition is the abrupt change from an originally disconnected

WSN to a connected WSN as more sensors are added. The covered area fractions

for both transitions are derived at critical percolation.

Liu et al. [29] study the coverage performance of WSNs using other three cover-

age metrics, i.e., area coverage, node coverage, and detectability. The area coverage

is defined as the fraction of the geographical area covered by one or more sensors.

The node coverage is defined as the fraction of sensors that can be removed without

reducing the area coverage. Detectability is defined as the probability that a WSN

can detect an object moving along a line segment in the WSN. Liu et al. derive the

closed-form formulas of these three coverage metrics for random infinite plane de-

ployments and random strip deployments under the disc sensing model and a general

sensing model that considers signal decay, respectively.

The temporal coverage, i.e., the latency of detecting a target, is another impor-

tant facet of the coverage performance of WSNs. Cao et al. [5] derive the average

latencies of detecting static or mobile target when sensors are deployed randomly

and follow a random sleep scheduling scheme. Dousse et al. [12] address a similar

problem where only the sensors with a connected path to the sink are considered.

In [24], Lazos et al. map the problem of detecting mobile targets using randomly

deployed sensors to a line-set intersection problem. Their analysis shows that the de-

tection probability and the detection delay depends on the length of the perimeters

of the sensing areas of sensors and not their shapes.

Most of the above theoretical results on coverage for both static and mobile sen-

sors/targets are surveyed and compared in [4]. However, all the above theoretical

studies are based on the deterministic disc model. In this chapter, we compare our

results obtained under a data fusion model against the results from [29, 4].

2.1.2 Coverage Maintenance Algorithms

Early work [31, 27, 32] quantifies spatiotemporal coverage by the length of tar-

get’s path where the accumulative observations of sensors are maximum or min-

imum [31, 27, 32]. However, these works focus on devising algorithms for find-

ing the target’s paths with certain level of coverage. Several algorithms and proto-

cols [7, 50, 51] are designed to maintain spatiotemporal coverage using the mini-

mum number of sensors. However, the effectiveness of these schemes largely relies
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on the assumption that sensors have circular sensing regions and deterministic sens-

ing capability. Several recent studies [21, 37, 1, 48, 53] on the coverage problem

have adopted probabilistic sensing models. The numerical results in [48] show that

the coverage of a network can be expanded by the cooperation of sensors through

data fusion. However, these studies do not quantify the improvement of coverage

due to data fusion techniques. Different from our focus on analyzing the fundamen-

tal limits of coverage in WSNs, all of these studies aim to devise algorithms and

protocols for coverage maintenance.

2.2 Data Fusion

There is a vast of literature on stochastic signal detection based on multi-sensor

data fusion. Early works [6, 44] focus on small-scale powerful sensor networks

(e.g., several radars). Recent studies on data fusion have considered the specific

properties of WSNs such as sensors’ spatial distribution [13, 14, 34] and limited

sensing/communication capability [10]. However, these studies focus on analyzing

the optimal fusion strategies that maximize the system performance of a given net-

work. In contrast, this chapter explores the fundamental limits of spatiotemporal

coverage of WSNs that are designed based on existing data fusion strategies. Re-

cently, irregular sampling theory has been applied for reconstructing physical fields

in WSNs [36, 35]. Different from these works that focus on developing sampling

schemes to improve the quality of signal reconstruction, we aim to analyze sensors’

spatial density for achieving the required level of coverage.

Many sensor network systems have incorporated various data fusion schemes

to improve the system performance. In the surveillance system based on MICA2

motes [20], the system false alarm rate is reduced by fusing the detection decisions

made by multiple sensors. In the DARPA SensIT project [14], advanced data fusion

techniques have been employed in a number of algorithms and protocols designed

for target detection [26, 10], localization [39, 25], and classification [13, 14]. Despite

the wide adoption of data fusion in practice, the performance analysis of large-scale

fusion-based WSNs has received little attention.

3 Preliminaries and Problem Definition

This section first introduces the preliminaries in Section 3.1, and then formally de-

fines the spatiotemporal coverage of wireless sensor networks in Section 3.2.
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3.1 Preliminaries

In this section, we describe the technical preliminaries of this chapter, which include

sensor measurement, network and data fusion models.

3.1.1 Sensor Measurement Model

We assume that sensors perform detection by measuring the energy of signals emit-

ted by the target.1 The energy of most physical signals (e.g., acoustic and elec-

tromagnetic signals) attenuates with the distance from the signal source. Suppose

sensor i is di meters away from the target that emits a signal of energy S0. The at-

tenuated signal energy si at the position of sensor i is given by si = S0·w(di), where

w(·) is a decreasing function satisfying w(0) = 1, w(∞) = 0, andw(x) = Θ(x−k).
The w(·) is referred to as the signal decay function. Depending on the environment,

e.g., atmosphere conditions, the signal’s path loss exponent k typically ranges from

2.0 to 5.0 [25, 19]. We note that the theoretical results derived in this chapter do not

depend on the closed-form formula of w(·). We adopt the following signal decay

function in the simulations conducted in this chapter:

w(x) =
1

1 + xk
. (1)

The sensor measurements are contaminated by additive random noises from sen-

sor hardware or environment. Depending on the hypothesis that the target is absent

(H0) or present (H1), the measurement of sensor i, denoted by yi, is given by

H0 : yi = ni, H1 : yi = si + ni,

where ni is the energy of noise experienced by sensor i. We assume that the noise

ni at each sensor i follows the normal distribution, i.e., ni ∼ N (µ, σ2), where µ
and σ2 are the mean and variance of ni, respectively. We assume that the noises,

{ni|∀i}, are spatially independent across sensors. Therefore, the noises at sensors

are independent and identically distributed (i.i.d.) Gaussian noises. In the pres-

ence of target, the measurement of sensor i follows the normal distribution, i.e.,

yi|H1 ∼ N (si + µ, σ2). Due to the independence of noises, the sensors’ mea-

surements, {yi|∀i,H1}, are spatially independent but not identically distributed as

sensors receive different signal energies from the target. We define the peak signal-

to-noise ratio (PSNR) as δ = S0/σ which quantifies the noise level. The symbols

used in this chapter are summarized in Table 1.

The above signal decay and additive i.i.d. Gaussian noise models have been

widely adopted in the literature of multi-sensor signal detection [44, 10, 39, 25,

1 Several types of sensors (e.g., acoustic sensor) only sample signal intensity at a given sampling

rate. The signal energy can be obtained by preprocessing the time series of a given interval, which

has been commonly adopted to avoid the transmission of raw data [14, 13, 10, 39, 25].
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Table 1 Summary of Notation∗

Symbol∗ Definition

O(·) asymptotic upper bound notation

Θ(·) asymptotic tight bound notation

Q(x) CCDF of standard normal distribution

S0 original signal energy emitted by the target

µ, σ2 mean and variance of noise energy

δ PSNR, δ = S0/σ

k path loss exponent

w(·) signal decay function, w(x) = Θ(x−k)

si attenuated signal energy

ni noise energy, ni ∼ N (µ, σ2)

yi signal energy measurement, yi = si + ni

Y fusion statistic at cluster head / base station

PF / PD false alarm rate / detection probability

α / β upper / lower bound of PF / PD

H0 / H1 hypothesis that the target is absent / present

ρ network density

F(p) the set of sensors within fusion range of point p

N(p) the number of sensors in F(p)

ǫ upper bound of target localization error

t local detection threshold

T detection threshold at cluster head

TD detection period

R fusion range under data fusion model

r disc radius under disc sensing model

c spatial coverage of a network

τ average detection delay of a network

v movement speed of target

∗ The symbols with subscript i refer to the notation of sensor i.

34, 6, 48, 29, 32, 1] and also have been empirically verified [19, 25]. In practice,

the parameters of these models (i.e., S0, w(·), µ, and σ2) can be estimated using

the training data collected by the existing WSN or several in situ sensors before the

large-scale deployment. The normal distribution might be an approximation to the

real noise distribution in practice. As discussed in Section 6.2, the assumption of

i.i.d. Gaussian noises can be relaxed to any i.i.d. noises.



10 Rui Tan and Guoliang Xing

timeTD TD

sampling interval

Fig. 2 Temporal view of a single sensor’s operation. The sensor outputs an energy measurement

after each sampling interval.

3.1.2 Network Model

We consider a network deployed in a vast two-dimensional geographical region. The

positions of sensors are uniformly and independently distributed in the region. Such

a deployment scenario can be modeled as a stationary two-dimensional Poisson

point process. Let ρ denote the density of the underlying Poisson point process. The

number of sensors located in a region A, N(A), follows the Poisson distribution

with mean of ρ||A||, i.e., N(A) ∼ Poi(ρ||A||), where ||A|| represents the area of

the region A. We note that the uniform sensor distribution has been widely adopted

in the performance analysis of large-scale WSNs [4, 23, 46, 38, 29]. Therefore, this

assumption allows us to compare our results with previous analytical results.

When we analyze the temporal coverage performance of a network, we consider

the following sensor sampling scheme and target mobility model. We assume that

a sensor executes detection task every TD seconds. TD is referred to as the detec-

tion period. In each detection period, a sensor gathers the signal energy during the

sampling interval for the detection made in the current detection period. We assume

that the sampling interval is much shorter than the detection period. The temporal

view of a single sensor’s operation is illustrated in Fig. 2. We note that such an in-

termittent measurement scheme is consistent with several wireless sensor systems

for target detection and tracking [20, 13, 14]. For instance, a sensor may wake up

every 5 seconds and sample acoustic energy for 0.05 seconds, where TD is 5 s and

the sampling interval is 0.05 s [14]. We assume that the target may appear at any

location in the deployment region and move freely. Moreover, the target is blind to

the network, i.e., the target does not know the sensors’ positions, and hence it cannot

choose a movement scheme to reduce the probability of being detected. The sensors

synchronously detect the target, and we refer to the target detection in one detection

period as the unit detection. The process of detecting a target consists of a series of

unit detections. As the sampling interval is much shorter than the detection period,

we ignore the target’s movement during the sampling interval.

3.1.3 Data Fusion Model

Data fusion can improve the performance of detection systems by jointly consider-

ing the noisy measurements of multiple sensors. There exist two basic data fusion

schemes, namely, decision fusion and value fusion. In decision fusion, each sensor

makes a local decision based on its measurements and sends its decision to the clus-

ter head, which makes a system decision according to the local decisions. In value
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fusion, each sensor sends its measurements to the cluster head, which makes the

detection decision based on the received measurements. In this chapter, we focus

on value fusion, as it usually has better detection performance than decision fusion

[44]. Most of the results in this chapter can be extended to address the decision fu-

sion model. The details of the extensions can be found in [42, 41]. The optimal value

fusion rule is to compare a weighted sum of sensors’ measurements, i.e.,
∑

i
si
σ · yi,

to a threshold [41]. However, as sensor measurements contain both noise and signal

energy, the weight si
σ , i.e., the SNR received by sensor i, is unknown. A practical so-

lution is to adopt equal constant weights for all sensors’ measurements [34, 10, 48].

