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Abstract—Much recent work has applied existing fault de-
tectors against attacks in cyber-physical control systems. The
results demonstrate effectiveness in detecting simplistic attacks
that cause fault-like disruptions. However, they do not address
motivated and knowledgeable attackers who craft attacks using
knowledge of the system including its method of detecting attacks.
In this paper, we analyze the conditions for an attacker to bypass
a dissipativity-theoretic fault detector adopted in the prior work.
We show that the attacker can use a quadratic programming
solver to efficiently compute false data injection attacks to bypass
the detector. We show further that, by applying an OR gate to
fuse binary detection results from a number of the detectors,
with carefully chosen parameters, we can achieve an integrated
detector bank that cannot be bypassed by an attacker, if the
attacker can tamper with either the sensor or control data of the
system. For an n-dimensional linear time-invariant system, the
number of needed fault detectors is O(n!). This number can be
dramatically reduced to O(n) under a realistic assumption that
the system has converged before the attack starts. Simulations
for voltage control based on an IEEE 39-bus power system model
validate our analysis.

I. INTRODUCTION

Many critical infrastructures (e.g., power grid, water treat-
ment, and railway systems) are evolving into cyber-physical
systems by adopting information and communication tech-
nologies for control and situation awareness. The added cyber
components, however, can make them vulnerable to potentially
devastating cyber-attacks launched by insiders or resourceful
foes. For instance, in 2000, a disgruntled former employee
of a waste water service company used his insider access
to compromise the company’s supervisory control and data
acquisition (SCADA) system, causing 800,000 liters of un-
treated sewage to contaminate connected water systems over
several weeks [1]. Recent Dragonfly virus [2] and Stuxnet
worm [3] attacks bypass air gaps first, then penetrate corporate
networks via stolen credentials and zero-day exploits. The
Stuxnet finally disrupts control systems that interact directly
with nuclear centrifuges. Because of the stealthiness of these
attacks, system operators often have little knowledge about
them until severe physical damage has already occurred [3].

In this paper, we investigate early detection of a broad
class of data integrity attacks called false data injection
(FDI) against a cyber-physical control system (CPCS). The
FDI attacks tamper with the system’s sensor or control data
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transmitted on a cyber-plane, and aim to mislead the system to
unsafe states and cause physical damage. The detection of FDI
attacks is challenging because the detector typically needs to
understand physical semantics of the sensor and/or control data
being monitored. To address the challenge, there is growing
momentum [4]–[9] to apply existing control system fault
detectors,1 designed based on understood physical semantics
of the data, against FDI attacks. The rationale is that an FDI
attack and a fault may both cause similar observable effects,
such as discrepancy between the system state seen and that
predicted from an a priori system model. An implicit but
crucial assumption underlying this approach, however, is that
the attacker cannot or will not attempt deliberately to conceal
their actions, such that they will cause fault-like disruptions.
Examples of simplistic fault-like attacks include: set a signal
to its maximum or minimum [4], inject ramps, surges, and
random noises [5]–[7]. The attacks considered in [8], [9] are
designed based on system dynamics only and can be detected
by certain fault detectors.

However, real-world attackers against critical infrastructures
are often smart and they can optimize against a chosen target.
Their strategies can be guided by knowledge about the system
including its defense mechanisms deployed. The knowledge
can be obtained in practice by malicious insiders, long-term
data exfiltration [2], or social engineering against employees,
contractors, or vendors of the infrastructure [3]. Thus, it is
imperative to provide fundamental understanding on the use-
fulness and limitations of fault detectors in security incidents
caused by knowledgeable and strategic attackers. In this paper,
we follow Kerckhoffs’s principle to consider an attacker who
has accurate knowledge of the targeted system including its
method of detecting attacks. We will analyze whether and
how this knowledgeable attacker can bypass a fault detector
to launch a stealthy attack. Guided by the analysis, we seek
to strengthen existing fault detectors to ensure detection and
impose limits on what the attacker can do.

To be applicable to real-world systems of non-trivial com-
plexity, in this paper we study an advanced fault detector that
is based on a dissipativity-theoretic property of linear time-
invariant (LTI) systems [10], [11]. This detector has received
growing research interest, due to its robustness in that it does

1A fault refers to accidental disruption of sensor/control data due to natural
malfunction of system component(s).



not require a detailed and accurate system model [12]–[14].
The detector has been applied to detect simplistic fault-like
attacks [4], but its performance against attackers under the
Kerckhoffs’s setting is hitherto unknown. We derive closed-
form conditions for bypassing the detector under different
settings of the attacker’s access to sensor or control data.
We show that the attacker can use an efficient quadratic
programming solver to compute FDI attacks to bypass the fault
detector and mislead the control system to unsafe states. We
further show that, by applying an OR gate to fuse the binary
detection results from a number of the dissipativity-based fault
detectors, the integrated detector bank cannot be bypassed
even in the Kerckhoffs’s setting, provided that we take care
to select the detectors’ parameters, and that the attacker can
tamper with either the sensor or control data only. For an n-
dimensional LTI CPCS, the number of needed fault detectors
is O(n!). We show that this number can be dramatically
reduced to O(n) if, before the attack starts, the system has
been regulated to operate around a target state within a certain
error bound. This reduction renders the detector bank feasible
for a wide range of real-world LTI CPCSes that aim naturally
to maintain the system state at a certain nominal value (e.g.,
50 Hz frequency for a power grid).

To illustrate our analysis, we use a real-world CPCS – volt-
age control in power grids – as a case study. Simulations based
on an IEEE 39-bus power system model validate our analysis.
In particular, the results show that if a dissipativity-based
fault detector is applied without modifications, an attacker
tampering with the readings of four voltage meters can deviate
the bus voltages to unsafe levels within just one control cycle,
without triggering the detector. Hence, the proposed detector
bank is needed to identify the attack successfully.

The rest of this paper is organized as follows. Section II
reviews related work. Section III presents preliminaries of
the problem setup. Section IV states the research problem.
Section V derives bypass conditions for the dissipativity-based
fault detector. Section VI analyzes a new design of detector
bank to ensure detection. Section VII presents our simulation
results. Section VIII concludes.

II. RELATED WORK

In a CPCS, the communication network for transmitting
sensor/control data can experience faults such as data delays,
corruptions, and losses. Various fault detection approaches
have been proposed to deal with this problem [12]–[17].
They can be broadly divided into two categories: observer-
based and dissipativity-based. The principle of the observer-
based approach is to detect an observation’s deviation from its
predicted value based on historical data and a known system
model [15]–[17]. Recently, the dissipativity-based approach
has gained research attention [12]–[14], because it does not
require a detailed and accurate system model that can be hard
to obtain. Rather, it only needs three energy functions that are
“summaries” of the model. Recent work has also shown that
this approach is computationally efficient [12], [13].

Because of increasing reports on attacks against cyber-
physical infrastructures, the security of CPCSes has attracted
much interest. For instance, FDI attacks against a chemical
reactor and water supply SCADA systems and their physical
impacts are studied in [5], [6]. To detect attacks, several
studies apply observer-based [5]–[9] and dissipativity-based
[4] fault detectors. The observer-based detectors employed
differ mainly in how they evaluate discrepancy, e.g., sequential
change [5] and variable threshold-based test [8]. In [4], the
authors apply a dissipativity-based fault detector to detect
several types of attacks, and demonstrate its effectiveness
using a case study of robotic arm velocity control. All of this
prior work [4]–[9] does not address knowledgeable attackers.

Several studies have pointed out the vulnerabilities of ex-
isting fault detectors. In [18], the authors derive conditions
for FDI attacks to bypass a bad data detection, which is an
observer-based fault detector, in state estimation for a power
grid. In [19], the authors construct a model checker to search
for FDI attacks that will increase the electricity generation
cost by a specified percentage. Kwon et al. [20] study FDI
attacks that can bypass a Kalman filter-based residual checker
(an observer-based fault detector) and analyze their impacts on
the system state. These studies focus on analyzing the bypass
conditions and the impact of attacks. Effective exploitation of
existing fault detectors to make them work in the Kerckhoffs’s
setting is still lacking.

III. PRELIMINARIES

Sections III-A and III-B describe a general CPCS model
and the dissipativity-based fault detector, respectively. Sec-
tion III-C presents a case study of power grid voltage control.
The notational convention in this paper is as follows.2 Take
the letter x as an example. X denotes a matrix; x denotes a
column vector; x[k] denotes the kth sample of a time-domain
signal x that is sampled periodically; Rp×q denotes the set of
real p× q matrices; In ∈ Rn×n is an identity matrix.