Since the measurements from different sensors are treated equally, the sensors far

away from the target should be excluded from data fusion as their measurements

suffer low SNRs. Therefore, we adopt a fusion scheme as follows.

When the network detects whether a target is present at a physical point p, the

sensors within a distance of R meters from p form a cluster and fuse their mea-

surements to detect whether a target is present at p. R is referred to as the fusion

range and F(p) denotes the set of sensors within the fusion range of p. The num-

ber of sensors in F(p) is represented by N(p). A cluster head is elected to make

the detection decision by comparing the sum of measurements reported by member

sensors in F(p) against a detection threshold T . Let Y denote the fusion statistic,

i.e., Y =
∑

i∈F(p) yi. If Y ≥ T , the cluster head decides H1; otherwise, it decides

H0.

We assume that the cluster head makes a detection based on snapshot measure-

ments from member sensors in each unit detection without using temporal samples

to refine the detection decision. Such a snapshot scheme is widely adopted in previ-

ous works on target surveillance [10, 39, 25, 34, 48]. Fusion range R is an important

design parameter of our data fusion model. As SNR received by sensor decays with

distance from the target, fusion range lower-bounds the quality of information that is

fused at the cluster head. The above data fusion model is consistent with the fusion

schemes adopted in [34, 10, 48]. If more efficient fusion models are employed, the

scaling laws proved in this chapter still hold as discussed in Section 6.2. When the

network is requested to detect whether a target is present at a specified position, a

cluster forms around the specified position. When the target position is not specified,

we assume that the target position can be obtained through a localization algorithm.

For instance, the target position can be estimated as the geometric center of a num-

ber of sensors with the largest measurements. Such a simple localization algorithm

is employed in the simulations conducted in this chapter. The localized position may

not be the exact target position and the distance between them is referred to as local-

ization error. We assume that the localization error is upper-bounded by a constant

ǫ. The localization error is accounted for in the following analyses. However, we

show that it has no impact on the asymptotic results derived in this chapter. When

the target is absent and the network is requested to make a detection, a cluster will

still be formed and most likely yield a negative detection decision.

The above data fusion model can be used for target detection as follows. The

detection can be triggered by user queries or executed periodically. In a detection

process, each sensor makes a snapshot measurement and a cluster is formed by
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R

Fig. 3 Target detection under data fusion model. The void circles represent randomly deployed

sensors; the solid circles represent the target in different sampling intervals, and a unit detection is

performed in each sampling interval; the dashed discs represent the fusion ranges.

the sensors within the fusion range from the possible target to make a detection

decision. The cluster formation may be initiated by the sensor that has the largest

measurement. Such a scheme can be implemented by several dynamic clustering

algorithms [8]. Fig. 3 illustrates the intrusion detection under the data fusion model.

The fusion range R can be used as an input parameter of the clustering algorithm.

The communication topology of the cluster can be a multi-hop tree rooted at the

cluster head. As the fusion statistic Y is an aggregation of sensors’ measurements, it

can be computed efficiently along the routing path to the cluster head. In this chapter,

we are interested in the fundamental performance limits of spatial and temporal

coverage under the fusion model and the design of clustering and data aggregation

algorithms is beyond the scope of this chapter.

3.2 Definitions and Problem Statement

3.2.1 Definition of Spatiotemporal Coverage

The detection of a target is inherently stochastic due to the noise in sensor measure-

ments. The detection performance is usually characterized by two metrics, namely,

the false alarm rate (denoted by PF ) and detection probability (denoted by PD).

PF is the probability of making a positive decision when no target is present, and

PD is the probability that a present target is correctly detected. In stochastic detec-

tion, positive detection decisions may be false alarms caused by the noise in sensor

measurements. In particular, although the detection probability can be improved by

setting lower detection thresholds, the fidelity of detection results may be unaccept-

able because of high false alarm rates. Therefore, PF together with PD characterize

the sensing quality provided by the network. For a physical point p, we denote the

probability of successfully detecting a target located at p as PD(p). Note that PF is

the probability of making positive decision when no target is present, and hence is

location independent. We first introduce a concept called (α, β)-covered.

Definition 1 ((α, β)-covered). Given two constants α ∈ (0, 0.5) and β ∈ (0.5, 1), a

physical point p is (α, β)-covered if the false alarm rate PF and detection probability
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PD(p) satisfy

PF ≤ α, PD(p) ≥ β.

We now formally define spatial coverage that quantifies the fraction of the

surveillance region where PF and PD are bounded by α and β, respectively.

Definition 2 (Spatial coverage). The spatial coverage of a region is defined as the

fraction of points in the region that are (α, β)-covered.

There also exists a fundamental trade-off between the delay of detection and false

alarm rate. Although detection delay can be reduced by making sensors more sen-

sitive (e.g., setting lower detection threshold), the fidelity of detection results may

be unacceptable due to high false alarm rates. Therefore, studying detection delay

alone without the consideration of false alarm is meaningless. We now introduce

a new concept called α-delay that quantifies the delay of detection under bounded

false alarm rate.

Definition 3 (α-delay). α-delay is the average number of detection periods before a

target is first detected subject to that the false alarm rate of the network is no greater

than α, i.e., PF ≤ α, where α ∈ (0, 1).

We now formally define temporal coverage that quantifies the timeliness of the

network in detecting targets under bounded false alarm rate.

Definition 4 (Temporal coverage). Temporal coverage is the reciprocal of α-delay.

In addition, we define the following terminologies. The full spatial coverage of

a region refers to the case where the spatial coverage of the region approaches one,

i.e., the false alarm rate is below α and the probability of detecting a target present

at any location is above β. The instant detection refers to the case where the α-delay

or temporal coverage approaches one, i.e., any target can be detected almost surely

in the first detection period after its appearance while the system false alarm rate

is below α. In practice, mission-critical surveillance applications [20, 16, 14, 17]

require that the target can be detected with a high detection probability while the

network maintains a low false alarm rate. Therefore, we can set α and β accordingly

to meet these requirements.

We now illustrate the spatial coverage by an example, where PSNR δ = 1000
(i.e., 30 dB), α = 5%, β = 95%, and R = 50m. Fig. 4(a) and 4(b) illustrate

the spatial coverage under the disc and fusion models, respectively. In Fig. 4(b),

when a target (represented by the triangle) is present, the sensors within the fusion

range from it fuse their measurements to make a detection. The gray area is (α, β)-
covered, where grayscale represents the value of PD at each point. As shown in

Fig. 4(a), the covered region under the disc model is simply the union of all sensing

discs. As a result, when a high level of spatial coverage is required, a large number

of extra sensors must be deployed to eliminate small uncovered areas surrounded by

sensing discs. In contrast, data fusion can effectively expand the covered region by

exploiting the collaboration among neighboring sensors.
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(a) (b)

Fig. 4 Spatial coverage. (a) Spatial coverage under the disc model. Sensing range r = 17 m, which

is computed by (4). (b) Spatial coverage under the fusion model. Grayscale represents the value of

PD.

3.2.2 Problem Statement

In the rest of this chapter, we consider the following problems:

1. Although a number of analytical results on spatiotemporal coverage [4, 23, 46,

38, 52, 50, 51, 29, 5, 12, 24, 3] have been obtained under the classical disc model,

are they still applicable under the probabilistic definition spatiotemporal cover-

age which explicitly captures the stochastic nature of sensing? To answer this

question, we propose a probabilistic disc model such that the existing results can

be naturally extended to the context of stochastic detection (Section 4.1).

2. How to quantify the spatiotemporal coverage when sensors can collaborate

through data fusion? Answering this question enables us to evaluate the spa-

tiotemporal coverage performance of a network. Moreover, it allows us to de-

ploy the fewest sensors for achieving a given level of spatiotemporal coverage

(Sections 4.2).

3. What are the scaling laws between spatiotemporal coverage, network density, and

SNR under both the disc and fusion models? The results will provide important

insights into understanding the limitation of analytical results based on the disc

model as well as the impact of data fusion on the detection performance of large-

scale WSNs (Sections 5).

4 Spatiotemporal Coverage of Wireless Sensor Networks

In this section, we derive the spatiotemporal coverage of large-scale WSNs under the

disc model and the data fusion model, in Section 4.1 and Section 4.2, respectively.
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4.1 Spatiotemporal Coverage under Probabilistic Disc Model

As the classical disc model deterministically treats the detection performance of

sensors, existing results based on this model [4, 23, 46, 38, 52, 50, 51, 29, 5, 12,

24, 3] cannot be readily applied to analyze the performance or guide the design of

real-world WSNs. In this section, we extend the classical disc model based on the

stochastic detection theory [44] to capture several realistic sensing characteristics

and study the spatiotemporal coverage under the extended model. The extended

results will be used as the baselines to study the impact of data fusion on the sensing

performance of WSNs.

4.1.1 Probabilistic Disc Model

In the probabilistic disc model, we choose the sensing range r such that 1) the prob-

ability of detecting any target within the sensing range is no lower than β, and 2) the

false alarm rate is no greater than α. As we ignore the detection probability outside

the sensing range of a sensor, the detection capability of sensor under this model is

lower than in reality. However, this model preserves the boundary of sensing region

defined in the classical disc model. Hence, the existing results based on the classical

disc model [4, 23, 46, 38, 52, 50, 51, 29, 5, 12, 24, 3] can be naturally extended to

the context of stochastic detection.

We now discuss how to choose the sensing range r under the probabilistic disc

model. The optimal Bayesian detection rule for a single sensor i is to compare its

measurement yi to a detection threshold t [44]. If yi exceeds t, sensor i decides H1;

otherwise, it decides H0. Hence, the false alarm rate PF and detection probability

PD of sensor i are given by

PF = P(yi ≥ t|H0) = Q

(

t− µ

σ

)

, (2)

PD = P(yi ≥ t|H1) = Q

(

t− µ− si
σ

)

, (3)

where P(·) is the probability notation and Q(·) is the complementary cumulative

distribution function (CCDF) of the standard normal distribution, i.e., Q(x) =
1√
2π

∫∞
x

e−t2/2d t. As PD is non-decreasing function of PF [44], it is maximized

when PF is set to be the upper bound α. Hence the optimal detection threshold can

be solved from (2) as topt = µ+ σQ−1(α), where Q−1(·) is the inverse function of

Q(·). By replacing t = topt and si = S0 · w(r) in (3), we have

r = w−1

(

Q−1(α) −Q−1(β)

δ

)

, (4)

where w−1(·) is the inverse function of w(·). If the target is more than r meters

from the sensor, the detection performance requirements, i.e., α and β, cannot be
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satisfied by setting any detection threshold. Note that a similar definition of sensing

range is proposed in [48] for stochastic detection. From (4), the sensing range of a

sensor varies with the user requirements (i.e., α and β) and PSNR δ. For instance,

the sensing range r is 3.8m if α = 5%, β = 95%, δ = 50 (i.e., 17 dB) and w(·)
is given by (1) with k = 2. Note that the PSNR of 17 dB is set according to the

measurements from the vehicle detection experiments based on MICA2 [16] and

ExScal [17] motes. As w(·) is a decreasing function, w−1(·) is also a decreasing

function. Therefore, r increases with the PSNR δ according to (4). This conforms to

the intuition that a sensor can detect a farther target if the noise level is lower (i.e., a

greater δ).

4.1.2 Spatial Coverage under Probabilistic Disc Model

We now extend the spatial coverage of random networks [29, 4] derived under the

classical disc model to probabilistic disc model. Under both the classical and prob-

abilistic disc models, a location is regarded as being covered if it is within at least

one sensor’s sensing range. Accordingly, the area of the union of all sensors’ sens-

ing ranges is regarded as being covered by the network. The coverage of random

networks under the classical disc model has been extensively studied based on the

stochastic geometry theory [29, 4]. The results [29, 4] can be stated as the following

lemma:

Lemma 1. Let c denote the spatial coverage under the disc model, we have

c = 1− e−ρπr2 , (5)

where ρ is the network density.

If the sensing range r is chosen by (4), Eq. (5) computes the spatial coverage of

a random network under the probabilistic disc model. This result will be used as the

basis for studying the impact of data fusion on spatial coverage in Section 5.1.

4.1.3 Temporal Coverage under Probabilistic Disc Model

Before deriving the temporal coverage under probabilistic disc model, we first intro-

duce the target detection under the model. The network periodically detects the tar-

get as described in Section 3.1.2. In each unit detection, if the target is within at least

one sensor’s sensing range, the target is detected with a probability no lower than β.

We let β be sufficiently close to 1 (e.g., β = 0.99) such that the target is detected

almost surely if it is within any sensor’s sensing range. Such a setting enables the

sensors to exhibit similar deterministic property as under the classical disc model.

We refer to the circular region with radius of r centered at the target as the target

disc. Hence, the target is detected if there is at least one sensor within the target

disc. In this section, we assume that there is no overlap between any two target discs
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such that the unit detections are independent from each other. Such independence

among unit detections can significantly simplify the analysis. In Section 5.2.2, we

will extend the analysis to the case where target discs may overlap. We now discuss

the condition for no overlap between any two target discs. Suppose the target moves

at a constant speed of v, the no-overlap condition can be satisfied if vTD > 2r. For

instance, if the sensing range r is 3.8m as mentioned in Section 4.1.1 and the target

speed v is 5m/s (i.e., 18 km/h) [14], the target discs will no overlap as long as the

detection period TD is greater than 2 s. We have the following lemma. The proof

can be found in Appendix 1.

Lemma 2. Let τ denote the α-delay under the probabilistic disc model. If there is

no overlap between any two target discs,

τ =
1

1− e−ρπr2
.

We can see from Lemma 2 that the α-delay decreases with network density ρ and

sensing range r. Note that r is given by (4) under the probabilistic disc model. With

the α-delay, we can calculate the temporal coverage of the network.

4.2 Spatiotemporal Coverage under Data Fusion Model

Although the probabilistic disc model discussed in Section 4.1 captures the stochas-

tic nature of sensing, it does not exploit the collaboration among sensors. In this

section, we first derive the spatiotemporal coverage of random networks under the

fusion model and illustrate the analytical results using numerical examples.

4.2.1 Spatial Coverage under Data Fusion Model

We have the following lemma regarding the spatial coverage of random networks.

The proof can be found in Appendix 2.

Lemma 3. The spatial coverage of a uniformly deployed network under the data

fusion model, denoted by c, is

c = P

(
∑

i∈F(p) si
√

N(p)
≥ σ

(

Q−1(α)−Q−1(β)
)

)

, (6)

where p is an arbitrary physical point in the network.

As p is an arbitrary point in the network, N(p) is a Poisson random variable, i.e.,

N(p) ∼ Poi(ρπR2). Moreover, {si|i ∈ F(p)} are also random variables. However,

we have no closed-form formula for computing (6) due to the difficulty of deriving
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the cumulative distribution function (CDF) of

∑
i∈F(p) si√
N(p)

. We now give an approxi-

mation to (6) in the following lemma. The proof can be found in Appendix 3.

Lemma 4. Let µs and σ2
s denote the mean and variance of si|i ∈ F(p) for arbitrary

point p, respectively. The spatial coverage of a uniformly deployed network under

the data fusion model can be approximated by

c ≃ Q

(

γ(R)− ρπR2

√

ρπR2

)

, (7)

where γ(R) =

(

Q−1(α)σ−Q−1(β)
√

σ2
s+σ2

µs

)2

.

We note that the formulas of µs and σ2
s are given by (20) and (21), respectively.

As central limit theorem (CLT) is applied in the derivation of (7) (see Appendix 3),

this approximation is accurate when N(p) ≥ 20 [33]. This condition can be easily

met in many applications. For example, it is shown in [16] that the detection prob-

ability is only about 40% when four MICA2 motes are deployed in a 10 × 10m2

region. Suppose R = 20m and the network density is the same as in [16], N(p) will

be about 50. With the approximate formula, we can evaluate the coverage perfor-

mance of an existing network or compute the minimum network density to achieve

the desired level of coverage under the fusion model. Our simulation results in Sec-

tion 7 show that (7) can provide accurate prediction of coverage under the fusion

model. We note that the localization error has little impact on the accuracy of the

approximate formula when R ≫ ǫ. Recent sensor network localization protocols

can achieve a precision within 0.5m in large-scale outdoor deployments [43].

We now derive the lower bound of spatial coverage under the fusion model,

which will be used in the derivations of scaling laws in Section 5.1. We denote

FPoi(·|λ) as the CDF of the Poisson distribution Poi(λ), which is formally given by

FPoi(x|λ) =
∑⌊x⌋

k=0
e−λλk

k! . We have the following lemma. The proof can be found

in Appendix 4.

Lemma 5. The lower bound of spatial coverage of a uniformly deployed network

under the data fusion model, denoted by cL, is given by

cL = 1− FPoi(Γ (R)|ρπR2), (8)

where

Γ (R) =

(

Q−1(α)−Q−1(β)

δ

)2

· 1

w2(R+ ǫ)
. (9)

When ρπR2 is large enough,

cL = Q

(

Γ (R)− ρπR2

√

ρπR2

)

. (10)
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We now provide several numerical results to help understand the spatial cover-

age performance of random networks under the data fusion model. We adopt the

signal decay function given by (1) with k = 2. Fig. 5 plots the approximate cover-

age computed by (7). We can see from Fig. 5 that the coverage initially increases

with fusion range R, but decreases to zero eventually. Intuitively, as the fusion range

increases, more sensors contribute to the data fusion resulting in better sensing qual-

ity. However, as R becomes very large, the aggregate noise starts to cancel out the

benefit because the target signal decreases quickly with the distance from the target.

In other words, the measurements of sensors far away from the target contain low

quality information and hence fusing them leads to lower detection performance. An

important question is thus how to choose the optimal fusion range (denoted by Ropt)

that maximizes the coverage. First, the Ropt can be obtained through numerical ex-

periments. Fig. 6 plots the optimal fusion ranges under different network densities,

which are obtained by numerically maximizing the coverage. Second, it is possible

to obtain the analytical Ropt by solving dc
dR = 0. For instance, when the signal de-

cay function w(·) is given by (1) with k = 2, Ropt satisfies
Ropt

lnRopt
= Θ(

√
ρ) and

hence Ropt increases with network density ρ.

4.2.2 Temporal Coverage under Data Fusion Model

As discussed in Section 3.1.2, sensors perform a unit detection in each detection

period and hence the process of detecting a target consists of a series of unit de-

tections. Denote Fj as the set of sensors within the fusion range in the jth unit

detection. Suppose there are Nj sensors in Fj . When no target is present, we have

Y |H0 =
∑

i∈Fj
ni ∼ N (Njµ,Njσ

2), which has been proved in Lemma 3. There-

fore, the false alarm rate of the jth unit detection, denoted by PFj , is given by

PFj = P(Y ≥ η|H0) = Q

(

T−Njµ√
Njσ

)

, where T is the detection threshold. As

PD is a non-decreasing function of PF [44], it is maximized when PF is set to be

the upper bound α. Let PFj = α, the optimal detection threshold can be derived
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as Topt = Njµ +
√

NjσQ
−1(α). When the target is present, the sum of energy

measurements in the jth unit detection approximately follows a normal distribution

Y |H1 =
∑

i∈Fj
si+

∑

i∈Fj
ni ∼ N (Njµs+Njµ,Njσ

2
s +Njσ

2), which has been

proved in Lemma 4. The detection probability in the jth unit detection, denoted by

PDj , is given by PDj = P(Y ≥ T |H1) ≃ Q

(

T−Njµs−Njµ√
Nj ·

√
σ2
s+σ2

)

. By replacing T

with the optimal detection threshold Topt, we have

PDj≃Q

(

σ
√

σ2
s+σ2

·Q−1(α)− µs
√

σ2
s+σ2

·
√

Nj

)

. (11)

Based on the above performance modeling of each unit detection, we now derive

the α-delay under the data fusion model. In this section, we assume that there is

no overlap between any two fusion ranges (as shown in Fig. 3). As a result, the

sensor sets {Fj |j ≥ 1} are independent from each other. Such independence can

significantly simplify the analysis. In Section 5.2.2, we extend the analysis to the

case where fusion ranges may overlap. We now discuss the condition for no overlap

between any two fusion ranges. Suppose the target moves at a constant speed of v,

the no-overlap condition can be satisfied if vTD > 2R. For instance, if the fusion

range R is set to be 10m and the target speed v is 5m/s (i.e., 18 km/h) [14], the

fusion ranges will not overlap as long as the detection period TD is greater than 4 s.

From (11), PDj is a function of Nj . When the sensor sets {Fj|j ≥ 1} are in-

dependent, {PDj|j ≥ 1} are i.i.d. as the numbers of sensors involved in each unit

detection (i.e., {Nj|j ≥ 1}) are i.i.d. due to the Poisson process. We denote E[PD]
as the mean of PDj for any j, i.e., E[PD] = E[PDj ], ∀j. Intuitively, the intrusion

detection can be viewed as a series of infinite Bernoulli trials and the success prob-

ability of each Bernoulli trial is E[PD]. Accordingly, the number of unit detections

before (and including) the first successful unit detection follows the geometric dis-

tribution with a mean of 1/E[PD]. Hence the α-delay is given by the following

lemma. The proof can be found in Appendix 5.