A. CPCS Model

As illustrated in Fig. 1, we consider a CPCS that consists
of a physical plant, a cyber controller, sensors, and actuators.
The system’s physical dynamics is described by the following
widely adopted discrete-time LTI model:

x[k + 1] = Ax[k] + Bu[k], (1)
y[k] = Cx[k], (2)

where x[k] ∈ Rn×1 and y[k] ∈ Rm×1 are the state of the
physical plant and the measurement of the sensors at time
instant k, respectively; u[k] ∈ Rl×1 is the control signal
determined by the cyber controller and sent to the actuators
to affect the state; A ∈ Rn×n, B ∈ Rn×l, and C ∈ Rm×n

are constant matrices. A control algorithm often determines
u[k] from A, B, C, and {y[k],y[k − 1], . . .}. The y and u
are transmitted over a communication network. In practice,

2A table summarizing the notation used in this paper can be found in an
extended version of this paper [21].



Fig. 1. CPCS model and dissipativity-based fault detector. The C−1 in the
fault detector represents the state estimation process. Devils represent potential
FDI attacks. The cyber controller and the fault detector are secured, while their
input and output data may have been changed by the attacker.

a CPCS is subject to exogenous disturbances and sensor
measurement noises. Although the models in Eqs. (1) and (2)
do not explicitly capture these factors, we will discuss their
impact on our analysis where applicable.

B. Dissipativity-Based Fault Detector

The dissipativity-based fault detector is based on three en-
ergy functions [11], i.e., supply ω(y[k],u[k]), storage v(x[k]),
and dissipation d(x[k],u[k]). They are given by

ω(y[k],u[k]) = yᵀ[k]Qy[k] + 2yᵀ[k]Su[k] + uᵀ[k]Ru[k],

v(x[k]) = xᵀ[k]Px[k],

d(x[k],u[k]) = (Lx[k] + Wu[k])ᵀ(Lx[k] + Wu[k]),

where Q, S, R, P, L, and W are constant matrices of
proper dimensions. Starting from time instant K0, the supplied
energy, stored energy, and dissipated energy up to time instant
k, are respectively given by Esupplied[k] =

∑k
i=K0

ω(y[i],u[i]),
Estored[k] = V (x[k + 1]) − V (x[K0]), and Edissipated[k] =∑k

i=K0
d(x[i],u[i]). The energy balance error ε[k] is defined

by ε[k] = Esupplied[k] − Estored[k] − Edissipated[k]. An energy
balance property for a class of LTI systems called QSR-
dissipative systems is restated as the following lemma.

Lemma 1 ( [11]). If there exist matrices Q, S, R, L, W, and
a positive definite matrix P such that AᵀPA−P = CᵀQC−
LᵀL,AᵀPB = CᵀS−LᵀW, and BᵀPB = R−WᵀW, the
system described by Eqs. (1) and (2) is QSR-dissipative and

ε[k] = 0, ∀k > K0.

The energy balance property in Lemma 1 has been leveraged
to construct fault detectors [12]–[14]. The bottom part of
Fig. 1 illustrates such a fault detector. Specifically, a detector
is characterized by a sextuple 〈Q,S,R,L,W,P〉 that satisfies
the conditions in Lemma 1. Once a fault occurs, the conditions
in Lemma 1 do not hold any more and thus ε[k] 6= 0 after the
fault. To avoid excessive false alarms caused by exogenous
disturbances and random measurement noises, |ε[k]| can be
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Fig. 2. One-line diagram of the IEEE 39-bus system. The buses labeled with
p© are pilot buses.

compared with a positive threshold τ to make fault detection
decisions. In Section VII, we will discuss the setting of τ .

The dissipativity-based detector can yield good fault detec-
tion performance under realistic settings. For instance, our nu-
merical results [21] show that, compared with several residual-
based fault detectors (i.e., threshold tests based on the `2-norm
or each element of the residual x[k+1]−Ax[k]−Bu[k]), the
dissipativity-based fault detector can achieve a better receiver
operating characteristic (ROC) curve in the presence of ran-
dom measurement noises and inaccuracy of the system model
(i.e., A, B, and C). Note that, for a system without a detailed
system model, the energy functions can be directly learned
from sensor/control data [12]. However, as this paper studies
the vulnerability of the fault detector under the Kerckhoffs’s
setting, our analysis assumes that the system model is known.