Lemma 6. Let τ denote the α-delay of fusion-based detection. If there is no overlap

between any two fusion ranges, τ = 1/E[PD], where E[PD] is the average detection

probability in any unit detection.

We now discuss how to compute E[PD] in Lemma 6. As PDj is a function of Nj

and Nj follows the Poisson distribution, i.e., Nj ∼ Poi(ρπR2), E[PD] is given by

E[PD] =

∞
∑

Nj=0

PDj · fPoi(Nj |ρπR2), (12)

where fPoi(k|λ) is the probability density function (PDF) of the Poisson distribu-

tion Poi(λ). Specifically, fPoi(k|λ) = λke−λ/k!. Note that PDj in (12) is computed

using (11). Fig. 7 and Fig. 8 plot E[PD] versus network density ρ and fusion range

R, respectively. From Fig. 7, we can see that E[PD] increases with ρ. Moreover, for

a certain ρ, E[PD] increases with the PSNR. From Fig. 8, we can see that E[PD]
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is a concave function of fusion range R and there exists an optimal R that maxi-

mizes E[PD]. When the fusion range initially increases, more sensors contribute to

the data fusion resulting in better sensing quality. However, when the fusion range

becomes very large, the aggregate noise starts to cancel out the benefit because the

target signal decreases rapidly with the distance from the target. In other words, the

measurements of sensors far away from the target contain low-quality information

and hence fusing them lowers detection performance. In practice, we can choose the

optimal fusion range according to numerical results.

5 Impact of Data Fusion on Spatiotemporal Coverage

In this section, we study the impact of data fusion on spatial coverage and temporal

coverage in Section 5.1 and Section 5.2, respectively.

5.1 Impact of Data Fusion on Spatial Coverage

Many mission-critical applications require a high level of spatial coverage over the

surveillance region. As an asymptotic case, full spatial coverage is required, i.e.,

any target/event present in the region can be detected with a probability of at least β
while the false alarm rate is below α. For random networks, a higher level of cover-

age always requires more sensors. Therefore, the network density for achieving full

spatial coverage is an important cost metric for mission-critical applications.

Under the disc model, the sensing regions of randomly deployed sensors in-

evitably overlap with each other when a high level coverage is required. According

to (5), we have dρ = 1
πr2 · 1

1−c · dc. If c is close to 1, a large number of extra

sensors (i.e., dρ) are required to eliminate a small uncovered area (i.e., dc). More-

over, the situation gets worse when c increases. In this section, we are interested

in how much network density can be reduced by adopting data fusion. Specifically,
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we study the asymptotic relationships between the network densities for achieving

full spatial coverage under the probabilistic disc and data fusion models. The results

provide important insights into understanding the limitation of the disc model and

the impact of data fusion on spatial coverage of random networks.

5.1.1 Full Spatial Coverage using Fixed Fusion Range

We first study the relationship between the network densities for achieving full spa-

tial coverage under the disc and fusion models when fusion range R is a constant.

We have the following theorem. The proof can be found in Appendix 6.

Theorem 1. For uniformly deployed networks, let ρd and ρf denote the minimum

network densities required to achieve the spatial coverage of c under the disc and

fusion models, respectively. If the fusion range R is fixed, we have

ρf = O
(

2r2

R2
· ρd
)

, c → 1−. (13)

Theorem 1 shows that in order to achieve full spatial coverage, ρf is smaller than

ρd if R >
√
2r. According to (4), sensing range r is a constant independent of net-

work density. On the other hand, fusion range R is a design parameter of the fusion

model, which is mainly constrained by the communication overhead. In practice,

the condition R >
√
2r can be easily satisfied. For instance, the acoustic sensor

on MICA2 motes has a sensing range of 3 m to 5 m if a high performance (e.g.,

α = 5% and β = 95%) is required [16]. On the other hand, the fusion range can

be set to be much larger. For example, Fig. 6 shows that Ropt ranges from 5m to

100m when network density increases from 1.5 × 10−3 to 0.1. Therefore, accord-

ing to Theorem 1, the fusion model with the optimal fusion range can significantly

reduce network density for achieving a high level of coverage.

5.1.2 Full Spatial Coverage using Optimal Fusion Range

As discussed in Section 4.2.1, we can obtain the optimal fusion range via numerical

experiment or analysis. Data fusion with the optimal fusion range allows the maxi-

mum number of informative sensors to contribute to the detection. The scaling law

obtained with optimal fusion range will help us understand the maximum perfor-

mance gain by adopting the data fusion model. The following theorem shows that

ρf further reduces to O(ρ
1−1/k
d ) as long as the fusion range is optimal. The proof

can be found in Appendix 7.

Theorem 2. For uniformly deployed networks, let ρd and ρf denote the minimum

network densities required to achieve the spatial coverage of c under the disc and

fusion models, respectively. If the optimal fusion range Ropt is adopted, we have
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ρf = O
(

ρ
1−1/k
d

)

, c → 1−. (14)

Theorem 2 shows that if the optimal fusion range is adopted, the fusion model

can significantly reduce the network density for achieving high coverage. In partic-

ular, from Theorem 2, the density ratio
ρf

ρd
= O(ρ

−1/k
d ) = 0 when c → 1−, which

means ρf is insignificant compared with ρd for achieving high coverage. Theorem 2

is applicable to the scenarios where the physical signal follows the power law decay

with path loss exponent k, which are widely assumed and verified in practice. We

note that the path loss exponent k typically ranges from 2.0 to 5.0 [25, 19]. In par-

ticular, the propagation of acoustic signals in free space follows the inverse-square

law, i.e., k = 2, and therefore ρf = O(
√
ρd).

5.1.3 Impact of Signal-to-Noise Ratio

In this section, we study the impact of PSNR on the results derived in the previous

sections. PSNR is an important system parameter which is determined by the prop-

erty of target, noise level, and sensitivity of sensors. We have the following theorem.

Theorem 3. For uniformly deployed networks, if the fusion range R is fixed, we

have
ρf
ρd

= O(δ2/k), c → 1−. (15)

Proof. As w(x) = Θ(x−k), w−1(x) = Θ(x−1/k). According to (4), the sensing

range r = Θ(δ1/k). As lim
c→1−

ρf

ρd
≤ 2r2

R2 = Θ(δ2/k), we have (15). ⊓⊔

Theorem 3 suggests that for a fixed R, the relative cost between the fusion and

disc models is affected by the PSNR δ. Specifically, the fusion model requires fewer

sensors to achieve full spatial coverage than the disc model if the PSNR is low.

On the other hand, the disc model suffices only if the PSNR is sufficiently high.

Intuitively, sensor collaboration is more advantageous when the PSNR is low to

moderate. However, when the PSNR is sufficiently high, the detection performance

of a single sensor is satisfactory and the collaboration among multiple sensors may

be unnecessary.

5.2 Impact of Data Fusion on Temporal Coverage

Many mission-critical real-time applications require detection delay to be as small

as possible [20, 45]. As an asymptotic case, the α-delay approaches one, i.e., any

target can be detected almost surely in the first detection period after its appearance,

which is referred to as the instant detection. As a smaller detection delay always

requires more sensors, the network density for achieving instant detection is an im-

portant cost metric for mission-critical real-time sensor networks. In this section,
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we investigate the required network density for achieving instant detection under

both the disc and fusion models. According to Lemma 2 and 6, the network density

under both models approaches infinity2 when the α-delay reduces to one. However,

the speed that the network density increases is different. In this section, we study the

ratio of network densities for instant detection under the two models, which char-

acterize the relative cost of the two models when detection delay is minimized. The

result provides important insights into understanding the limitation of the disc model

and the impact of data fusion on the performance of real-time WSNs for intrusion

detection. In the rest of this section, we first discuss the case that the target discs and

fusion ranges under the disc and fusion models do not overlap in Section 5.2.1, and

then generalize the results in Section 5.2.2.

5.2.1 Network Density for Achieving Instant Detection

We have the following lemma. The proof can be found in Appendix 8.

Lemma 7. Let ρf and ρd denote the network densities for achieving α-delay of τ
under the fusion and disc models, respectively. If there is no overlap between target

discs and fusion ranges under the two models, respectively, there exists ξ ∈ (0, 1)
such that

2

γ2R2
· r2 ≤ lim

τ→1+

ρf
ρd

≤ 2

ξγ2R2
· r2, (16)

where γ = − µs√
σ2
s+σ2

.

Note that ξ is a function of γ (given by (30)). According to Lemma 7, limτ→1+ ρf/ρd
is largely affected by the sensing range of a single sensor. According to (4), the

sensing range r is determined by the requirements on false alarm rate and detec-

tion probability (i.e., α and β), as well as the PSNR δ. Moreover, as discussed in

Section 4.1.3, β is a constant close to one. Accordingly, we only analyze the im-

pacts of α and δ on the network density for achieving instant detection. We have the

following theorem. The proof can be found in Appendix 9.

Theorem 4. If there is no overlap between target discs and fusion ranges under

the disc and fusion models, respectively, for given path loss exponent k, the ratio of

network densities for instant detection under the two models has an asymptotic tight

bound of

ρf
ρd

= Θ

(

(

δ

Q−1(α)

)2/k
)

, τ → 1+. (17)

Theorem 4 suggests that, for a certain path loss exponent k, the relative cost

for instant detection between the fusion and disc models depends on the required

2 Numerically, the network density ρ will not be very large when the α-delay approaches one. For

instance, according to Lemma 2, suppose the sensing range r is 5m, the α-delay under the disc

model is 1 + 10−5 when ρ = 0.15.
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R

Fig. 9 The overlap case under the data fusion model. The void circles represent sensors; the solid

circles represent the target in different sampling intervals; the dashed discs represent the fusion

ranges.

false alarm rate α and PSNR δ. First, when α → 0, Q−1(α) → ∞ and hence

limτ→1+ ρf/ρd → 0. It suggests that data fusion can significantly reduce network

density when a small false alarm rate is required. Second, limτ→1+ ρf/ρd increases

with δ, which suggests that the advantage of data fusion diminishes as the PSNR

increases. Moreover, the path loss exponent k determines the order of density ratio

with regard to the PSNR. Intuitively, sensor collaboration is more advantageous

when the PSNR is low. However, when the PSNR is sufficiently high, the detection

performance of a single sensor is satisfactory and the collaboration among multiple

sensors may be unnecessary.

5.2.2 Extension to General Target Speed and Detection Period

In previous sections, we assume that there is no overlap between any two target discs

and fusion ranges under the disc and fusion models, respectively. However, fusion

ranges may overlap if the target speed is low or the detection period TD is short, as

illustrated in Fig. 9. In this section, we will generalize the previous analyses without

the no-overlap limitation. When there is no overlap, the unit detections are indepen-

dent from each other. As a result, the index of first successful unit detection (i.e., J)

follows the geometric distribution and the α-delay can be computed as the mean of

the geometric distribution. In contrast, when target discs or fusion ranges can over-

lap, the detection results in different unit detections are statistically correlated due

to the possible common sensors shared by different unit detections. Hence, J does

not follows the geometric distribution anymore. Therefore, the correlation among

unit detections substantially complicates the analysis of α-delay. As a result, it is

difficult to obtain the closed-form formula of α-delay. Instead, we aim to find the

bound of α-delay in this section. The lower bound of α-delay under the disc model

is given by the following lemma. The proof can be found in Appendix 10.

Lemma 8. Let τ denote the α-delay under the probabilistic disc model. We have

τ ≥ 1

1− e−ρπr2
.
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Compared with the results in Lemmas 2 and 8, we can see that the α-delay is

minimized for the no-overlap case. Intuitively, the area covered by the union of

target discs is maximized in the no-overlap case, which yields the maximum overall

detection probability for a given number of detection periods and in turn leads to the

minimum detection delay.

The upper bound ofα-delay under the data fusion model is given by the following

lemma. The proof can be found in Appendix 11.

Lemma 9. Let τ denote the α-delay of fusion-based detection. We have τ ≤
E[1/PD], where PD is the detection probability in any unit detection.

As 1/PD is a convex function ofPD, according to Jensen’s inequality,E[1/PD] ≥
1/E[PD], where 1/E[PD] is the α-delay when there is no overlap between any two

fusion ranges. We now discuss how to compute E[1/PD] in Lemma 9. As PDj is

a function of Nj which follows the Poisson distribution, i.e., Nj ∼ Poi(ρπR2),
E[1/PD] can be numerically computed by averaging 1

PDj
over the distribution of

Nj .

With the lower and upper bounds of α-delay under the disc and fusion models,

respectively, we can derive the asymptotic bound of ratio of network densities re-

quired by the two models to achieve instant detection. As it is more challenging

to handle the expression E[1/PD] in Lemma 9 than E[PD] in Lemma 6, we will

employ substantially different technique to analyze the density ratio. We have the

following theorem. The proof can be found in Appendix 12.

Theorem 5. Let ρf and ρd denote the network densities for achieving α-delay of τ
under the value fusion and disc models, respectively. For given path loss exponent

k, the ratio of network densities for instant detection has an asymptotic upper bound

of

lim
τ→1+

ρf
ρd

= O
(

(

δ

Q−1(α)

)2/k
)

. (18)

Different from the result in Theorem 4 which is the asymptotic tight bound of

the density ratio, Theorem 5 gives the asymptotic upper bound. In Section 7.2.3, we

will compare the density ratios under the overlap and no-overlap cases through sim-

ulations. Moreover, as target speed is an important factor of the overlap/no-overlap

condition, we also evaluate the impact of target speed on the density ratio.

6 Implications of Results and Discussions

In this section, we first summarize the implications of the theoretical results derived

in previous sections, which provide important insights into understanding the appli-

cability of the disc model and the data fusion model in various application scenarios.

We then discuss several issues that have not been addressed.
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6.1 Implications of Results

6.1.1 Data Fusion Reduces Network Density

According to Theorem 2, when the coverage of random networks approaches one,

ρd increases significantly faster than ρf , especially for a small path loss expo-

nent. For instance, when k = 2 (which typically holds for acoustic signals),

ρf = O(
√
ρd). This result implies that the existing analytical results based on the

disc model (e.g., [23, 46, 52, 29, 4]) significantly overestimate the network density

required for achieving full spatial coverage of random networks. Data fusion can

reduce network density for achieving instant detection as well. According to The-

orem 4, when the detection delay is minimized (i.e., τ → 1+), ρf/ρd → 0 when

α → 0. Therefore, if a small α is required, ρf < ρd for instant detection, i.e., the fu-

sion model requires lower network density than the disc model. In other words, data

fusion is effective in reducing detection delay and false alarms. For instance, Fig. 10

plots the lower and upper bounds of the density ratio when the α-delay is minimized,

which is given by Lemma 7. We set the PSNR δ to be 50 (i.e., 17 dB) according to

the measurements in the vehicle detection experiments based on MICA2 [16] and

ExScal [17] motes. The fusion range R is optimized to be 37m. From the figure, we

can see that if α < 0.2, the fusion model outperforms the disc model. In practice,

most mission-critical surveillance systems require a small α. For example, in the

vehicle detection system [20] and the acoustic shooter localization system [45], the

false alarm rates are tuned to be near zero. Therefore, data fusion can significantly

reduces the network density for these mission-critical surveillance systems.

6.1.2 Disc Model Suffices for High-SNR Detection

On the other hand, Theorem 3 shows that the disc model may lead to similar or even

lower network density than the fusion model for achieving full spatial coverage

if PSNR is sufficiently high. Similarly, according to Theorem 4, limτ→1+ ρf/ρd
increases with δ for fixed α. Therefore, if the PSNR is high enough such that
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limτ→1+ ρf/ρd > 1, the disc model is superior to the fusion model in achieving

instant detection. For instance, Fig. 11 plots the upper bound of density ratio ver-

sus SNR under various path loss exponents when α-delay is minimized, which is

given by Lemma 7. From the figure, we can see linear and concave relationships

between the density ratio and PSNR when k is 2.0 and 4.0, respectively, which are

consistent with Lemma 6. Moreover, if the PSNR is sufficiently high (e.g., 22 dB),

the disc model outperforms the fusion model. However, the noise experienced by

a sensor comes from various sources, e.g., the random disturbances in the environ-

ment and the electronic noise in the sensor’s circuit. Thus, the PSNR depends on the

characteristics of targets, the environment, and the sensor device. In the vehicle de-

tection experiments based on low-power motes, e.g., MICA2 [16] and ExScal [17],

the PSNRs are usually low to moderate (≤ 17 dB). In such a case, data fusion can

effectively reduce the network density required to achieve a high level of coverage

or a short detection delay.

6.1.3 Design of Data Fusion Algorithms

Our results provide several important guidelines on the design of data fusion algo-

rithms for large-scale WSNs. First, data fusion is very effective in reducing network

density for achieving a high level of coverage or a short detection delay. In particu-

lar, Theorems 3-5 suggest that the performance gain of data fusion increases when

the PSNR is lower. Therefore, data fusion should be employed for low-SNR deploy-

ments when a high level of coverage or a short detection delay is required. Second,

Theorems 1, 2 and Lemma 7 suggest that fusion range plays an important role in the

achievable performance of data fusion. Particularly, as discussed in Section 4.2.1,

the optimal fusion range that maximizes the spatial coverage of random networks

increases with network density and can be numerically computed. However, a larger

fusion range may lead to longer transmission distances and more sensors that take

part in data fusion. Investigating the optimal fusion range under joint constraints of

coverage, detection delay and communication is left for the future work.

6.2 Discussions

We now discuss several issues that have not been addressed.

6.2.1 Noise Models

In the proofs of Lemma 3, 4 and 5 the fusion statistic Y has a component
∑

i∈F(p) ni.

According to the CLT, this component approximately follows the normal distribu-

tion if {ni} are i.i.d.. Therefore, the assumption of i.i.d. Gaussian noises made in

Section 3.1.1 can be relaxed to i.i.d. noises that follow any distribution, when the



Spatiotemporal Coverage in Fusion-based Sensor Networks 29

number of sensors taking part in data fusion is large enough. In practice, the accu-

racy of this approximation is satisfactory when N(p) ≥ 20 [33]. In particular, the

distribution of noise will not affect the asymptotic scaling laws in Sections 5.1 and

5.2, as N(p) is large in the asymptotic scenarios where c → 1−.

6.2.2 Signal Decay Laws

The main objective of this chapter is to explore the fundamental limits of coverage

and detection delay based on data fusion model in target surveillance applications, in

which sensors measure the signals emitted by the target. The proofs of all lemmas

and Theorem 1 are not dependent on the form of the signal decay function w(·).
Therefore, these results hold under arbitrary bounded decreasing function w(·).
However, Theorems 2-5 are only applicable for the applications where the target

signal follows the power law decay, i.e., w(x) = Θ(x−k). We acknowledge that

most mechanical and electromagnetic waves follow the power law decay in propa-

gation. In particular, in open space, inverse-square law (i.e., k = 2) [11] applies to

various physical signals such as sound, light and radiation. We note that if a sensor

is lifted above the ground, its received signal energy can be affected by the height.

However, as Theorems 2-5 only depend the asymptotic power law decay, they still

hold if the height only introduces constant gain coefficient to the decay model. In the

future work, we will investigate if the height can lead to an asymptotic decay model

that is different from the power law decay. Moreover, we will extend our analyses

to address other decay laws such as exponential decay in diffusion processes [40].

6.2.3 Data Fusion Models

Theorems 1, 2, 3 and 5 give the upper bounds of network density under the fusion

model presented in Section 3.1.3. If more efficient fusion models are employed, the

coverage performance as well as detection delay will be further improved. There-

fore, more efficient fusion model can reduce the network density for achieving a

certain level of coverage or detection delay. As a result, the upper bounds of net-

work density derived in this chapter still hold. Exploring the impact of efficiency of

fusion models on network density is left for future work.

7 Evaluation

In this section, we conduct extensive simulations based on real data traces as well

as synthetic data to evaluate the spatiotemporal coverage in non-asymptotic and

asymptotic cases, respectively.
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7.1 Trace-driven Simulations

7.1.1 Methodology and Settings

We first conduct simulations using the data traces collected in in the DARPA SensIT

vehicle detection experiment [14]. In the experiments, 75 WINS NG 2.0 nodes are

deployed to detect amphibious assault vehicles (AAVs) driving through the surveil-

lance region. We refer to [14] for detailed setup of the experiments. The dataset

used in our simulations includes the ground truth data and the acoustic time series

recorded by 20 nodes at a frequency of 4960Hz when a vehicle drives through. The

ground truth data include the positions of sensors and the trajectory of the AAV

recorded by a global positioning system (GPS) device.

Sensors’ sensing ranges under the probabilistic disc model are determined indi-

vidually to meet the detection performance requirements (α = 5%, β = 95%). The

resulted sensing ranges are from 22.5m to 59.2m with the average of 43.2m. Such

a significant variation is due to several issues including poor calibration and com-

plex terrain. In our simulation, we deploy random or regular networks with size of

1000× 1000m2. Each sensor in the simulation is associated with a real sensor cho-

sen at random. For each deployment, we evaluate the spatial coverage and α-delay

under both the disc and fusion models, respectively.