C. A Case Study – Voltage Control in Power Grids

Although all the analytic results in this paper are based on
the general CPCS model in Section III-A, we employ a real-
world CPCS – voltage control – as a case study. A power grid
consists of a number of buses connected with transmission
lines. For instance, Fig. 2 shows a one-line diagram of the
IEEE 39-bus system. Maintaining the bus voltages at nominal
values is a basic control objective. Bus voltage deviations
will cause power device trips, equipment damage, and even
widespread loss of power. At a generator bus (i.e., a bus
connected with a generator, such as Bus 30 and Bus 39
in Fig. 2), the voltage can be controlled by the generator.
The voltage control maintains the voltages of selected non-
generator buses at nominal values by adjusting the generator
output voltages [22]. These selected non-generator buses are
called pilot buses, which are often chosen by the system
operator in terms of criticality of voltage regulation. In Fig. 2,
the buses labeled with p© represent pilot buses.

The LTI modelling of voltage control is as follows. At the
kth time instant, the state x[k] is a vector of the pilot bus
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Fig. 3. Energy balance error due to random additive injections to measurement
y of the voltage control system. Attack happens during the shaded period.

voltages and the control signal is u[k] = v[k] − v[k − 1],
where v is a vector of generator output voltages. Under
these definitions, the model in Eq. (1) with A = In is an
approximation of the system dynamics [22]. As the state x
can be directly measured by voltage meters at the pilot buses,
the measurement matrix C in Eq. (2) is an identity matrix
and y[k] = x[k]. Let x0 denote a vector of nominal voltages
of the pilot buses. A major exogenous disturbance to the
system is the changing reactive power draw of loads [22].
From control theory, for a constant α ∈ (0, 1), if the voltage
control algorithm satisfies Bu[k] = α(x0−x[k]), the system is
bounded-input bounded-output stable. This control algorithm
is adopted in real systems [23] and also used in this paper.

IV. PROBLEM STATEMENT

A. Cybersecurity Threats and FDI Attack Model

In many large-scale critical infrastructures, the use of shared
communication media to transmit sensor/control data intro-
duces significant cybersecurity risks to CPCSes. Take voltage
control as an example. To be scalable and cost effective, power
grids often leverage existing network infrastructures and set up
virtual private networks (VPNs) as logically isolated channels
to collect measurements from voltage meters distributed over a
vast area [24], [25]. However, such a software-based protection
cannot guarantee the security of meter data links, because
of pervasive software vulnerabilities (e.g., the Heartbleed bug
[26] of OpenSSL-based VPNs). In this paper, we focus on FDI
attacks that tamper with the measurement y or the control
signal u. As illustrated in Fig. 1, an FDI attack can be
launched by compromising the sensors and the communication
network. In this paper, we assume that the cyber controller and
fault/attack detector are not compromised. We refer to [27] for
a study on detecting malicious control signals from a possibly
compromised cyber controller.

B. Dissipativity-Based FDI Attack Detection

At first glance, the dissipativity-based fault detector de-
scribed in Section III-B can detect FDI attacks, since malicious
changes to the measurement y and/or the control signal u
can invalidate the energy balance condition in Lemma 1.
For instance, Fig. 3(b) shows the energy balance error due
to random additive injections to the measurement y of the
voltage control system in Fig. 2, where Fig. 3(a) shows the
trace of an element of the injection. We can see that this

attack can be detected according to the significant non-zero
energy balance errors. It is also known that the fault detector
can identify several other types of attacks [4]. However, in
this paper, we pose the following additional question: If an
attacker possesses full knowledge of the system (i.e., A, B,
and C) and the dissipativity-based fault detector (i.e., Q, S,
R, L, W, and P), as well as the historical measurements
and control signals, can they bypass the detector if they can
tamper with a certain subset of u’s and/or y’s components?
Our analysis in Section V answers the question in the positive.
Thus, a natural follow-up question is: Can we design a new
attack detector based on the dissipativity principle, such that
the attacker cannot bypass the detector? This is the subject of
Section VI.

V. BYPASSING A DISSIPATIVITY-BASED FAULT DETECTOR

This section investigates the vulnerabilities of a single
dissipativity-based fault detector. We derive expressions of
the energy balance error in the presence of FDI attacks and
investigate efficient algorithms to bypass the detector.