For evaluating spatial coverage, we divide the region into 1000 × 1000 grids.

Under the disc model, the coverage is estimated as the ratio of grid points that are

covered by discs. Under the fusion model, the coverage is estimated as the ratio

of (α, β)-covered grid points. Specifically, for a target that appears at a grid point,

each sensor makes a measurement which is set to be the signal energy gathered

by the associated real sensor at a similar distance to vehicle in the data trace. A

cluster is formed around the sensor with the highest reading, which fuses sensor

measurements for detection.

For evaluating α-delay, the target initially appears at the origin, and moves along

the X-axis at a speed of 10m/s. The detection period TD is set to be 60 s. Under the

disc model, once the target enters the sensing range of a sensor, the sensor makes a

detection decision by comparing its measurement against the detection threshold t
derived in Section 4.1.1. Under the fusion model, sensors fuse their measurements

to detect the target as discussed in Section 3.1.3. The α-delay is computed as the

average number of detection periods before the target is first detected in each run.

7.1.2 Simulation Results

Fig. 12 plots the the numbers of uniformly deployed sensors under the disc and

fusion models as well as the corresponding density ratio versus the achieved spatial

coverage. We can see that the disc model suffices if a moderate level of coverage is

required. However, the fusion model is more effective for achieving high coverage.

In particular, the fusion model with a fusion range of 200m saves more than 50%
sensors when the coverage is greater than 0.75. We note that the average number
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of sensors taking part in data fusion is within 30 and hence will not introduce high

communication overhead. According to Theorem 1, the limit of ρd

ρf
is R2

2r2 when the

coverage approaches one. We will evaluate the coverage performance in asymptotic

case through simulations based on synthetic data in Section 7.2. Fig. 13 plots the

network density versus the achieved α-delay under various settings. We can see

that the fusion model is more effective than the disc model for achieving short α-

delay. In particular, the fusion model with a fusion range of 100m saves more than

50% sensors when the α-delay is less than 2. We note that the average number of

sensors taking part in data fusion is within 20 and hence will not introduce high

communication overhead.

7.2 Simulations Based on Synthetic Data

7.2.1 Numerical Settings

In addition to trace-driven simulations, we also conduct extensive simulations based

on synthetic data. These simulations allow us to evaluate the theoretical results in a

wide range of settings. We adopt the signal decay function in (1) with k = 2. Both

the mean and variance of the Gaussian noise generator, µ and σ2, are set to be 1. We
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with various PSNRs.

set the target’s source energy, i.e., S0, to be 4, 50, and 5000, so that the SNRs in the

simulations are consistent with several real experiments [9, 16, 17, 14].

For evaluating coverage, as proved in Lemma 3, it suffices to measure the prob-

ability that a point is covered for evaluating the coverage of a random network.

Hence, we let the target appear at a fixed point p and deploy random networks with

size of 4R × 4R centered at p. For each deployment, PD(p) is estimated as the

fraction of succesful detections. The spatial coverage is estimated as the fraction of

deployments whose PD(p) is greater than β. We also evaluate the impact of local-

ization error by integrating a simple localization algorithm. Specifically, for each

detection, if a sensor’s reading exceeds S0 · w(R) + µ, it will take part in the target

localization. The target is localized as the geometric center of the sensors partici-

pating in the localization. For a regular network, it suffices to measure the fraction

of covered area in a grid for evaluating the coverage of the whole network. In our

simulations, we find the minimum network density with which 10×10 points in the

grid are covered.

For evaluating detection delay, the target initially appears at the origin, and moves

along the X-axis at a speed of 2R per detection period. We evaluate the impact of

constant target localization error as follows. Suppose the real target position is at

P (x, y) when sensors take measurements, while the target position localized by the

network is at P ′(x + ǫ cos θ, y + ǫ sin θ), where ǫ is a specified constant and θ is

picked uniformly from [0, 2π). Sensors within the fusion range centered at P ′ fuse

their measurements and make the detection decision. We also evaluate the impact

of the overlap/no-overlap condition by comparing the simulation results under the

overlap and no-overlap cases. For the overlap case, the target moves R
2 and r

2 in each

detection period under the fusion and disc models, respectively; for the no-overlap

case, it moves 2R and 2r, respectively.

7.2.2 Spatial Coverage

We first present the simulation results if sensors are randomly deployed. The first set

of simulations evaluate the accuracy of the approximate formula given in Lemma 4.
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Fig. 14 plots the analytical and measured coverage versus network density. The

curves labelled with SIM-LOC and SIM represent the measured results with and

without accounting for localization error, respectively. We can see that the simu-

lation result matches well the analytical result given by (7). A network density of

0.8 is enough to provide high coverage under the fusion model, where the SNR is

very low (δ = 4). When there is localization error, a maximum deviation of about

0.2 from the analytical result can be seen from Fig. 14. The coverage decreases in

the presence of localization error as sensors received weaker signals when the target

cannot be accurately localized. However, the impact of localization error diminishes

when c → 1−.

The second set of simulations evaluate the impact of SNR on the asymptotic

network densities. Fig. 15 plots the network density ratio ρd

ρf
versus the achieved

coverage under various PSNRs, where ρd is computed by (5) and ρf is obtained

in simulations, respectively. The x-axis is plotted in log10 scale. We can see that

the density ratio increases with the coverage, i.e., the fusion model becomes more

effective for achieving higher coverage. Moreover, the density ratio decreases with

the PSNR, which conforms to the result of Theorem 3. For instance, to achieve a

high coverage of 0.99, the density ratio ρd

ρf
is about 8 when δ = 4. The density ratio

decreases to about 2 when δ = 50. This result shows that data fusion is effective

in the scenarios with low SNRs. When δ = 5000, the disc model suffices. These

results are consistent with the analysis in Section 5.1.3.

The third set of simulations evaluate the asymptotic relationship between ρd and

ρf when the fusion range is optimized. In Fig. 16, the X- and Y -axis of each data

point represent the required network densities for achieving the same coverage that

approaches to one under the disc and fusion models, respectively. Note that the Y -

axis is plotted in square root scale. The optimal fusion range Ropt plotted in Fig. 16

is computed for each given ρf by numerically maximizing (7). We can see from

Fig. 16 that the relationship between
√
ρd and ρf is convex and therefore conforms

to the theoretical result ρf = O(
√
ρd) according to Theorem 2. Moreover, Ropt

increases with ρf , which is also consistent with the analysis in Section 4.2.1.
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7.2.3 Temporal Coverage

We first evaluate the analytical result on the α-delay of fusion-based detection.

Fig. 17 plots the α-delay versus the network density. The curve labeled with “ana-

lytical” plots the α-delay computed according to Lemma 6 and Eq. (12). The data

points labeled with “SIM(ǫ)” represent the simulation results with a constant lo-

calization error ǫ. From the figure, we can see that the α-delay decreases with the

network density. The simulation result without localization error (i.e., ǫ = 0) con-

firms the analytical result when the network density is greater than 0.01. When ρ is

smaller than 0.01, the simulation result starts to deviate from the analytical result.

This is due to the approximation made in the derivation of PD in Section 4.2.2.

However, we can see that the maximum error between the analytical and simulation

results falls within one detection period. Fig. 17 also shows that the impact of local-

ization error is small. The simulation result has a considerable deviation from the

analytical result only when the localization error is equal to the fusion range (25m).

In such a case, the target falls completely outside of the fusion range. Moreover,

the impact of localization error diminishes as the network density increases. This

result demonstrates the robustness of our analysis with respect to localization error,

especially in achieving instant detection.
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Fig. 19 Density ratio vs. α-delay. (a) Given different α (SNR = 10 dB). (b) Given different SNRs

(α = 1%).

The second set of simulations evaluate the impact of overlap/no-overlap condi-

tion on the α-delay under the disc and fusion models, respectively. Fig. 18(a) plots

the α-delay versus the network density under the value fusion model. The curves

labeled with “analytical (no-overlap)” and “upper bound” plot the α-delay under

the no-overlap case (given by Lemma 6) and its upper bound (given by Lemma 9),

respectively. We can see that the two analytical results are very close. The other two

curves plot the simulation results for the overlap and no-overlap cases, respectively.

The simulation results closely match the analytical results when the network den-

sity is greater than 0.02. When ρ is smaller than 0.01, the deviation between the

analytical and simulation results is due to the approximation made in the derivation

of PD . Moreover, we can see from Fig. 18(a) that the overlap/no-overlap condition

has little impact on the α-delay under the fusion model. Fig. 18(b) plots the α-delay

under the disc model. Note that the lower bound given by Lemma 8 is also the

analytical result of α-delay under the no-overlap case given by Lemma 2. We can

see that the simulation results confirm the analytical results under the disc model.

Moreover, the α-delay significantly increases under the overlap case. Hence, the

overlap/no-overlap condition has significant impact on the α-delay under the disc

model.

We now evaluate the impact of false alarm rate and SNR on the density ratio.

Fig. 19(a) plots the ratio of network densities required by the data fusion and disc

models to achieve the same α-delay given various false alarm rates. We can see from

Fig. 19(a) that the disc model requires more than twice sensors when the α-delay

approaches to one. Both for the value and decision fusion models, the density ratio

decreases if a lower α is required, which is consistent with Theorems 4 and 5. More-

over, from the two figures, we can see that the density ratio under the overlap case

is smaller than that under the no-overlap case. This is consistent with our observa-

tion in the previous set of simulations, i.e., the overlap condition has little impact

on the fusion model while leads to significant increase of α-delay under the disc

model. Fig. 19(b) plots the ratio of network densities required by the data fusion

and disc models given various SNRs. From Fig. 19(b), we can see that the density
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ratio increases with SNR, which is consistent Theorems 4 and 5. For instance, if the

SNR is 13 dB, the density ratio ρf/ρd is about 0.5 when the α-delay reduces to one.

However, if the SNR increases to 20 dB, ρf/ρd is greater than 1.2 and hence the

disc model requires fewer sensors than the fusion model.

As target speed is an important factor of the overlap/no-overlap condition, we fi-

nally evaluate its impact on the density ratio. Fig. 20 shows the density ratio versus

the target speed. We can see that the density ratio significantly increases when the

target speed increases from r
20 to 2r. This is due to the significant impact of over-

lap condition on the disc model, as observed in Fig. 18(b). Hence, the data fusion

models are more robust than the disc model in detecting slowly moving targets.