A. Energy Balance Error in the Presence of FDI Attacks

We first consider the case that both the measurement y and
the control signal u are compromised. Suppose that the at-
tacker launches attack from time instant K1 to K2, inclusively.
At the time instant k ∈ [K1,K2], the compromised control
signal, denoted by ũ[k], is ũ[k] = u[k]+a[k], where a[k] is the
malicious injection. This compromised control signal ũ will be
applied to the physical plant. The compromised measurement,
denoted by ỹ[k], is ỹ[k] = y[k] + Ce[k] = C(x[k] + e[k]),
where x[k] is the true system state, Ce[k] is the injection on
the measurement y[k], and e[k] is a change to the estimated
system state due to the injection to the measurement. As
illustrated in Fig. 1, for k ∈ [K1,K2], the inputs to the fault
detector are the compromised measurement ỹ[k] and the true
control signal u[k]. Based on ỹ[k], the state estimator in the
fault detector (cf. Fig. 1) will wrongly estimate the system
state as x̃[k] = x[k]+e[k]. We define the following functions:

f(x, e) = −(e + 2x)ᵀPe,

g(x,u,a) = −(2Ax + 2Bu + Ba)ᵀPBa,

h(x,u, e) = (2Ax + 2Bu + Ae)ᵀPAe + f(x, e).

The energy balance error in the presence of FDI attacks is
given by the following lemma. The proof is omitted due to
space constraints and can be found in [21].

Lemma 2. When both the control signal u and the measure-
ment y are compromised from time instant K1 to K2, inclu-
sively, the energy balance error computed by the fault detector
is ε[k] = f(x[k + 1], e[k + 1]) +

∑k
i=K1

g(x[i],u[i],a[i]) +∑k
i=K1

h(x[i],u[i], e[i]), ∀k ∈ [K1,K2].

By setting e[k] = 0 or a[k] = 0, we have the following two
corollaries of Lemma 2 for the cases that either the control
signal or the measurement is compromised, respectively.



Corollary 1. When only the control signal u[k] is com-
promised from time instant K1 to K2, inclusively, ε[k] =∑k

i=K1
g(x[i],u[i],a[i]), ∀k ∈ [K1,K2].

Corollary 2. When only the measurement y[k] is compromised
from time instant K1 to K2, inclusively, ε[k] = f(x[k +
1], e[k + 1]) +

∑k
i=K1

h(x[i],u[i], e[i]), ∀k ∈ [K1,K2].

B. Bypassing a Dissipativity-Based Fault Detector

Based on the analytic expressions for energy balance error
in Section V-A, we now derive bypass conditions for a
single dissipativity-based fault detector, as well as efficient
algorithms for the attacker to find attack vectors satisfying the
conditions.

1) Case 1: Only the control signal is compromised: We
assume that the attacker can read the measurement and the
control signal, but can change the control signal only. From
Corollary 1, a sufficient and necessary condition for the injec-
tion a[k] to bypass the fault detector is g(x[k],u[k],a[k]) = 0,
∀k ∈ [K1,K2]. Explicitly, the condition is

(2Ax[k]+2Bu[k]+Ba[k])ᵀPBa[k]=0, ∀k∈ [K1,K2]. (3)

In practice, the attacker may have limited write access to u.
The bypass condition in Eq. (3) can be updated to address the
case that the attacker can tamper with a subset of u’s com-
ponents only. Specifically, denote by i1, i2, ..., ia the indices
of u’s components that can be tampered with, by B̄ a matrix
formed by the i1-th, i2-th, ..., and ia-th columns of B, and by
ā a vector formed by the i1-th, i2-th, ..., and ia-th components
of a. As the other components of a have to be zeros, we have
Ba[k] = B̄ā[k] and Eq. (3) can be updated as

(2Ax[k]+2Bu[k]+B̄ā[k])ᵀPB̄ā[k]=0, ∀k∈ [K1,K2]. (4)

As Eq. (4) is underdetermined, it can have an infinite num-
ber of solutions. In practice, in addition to the dissipativity-
based fault detector, the system may check the range of
data. Thus, to avoid being detected, the attacker needs to
find solutions to Eq. (4) while not triggering those data
range checks. From Eq. (4), a sufficient bypass condition
is 2Ax[k] + 2Bu[k] + B̄ā[k] = 0, yielding a closed-form
solution ā[k] = (B̄ᵀB̄)−1B̄ᵀ(−2Ax[k]− 2Bu[k]). However,
this solution may easily violate the data range checks. For
instance, for the voltage control system in Fig. 2, a component
of a given by this solution can be up to 2 kV, significantly
exceeding the nominal bus voltage of 1.05 kV. Thus, the attack
vector a may not pass the data range checks.