8 Conclusion

Spatiotemporal coverage is an important performance requirement of many criti-

cal sensor network applications. In this paper, we explore the fundamental limits of

spatiotemporal coverage based on stochastic data fusion models that jointly process

noisy measurements of sensors. The scaling laws between spatiotemporal coverage,

network density, and SNR are derived. Data fusion is shown to significantly im-

prove spatiotemporal coverage by exploiting the collaboration among sensors. Our

results help understand the limitations of the existing analytical results based on

the disc model and provide key insights into the design and analysis of WSNs that

adopt data fusion algorithms. Our analyses are verified through simulations based

on both synthetic data sets and data traces collected in a real deployment for vehicle

detection.

Appendix 1: Proof of Lemma 2

Proof. As shown in [29], when the sensors are deployed according to the Pois-

son process, the probability that there is at least one sensor in a target disc is

p = 1 − e−ρπr2 . Suppose the target is detected in the J th (J ≥ 1) detection pe-

riod. As there is no overlap between any two target discs, the unit detections are
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independent from each other. Therefore, J follows the geometric distribution with

a success probability of p in each Bernoulli trial (i.e., each unit detection). More-

over, according to the definition of r in (4), the false alarm rate in each unit de-

tection is no greater than α. According to Definition 3, the α-delay is given by

τ = E[J ] = 1
p = 1

1−e−ρπr2
.

Appendix2: Proof of Lemma 3

Proof. We first discuss the necessary and sufficient condition that p is (α, β)-
covered. When no target is present, all sensors measure i.i.d. noises and hence

Y |H0 =
∑

i∈F(p) ni ∼ N (µN(p), σ2N(p)). Therefore, the false alarm rate is

PF = P(Y ≥ T |H0) = Q

(

T−µN(p)

σ
√

N(p)

)

, where T is the detection threshold. As

PD is a non-decreasing function of PF [44], it is maximized when PF is set to

be the upper bound α. Such a scheme is referred to as the constant false alarm

rate detector [44]. Let PF = α, the optimal detection threshold can be derived as

Topt = µN(p) + σQ−1(α)
√

N(p).
When the target is present, we have

Y |H1 =
∑

i∈F(p)

si + ni ∼ N (µN(p) +
∑

i∈F(p)

si, σ
2N(p)).

Therefore, the detection probability at p is given by

PD(p)=P(Y ≥T |H1)=Q

(

T−µN(p)−∑i∈F(p) si

σ
√

N(p)

)

.

By replacing T with Topt and solving PD(p) ≥ β, we have the necessary and

sufficient condition that p is (α, β)-covered:

∑

i∈F(p) si
√

N(p)
≥ σ

(

Q−1(α)−Q−1(β)
)

. (19)

As the random network is stationary, the fraction of covered area equals the prob-

ability that an arbitrary point is covered by the network [29]. Therefore, the spatial

coverage of the network is given by (6). ⊓⊔

Appendix 3: Proof of Lemma 4

Proof. We first prove that the {si|i ∈ F(p)} are i.i.d. for given p and derive the

formulas for µs and σ2
s . As sensors are deployed uniformly and independently,



38 Rui Tan and Guoliang Xing

{di|i ∈ F(p)} are i.i.d. for given p, where di is the distance between sensor i
and point p. To simplify our discussion, we now temporarily assume that there is

no localization error, i.e., ǫ = 0. Therefore, {si|i ∈ F(p)} are i.i.d. for given

p, as si is a function of di. Suppose the coordinates of point p and sensor i are

(xp, yp) and (xi, yi), respectively. The posterior PDF of (xi, yi) is f(xi, yi) =
1

πR2

where (xi − xp)
2 + (yi − yp)

2 ≤ R2. Hence, the posterior CDF of di is given by

F (di) =
∫ 2π

0 dθ
∫ di

0
1

πR2 · xdx =
d2
i

R2 where di ∈ [0, R]. Therefore, we have

µs =

∫ R

0

sidF (di) =
2S0

R2
·
∫ R

0

xw(x)dx, (20)

σ2
s =

∫ R

0

s2idF (di)− µ2
s =

2S2
0

R2

∫ R

0

xw2(x)dx − µ2
s. (21)

By letting µ0 = 2
R2

∫ R

0 xw(x)dx and σ2
0 = 2

R2

∫ R

0 xw2(x)dx − µ2
0, we have µs =

S0µ0 and σ2
s = S2

0σ
2
0 .

A straightforward approximation is to replace
∑

i∈F(p) si in (6) with its mean

µsN(p). However, doing so ignores the distribution of
∑

i∈F(p) si. As N(p) fol-

lows the Poisson distribution,
∑

i∈F(p) si follows the compound Poisson distri-

bution, which has no closed-form PDF and CDF. We approximate the compound

Poisson distribution using the normal distribution. The intuition behind this ap-

proximation is the CLT by assuming N(p) is a constant. Therefore,
∑

i∈F(p) si ∼
N (µsN(p), σ2

sN(p)). When the target is present, Y |H1 =
∑

i∈F(p) si+
∑

i∈F(p) ni.

As the sum of two independent Gaussians is also Gaussian, Y |H1 follows the nor-

mal distribution, i.e., Y |H1 ∼ N (µsN(p) + µN(p), σ2
sN(p) + σ2N(p)). There-

fore, the detection probability at point p is given by PD(p) = P(Y ≥ T |H1) ≃
Q

(

T−µsN(p)−µN(p)√
σ2
s+σ2·

√
N(p)

)

. By replacing T with the optimal detection threshold Topt

(derived in the proof of Lemma 3) and solving PD(p) ≥ β, the condition that p
is (α, β)-covered is given by N(p) ≥ γ(R). The approximate formula of spatial

coverage is then given by

c ≃ P(N(p) ≥ γ(R)) = 1− FPoi(γ(R)|ρπR2), (22)

where FPoi(·|λ) is the CDF of the Poisson distribution Poi(λ). When ρπR2 is large

enough, the Poisson distribution Poi(ρπR2) can be excellently approximated by the

normal distribution N (ρπR2, ρπR2). Therefore, Eq. (22) can be further approxi-

mated by (7). ⊓⊔
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Appendix 4: Proof of Lemma 5

Proof. For any point p,
∑

i∈F(p) si ≥ S0 ·w(R+ǫ)·N(p), as si ≥ S0 ·w(R+ǫ) for

any sensor i in F(p). If
S0·w(R+ǫ)·N(p)√

N(p)
≥ σ

(

Q−1(α)−Q−1(β)
)

, Eq. (19) must

hold. Therefore, by solving N(p), the sufficient condition that p is (α, β)-covered

is N(p) ≥ Γ (R). Moreover, as N(p) ∼ Poi(ρπR2), we have

c = P(point p is (α, β)-covered) ≥ P(N ≥ Γ (R)) = 1− FPoi(Γ (R)|ρπR2).

Therefore, the lower bound of c is given by (8). When ρπR2 is large enough, the

normal distribution N (ρπR2, ρπR2) excellently approximates the Poisson distribu-

tion Poi(ρπR2). Therefore, Eq. (8) can be approximated by (10). ⊓⊔

Appendix 5: Proof of Lemma 6

Proof. Denote Aj as the event that the target is not detected in the jth unit detection.

Thus, the probability of Aj is P(Aj) = 1−PDj . Suppose the target is detected in the

J th unit detection. Although the intrusion detection is a series of infinite Bernoulli

trials, J does not follow the geometric distribution because the success probability

of each Bernoulli trial (i.e., PDj) is a random variable rather than a constant. The

mean of J is give by

E[J ] = 1 · P(Ā1) +
∞
∑

j=2

j · P
(

j−1
⋂

k=1

Ak

⋂

Āj

)

(23)

= 1− P(A1) +

∞
∑

j=2

j ·
(

P

(

j−1
⋂

k=1

Ak

)

− P

(

j
⋂

k=1

Ak

))

= 1 +

∞
∑

j=1

P

(

j
⋂

k=1

Ak

)

(24)

= 1 +

∞
∑

j=1

j
∏

k=1

P(Ak) (25)

= 1 +

∞
∑

j=1

j
∏

k=1

(1 − PDk). (26)

Note that the
⋂j−1

k=1 Ak

⋂

Āj in (23) represents the event that the target is not de-

tected from the first to the (j− 1)th unit detection but detected in the jth unit detec-

tion. As the measurements in different sampling intervals are mutually independent,

{Aj |j ≥ 1} are mutually independent. Hence, Eq. (25) follows. We now explain
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the physical meaning of E[J ]. For a given randomly deployed network, if the target

always appears at a fixed location and travels a fixed trajectory, according to (11),

{PDj |j ≥ 1} are fixed values as {Nj|j ≥ 1} are fixed. As each unit detection is

probabilistic, the E[J ] is the average delay of detecting the target with fixed trajec-

tory. For the target that appears at random location and travels arbitrary trajectory,

{PDj |j ≥ 1} are random variables as {Nj |j ≥ 1} are random variables. Therefore,

the average delay for detecting the target with arbitrary trajectory, i.e., α-delay, is

given by τ = E[E[J ]], where E[E[J ]] is the average of E[J ] taken over all possible

target trajectories. If fusion ranges do not overlap, {Nj|j ≥ 1} are i.i.d. random

variables. Hence, {PDj |j ≥ 1} are also i.i.d. random variables. Therefore,

τ = E[E[J ]] = 1 +
∞
∑

j=1

j
∏

k=1

E[1− PDk]

= 1 +
∞
∑

j=1

(1 − E[PD])j =
1

E[PD]
.

⊓⊔

Appendix 6: Proof of Theorem 1

Proof. As ρf is large to provide a high level of spatial coverage under the fu-

sion model, the lower bound of spatial coverage, cL, is given by (10) accord-

ing to Lemma 5. We define h1(ρf ) = Γ (R)√
πR

· 1√
ρf

, h2(ρf ) =
√
πR · √ρf and

hence cL = Q(h1(ρf ) − h2(ρf )). When ρf → ∞, h2(ρf ) dominates h1(ρf ) as

lim
ρf→∞

h1(ρf )
h2(ρf )

= 0. Hence, c ≥ cL = Q(−h2(ρf )) = Q(−√
πR · √ρf ) when

ρf → ∞. Define x = Q−1(c). We have ρf ≤ 1
πR2 x

2 when c → 1−.

Under the disc model, by replacing c = Q(x) = 1 − Φ(x) in (5) and solving

ρd, we have ρd = − 1
πr2 lnΦ(x), where Φ(x) is the CDF of the standard normal

distribution. Hence, we have

lim
c→1−

ρf
ρd

≤ lim
x→−∞

1
πR2 x

2

− 1
πr2 lnΦ(x)

= − r2

R2
lim

x→−∞
x2

lnΦ(x)
.

As lim
x→−∞

x2

lnΦ(x) = −2 [49], we have lim
c→1−

ρf

ρd
≤ 2r2

R2 . Therefore, the asymptotic

upper bound of ρf is given by (13). ⊓⊔
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Appendix 7: Proof of Theorem 2

Proof. We choose R by
ξ

π
· Γ (R)

R2
= ρf , (27)

where ξ is a constant and ξ > 1. It is easy to verify that the chosen R is order-

optimal for the lower bound of coverage (i.e., cL). Moreover, it is easy to verify that

both the chosen R and Γ (R) increase with ρf . By replacing ρf in (10) with (27), cL

is given by cL = Q
((

1√
ξ
−√

ξ
)

·
√

Γ (R)
)

= 1 − Φ(ηz), where η = 1√
ξ
− √

ξ

is a constant and z =
√

Γ (R). Hence we have c ≥ cL = 1 − Φ(ηz). According

to (5), the network density under the disc model satisfies ρd = − 1
πr2 ln(1 − c) ≥

− 1
πr2 lnΦ(ηz). Hence, the ratio ρbf/ρd, where b is a positive constant, satisfies

lim
c→1−

ρbf
ρd

≤ lim
R→∞

(

ξ
π

)b

· Γ b(R)
R2b

− 1
πr2 lnΦ(ηz)

= − ξbr2

πb−1
· lim
z→∞

z2

lnΦ(ηz)
· lim
R→∞

Γ b−1(R)

R2b

=
2ξbr2

πb−1η2
· lim
R→∞

Γ b−1(R)

R2b
.

Note that lim
z→∞

z2

lnΦ(ηz) = − 2
η2 [49] in the above derivation. As w(x) = Θ(x−k)

and ǫ is constant, Γ (R) = Θ(1/w2(R + ǫ)) = Θ((R + ǫ)2k) = Θ(R2k) and

hence Γ b−1(R) = Θ(R2kb−2k). Therefore, lim
R→∞

Γ b−1(R)
R2b = lim

R→∞
R2kb−2k−2b. If

b ≤ k
k−1 , lim

R→∞
Γ b−1(R)

R2b is a constant and hence lim
c→1−

ρb
f

ρd
is upper-bounded by a

constant. Hence, we have (14). We note that although the chosen R is not optimal

for c, the upper bound given by (14) still holds if R is optimal for c. ⊓⊔

Appendix 8: Proof of Lemma 7

Proof. We abuse the symbols a bit to use N instead of Nj and PD instead of PDj

as we are not interested in the index of unit detection. As ρ → ∞, N → ∞ almost

surely. In (11), the second item − µs√
σ2
s+σ2

·
√
N dominates when ρ → ∞, since the

first item σ√
σ2
s+σ2

·Q−1(α) is a constant. Therefore, it’s safe to use PD = Q(γ
√
N)

to approximate (11), where γ = − µs√
σ2
s+σ2

. From Lemma 2 and 6, if the same α-

delay of τ is achieved under the two models, we have

E[PD] = 1− e−ρdπr
2

. (28)
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We first prove the lower bound in (16). It is easy to verify that PD = Q(γ
√
N) is

a concave function. According to Jensen’s inequality, we haveE[PD] ≤ Q(γ
√

E[N ]) =

Q(γ
√

ρfπR2). From (28), we have 1 − e−ρdπr
2

= E[PD] ≤ Q(γ
√

ρfπR2). Ac-

cordingly, ρd ≤ − 1
πr2 lnΦ(γ

√
πR · √ρf ), where Φ(x) = 1 − Q(x). Hence, the

density ratio satisfies

lim
τ→1+

ρf
ρd

≥ −πr2 · lim
ρf→∞

ρf
lnΦ(γ

√
πR · √ρf )

=
2

γ2R2
· r2.

In the above derivation, we use the equality lim
x→∞

x
lnΦ(η

√
x)

= − 2
η2 , which has been

proved in [49].

We now prove the upper bound in (16). As PD > 0, according to Markov’s

inequality, for any given number c, we have

E[PD] ≥ c · P(PD ≥ c). (29)

We define ξ and c as follows:

ξ =
γ2 + 2−

√

γ4 + 4γ2

2
, c = Q(γ

√

ξρfπR2). (30)

It’s easy to verify that ξ ∈ (0, 1). Therefore,

P(PD ≥ c) = P

(

Q(γ
√
N) ≥ Q(γ

√

ξρfπR2)

)

= P(N ≥ ξρfπR
2).

As N ∼ Poi(ρfπR
2) and the Poisson distribution approaches the normal distribu-

tion N (ρfπR
2, ρfπR

2) when ρf → ∞, we have

P(PD ≥ c) = Q

(

ξρfπR
2 − ρfπR

2

√

ρfπR2

)

= Q

(

(ξ − 1)
√

ρfπR2

)

.

By replacing c and P(PD ≥ c) in (29), we have

E[PD] ≥ Q

(

γ
√

ξρfπR2

)

·Q
(

(ξ − 1)
√

ρfπR2

)

.

It is easy to verify that γ
√
ξ = ξ− 1. Thus the above inequality reduces to E[PD] ≥

Q2(h
√
ρf ), where h = γ

√
ξπR. From (28), we have 1 − e−ρdπr

2

= E[PD] ≥
Q2(h

√
ρf ). Accordingly, ρd ≥ − 1

πr2 · (ln(1 +Q(h
√
ρf )) + lnΦ(h

√
ρf )). Hence,

we have

lim
τ→1+

ρf
ρd

≤ −πr2 lim
ρf→∞

ρf
ln(1 +Q(h

√
ρf )) + lnΦ(h

√
ρf )

= −πr2 lim
ρf→∞

ρf
lnΦ(h

√
ρf )

=
2

ξγ2R2
· r2. (31)
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Note that h = γ
√
ξπR < 0 and ln(1 +Q(h

√
ρf )) = ln 2 when ρf → ∞. We also

use the aforementioned equality lim
x→∞

x
lnΦ(η

√
x)

= − 2
η2 [49] to derive (31). ⊓⊔

Appendix 9: Proof of Theorem 4

Proof. In Lemma 7, γ depends on the PSNR δ, i.e.,

γ = − µs
√

σ2
s + σ2

= − S0µ0
√

S2
0σ

2
0 + σ2

= − µ0
√

σ2
0 +

1
δ2

,

where µ0 and σ2
0 (both defined in the proof of Lemma 4) are constants. Moreover,

ξ is a function of γ (given by (30)). Accordingly, γ and ξ are both constants when

δ is fixed or approaches infinity. Hence, according to Lemma 7, the tight bound of

the density ratio is limτ→1+ ρf/ρd = Θ(r2). As w−1(x) = Θ(x−1/k), according

to (4), r2 = Θ

(

(

δ
Q−1(α)

)2/k
)

for fixed β. Therefore, we have (17). ⊓⊔

Appendix 10: Proof of Lemma 8

Proof. Let Aj denote the event that the target is not detected in the jth unit detec-

tion and Cj denote the corresponding target disc. Suppose the target is detected in

the J th unit detection. Recall (24), we have E[J ] = 1 +
∑∞

j=1 P

(

⋂j
k=1 Ak

)

=

1 +
∑∞

j=1

∏j
k=1 P

(

Ak

∣

∣

∣

⋂k−1
l=1 Al

)

. The above derivation follows the definition of

conditional probability. Let C denote the common area between the kth target disc

and the union of all the previous target discs, i.e., C = Ck ∩ (
⋃k−1

l=1 Cl). Therefore,

C ≥ 0 and

P

(

Ak

∣

∣

∣

∣

∣

k−1
⋂

l=1

Al

)

= P (there is no sensor in (Ck − C))

= e−ρ(πr2−C) ≥ e−ρπr2 .

Hence, τ = E[J ] ≥ 1 +
∑∞

j=1

(

e−ρπr2
)j

= 1
1−e−ρπr2

. ⊓⊔
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Appendix 11: Proof of Lemma 9

Proof. We first introduce the generalized Hölder’s inequality [15]. For random vari-

ables Xi, i = 1, . . . , n, we have E [
∏n

i=1 |Xi|] ≤ ∏n
i=1 (E [|Xi|pi ])1/pi where

pi > 1 and
∑n

i=1 p
−1
i = 1. If Xi, i = 1, . . . , n, are identically distributed, by

setting pi = n, we have

E

[

n
∏

i=1

|Xi|
]

≤ E [|X |n] , (32)

where X can be any Xi. In our problem, {Nj|j ≥ 1} are identically distributed

random variables due to the Poisson process. As PDj is a function of Nj (given by

(11)), {PDj |j ≥ 1} are also identically distributed random variables. Recall (26), by

applying the inequality (32) , the α-delay of fusion-based detection can be derived

as

τ = E[E[J ]] = 1 +

∞
∑

j=1

E

[

j
∏

k=1

(1− PDk)

]

≤ 1 +

∞
∑

j=1

E[(1− PD)j ] = E

[

1

PD

]

.

⊓⊔

Appendix 12: Proof of Theorem 5

Proof. According to Lemma 8 and Lemma 9, we have

1/(1− e−ρdπr
2

) ≤ τ ≤ E [1/PD] . (33)

We first find a upper bound of E [1/PD]. As discussed in the proof of Lemma 7,

it is safe to use PD = Q(γ
√
N) to approximate (11), where γ = − µs√

σ2
s+σ2

. As

N ∼ Poi(ρfπR
2) and the Poisson distribution approaches to the normal distribu-

tion N (ρfπR
2, ρfπR

2) when ρf → ∞, for any given constant ξ ∈ (0, 1), we have

P(N ≥ ξρfπR
2) = Q

(

ξρfπR
2−ρfπR

2√
ρfπR2

)

= Q
(

(ξ−1)
√

ρfπR2
)

. When ρf → ∞,

P(N ≥ ξρfπR
2) → 1, i.e., N ≥ ξρfπR

2 with high probability. Moreover, as

1/PD = 1/Q(γN) is a decreasing function of N , E[1/PD] ≤ 1/Q(γ
√

ξρfπR2)

with high probability. Furthermore, according to (33), we have 1/(1− e−ρdπr
2

) ≤
1/Q(γ

√

ξρfπR2) probability when ρf → ∞. After manipulation, we have ρd ≥
− 1

πr2 ln
(

Φ(γ
√
ξπR

√
ρf )
)

, where Φ(x) = 1−Q(x). Hence, we have
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lim
τ→1+

ρf
ρd

≤ −πr2 lim
ρf→∞

ρf

ln
(

Φ(γ
√
ξπR

√
ρf )
) =

2

γ2ξR2
· r2. (34)

In the above derivation, we use the equality lim
x→∞

x
lnΦ(ϑ

√
x)

= − 2
ϑ2 that has been

proved in [49]. Hence, the upper bound of the density ratio is limτ→1+ ρf/ρd =

O(r2). As r2 = Θ

(

(

δ
Q−1(α)

)2/k
)

, we have (18). ⊓⊔
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