Thus, the attacker should fully explore the attack vector
space given by Eq. (4). An exhaustive search may be too slow
to complete within one control cycle when the dimension of
ā[k] is high. We now discuss an efficient approach for the
attacker to quickly find a feasible solution. Define ḡ(x,u, ā) =
(2Ax + 2Bu + B̄ā)ᵀPB̄ā. The attacker solves the following
minimization problem: ā[k] = argminā ḡ(x[k],u[k], ā)2 sub-
ject to other known constraints such as the aforementioned
data range checks. As ḡ(x[k],u[k], ā)2 is quadratic, the above
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Fig. 4. Numerical results for the voltage control system in Fig. 2 when only
control signal is compromised. Attack happens during the shaded time period.

problem can be efficiently solved using a quadratic program-
ming solver, if other known constraints can be represented in
linear forms (which is true for data range checks).

We now illustrate the above analysis using numerical results
for the voltage control system in Fig. 2. As there are ten
generators, the dimension of u is ten. We assume that the
attacker can only tamper with the first two elements of u.
We implement the above minimization approach using the
SLSQP solver [28], which takes 0.1 seconds on a laptop
computer to converge to a solution. Each point in Fig. 4(a) is
a solution of ā[k] when the solver is initialized with a random
seed. Exhaustive search also yields a similar result. From the
figure, we can see that, even if the attacker can only tamper
with two out of ten components of u, they can find many
solutions to bypass the fault detector. Figs. 4(b) to 4(d) show
the simulation results over time when the attacker can tamper
with all the components of u. Specifically, the figures show the
first element of a computed by the solver, the energy balance
error computed by the fault detector, and an element of the
system state (i.e., a bus voltage). We can see that the attack
can cause a voltage deviation of up to 80 V from the nominal
value of 1.05 kV, while keeping zero energy balance errors.
This deviation is 7.6% of the nominal voltage, exceeding a
basic requirement of 7% in power grids [29].

2) Case 2: Only the measurement is compromised: We
assume that the attacker can read the measurement and the
control signal, but can change the measurement only. From
Corollary 2, a sufficient and necessary condition for the
injection Ce[k] to bypass the fault detector is

f(x[k],e[k]) + (2Ax[k − 1] + 2Bu[k − 1]+

Ae[k − 1])ᵀPAe[k − 1] = 0, ∀k ∈ [K1,K2]. (5)

We note that the above condition contains both e[k − 1] and
e[k] and it is initialized to e[K1 − 1] = 0. Similar to Case 1,
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Fig. 5. Numerical results for the voltage control system in Fig. 2 when only
measurement is compromised. Attack happens during the shaded time period.

an attack vector e[k] can be found by solving the following
minimization problem: e[k] = argmine(f(x[k], e)+(2Ax[k−
1] + 2Bu[k − 1] + Ae[k − 1])ᵀPAe[k − 1])2, subject to
other known constraints such as the data range checks. If
these constraints can be represented in linear form, a quadratic
programming solver can be used.

We now discuss the bypass condition when a certain subset
of y’s components can be compromised. Our analysis shows
that it is difficult to derive such a condition under the general
CPCS model in Eqs. (1) and (2). However, we can derive it for
a class of systems with C = In, which is presented as follows.
(Note that this limitation does not apply to the other analytic
results in this paper.) Denote by i1, i2, ..., ie the indices of y’s
components that can be tampered with, by P̄ a matrix formed
by the i1th, i2th, ..., ieth (called “corresponding” for short)
columns of P, by Ā a matrix formed by the corresponding
columns of A, by P̂ a matrix formed by the corresponding
rows of P̄, by ē a vector formed by the corresponding
components of e. As the other components of e have to be
zeros, we have eᵀPe = ēᵀP̂ē, Pe = P̄ē, and Ae = Āē. By
denoting f̄(x, ē) = ēᵀP̂ē + 2xᵀP̄ē, the attacker can find an
attack vector by solving the following minimization problem:
ē[k] = argminē(f̄(x[k], ē) + (2Ax[k − 1] + 2Bu[k − 1] +
Āē[k − 1])ᵀPĀē[k − 1])2, subject to other constraints such
as the data range checks.

We apply the above minimization approach to the voltage
control system, where the attacker can tamper with the first
two elements of e. Note that the precondition of C = In holds
for voltage control. Each point in Fig. 5(a) is a solution when
the SLSQP solver is initialized with a random seed. We can see
that the attacker can find many solutions to bypass the fault
detector. Fig. 5(b) to 5(d) show the simulation results over
time when the attacker can tamper with all the components
of e. Specifically, the figures show the first element of e
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(a) Detector bank in Theorem 1. A
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Fig. 6. Detector banks for detecting FDI attacks on either control signal or
sensor measurement. The one in (b) can be applied to δ-converged systems.

computed by the solver, the energy balance error computed
by the fault detector, and an element of the system state (i.e.,
a bus voltage). From Fig. 5(d), we can see that the attack
causes a voltage deviation of up to 45 V, while keeping zero
energy balance errors during the attack period (marked by
shaded areas in Fig. 5). In Section VII, we will investigate
the maximum voltage deviations caused by attacks on the
measurement under various settings.

3) Case 3: Both the control signal and the measurement are
compromised: Our analysis shows that the attacker can com-
pute the injections every time step to bypass a dissipativity-
based fault detector with any parameters (i.e., P and other
matrices). Specifically, at time instant k, the attacker injects
an arbitrary a[k] into the control signal. Then, they choose
e[k + 1] = Ae[k] − Ba[k] such that the compromised
measurement is consistent with the previous true control signal
that is an input to the fault detector. In other words, since
the attacker can manipulate both the control signal and the
measurement, they can create an “illusion” that is consistent
with the system model in Eq. (1). Therefore, the fault detector
under any parameter setting cannot detect the attack.

VI. DISSIPATIVITY-BASED FDI ATTACK DETECTION

In this section, we study the design of a dissipativity-
based FDI attack detector that cannot be bypassed by the
attacker who can tamper with either the control signal or
the measurement, even if they possess full knowledge of the
system and the attack detector. Our new approach applies
multiple dissipativity-based detectors and uses an OR-rule to
fuse their detection results, i.e., the existence of an attack
is assumed if any detector raises an alarm. We call such a
structure detector bank, which is illustrated in Fig. 6(a). Under
the OR fusion rule, if we design these detectors such that the
intersection of the attack vector solution spaces defined by
their bypass conditions is empty, the attacker cannot bypass
the detector bank. Thus, the OR fusion rule is a natural choice.
In the following, Section VI-A presents the design of the
detector bank and shows that its complexity is O(n!), where
n is the dimension of the system state. Our further analysis
in Section VI-B shows that, for a system that has converged,
assisted with a data range checker for the system state, the
detector bank has complexity that can be reduced to O(n).

A. Design of Detector Bank
From Lemma 1, each detector is characterized by six

matrices satisfying three equality conditions. We propose an



Algorithm 1 Construct a dissipativity-based detector.
Input: System model 〈A,B,C〉, a positive definite matrix P
Output: A dissipativity-based detector 〈Q,S,R,L,W,P〉

1: Choose a real number δ larger than all eigenvalues of BᵀPB,
R = δIn ensures that all eigenvalues of (R − BᵀPB) are
positive

2: Use Cholesky decomposition to find W such that WᵀW =
R−BᵀPB

3: Choose a symmetric matrix S and find L to meet LᵀW =
(−AᵀPB+CᵀS)

4: Q = (CCᵀ)−1C(AᵀPA−P+ LᵀL)Cᵀ(CCᵀ)−1

algorithm that computes Q, S, R, L, and W based on a
given positive definite matrix P, such that they satisfy those
conditions. The algorithm is given by Algorithm 1 and the
correctness of its output can be verified by checking against
the equality conditions in Lemma 1. As a result, under this al-
gorithm, each detector can be characterized by a single matrix
P and the problem of designing a detector bank is reduced to
designing a set of positive definite P matrices. This reduction
makes the problem tractable. Let P = {Pi|i = 1, 2, . . .}
denote the set of P matrices characterizing the dissipativity-
based detectors in a detector bank. The following theorem
gives a P such that the attacker cannot bypass the detector
bank.

Theorem 1. For a CPCS with n-dimensional state, any FDI
attack on either the control signal u or the measurement y
cannot bypass a detector bank P = P1 ∪ P2 at the onset of
attack, where P1 = In ∪ {diag(π1, . . . , πn)|∀(π1, . . . , πn) is
a permutation of (2, 1, 1, . . . , 1)} and P2 = {Ipc + 2In|∀Ipc
is a column permutation of In}.

The proof of Theorem 1 can be found in Appendix A.
Fig. 6(a) illustrates the detector bank given by Theorem 1.
As the cardinality of P1 and P2 is (n + 1) and n!, re-
spectively, the complexity of the detector bank is O(n!). We
now illustrate Theorem 1 using an example. When n = 3,
P1 = {diag(1, 1, 1),diag(2, 1, 1),diag(1, 2, 1),diag(1, 1, 2)},

Ipc ∈


1 0 0
0 0 1
0 1 0

 ,

0 1 0
1 0 0
0 0 1

 ,

0 1 0
0 0 1
1 0 0

 ,

0 1 0
0 0 1
1 0 0

 ,

0 0 1
1 0 0
0 1 0

 ,

0 0 1
0 1 0
1 0 0

 .

We note that the detector bank given by Theorem 1 is a
sufficient design to nullify the intersection of the attack vector
spaces defined by the fault detectors’ bypass conditions. Other
designs with fewer needed fault detectors may exist. This is
mainly because we use Algorithm 1 to reduce the design space.

B. Detector Bank with a Data Range Checker

The O(n!) complexity of the detector bank given by The-
orem 1 will lead to prohibitive computational and storage
overhead when n is large. As discussed in Section V-B, the
system can also apply data range checks that impose additional

constraints for the attacker in finding attack vectors. This
will potentially reduce the number of needed dissipativity-
based detectors. In this section, we consider a CPCS that has
converged to its nominal state before the attack starts. We can
then apply a data range checker for the system state to detect
FDI attacks. We first define a δ-converged CPCS as follows.

Definition 1. A CPCS is said δ-converged if |x−x0|
|x0| < δ in the

absence of FDI attacks, where x is any element of the system
state with x0 as its nominal value and δ is a positive constant.

We define a data range checker for a δ-converged system.

Definition 2. For a δ-converged system, after receiving the
possibly compromised measurement y, the data range checker
first estimates the system state x based on y and raises an
attack alarm if |x−x0|

|x0| ≥ δ for any system state element x.

With the above definitions, we have the following theorem.
The proof is omitted here due to space constraints and can be
found in [21].

Theorem 2. For a δ-converged CPCS with 0 < δ < 1, a
detector bank formed by the data range checker and a set of
dissipativity-based fault detectors given by P1 that is defined
in Theorem 1 can detect any FDI attack on either the control
signal or the measurement at the onset of the attack.

Fig. 6(b) illustrates the detector bank given by Theorem 2.
Its cardinality is O(n). It can therefore scale well with the
dimension of the system state. We note that for many real
systems, δ is much smaller than the upper bound of one
required by Theorem 2. For instance, δ ≤ 0.07 is a basic
requirement for voltage control in power grids [29].

C. Discussion

At the onset of an attack on the measurement y, the
proposed detector banks can detect the attack once the detector
banks receive y. Attack response strategies (e.g., switch to a
model-driven control algorithm [7]) can be activated to avoid
affecting the physical plant. However, an attack on the control
signal u at its onset will directly affect the plant (cf. Fig. 1).
Although it will be detected after the detector banks receive
the affected y, to avoid damage before detection of the attack,
the actuators can check u using heuristics (e.g., range checks).

VII. SIMULATIONS

A. Simulation Methodology and Settings

To illustrate our analysis, we conduct simulations using
PowerWorld [30] for the voltage control system based on
the power system model in Fig. 2. PowerWorld is a high-
fidelity power system simulator widely used in the power
industry. According to Section III-C, the B in Eq. (1) is
the only parameter of the LTI model for voltage control.
We estimate B by linear regression using data traces of
x[k+1]−x[k] and u[k] obtained in a PowerWorld simulation.
Our evaluation shows that the model error, which is defined
as ‖x[k + 1]− x[k]−Bu[k]‖`2 , is just about 4 V, where the
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nominal voltage is 1.05 kV. Thus, the LTI model accurately
characterizes the system dynamics.

B. Simulation Results

1) Impact of measurement noise: As discussed in Sec-
tion III-B, in the presence of measurement noise, the energy
balance error should be compared with a non-zero threshold
τ to avoid excessive false alarms. This set of simulations
evaluates the false alarm rate versus the threshold under
different measurement noise levels. Specifically, we simulate
the power system under voltage control for 10,000 time steps
in the absence of FDI attacks. For each time step, a random
noise vector sampled from a zero-mean normal distribution of
standard deviation σ is added to the measurement y. For a
given threshold τ , the false alarm rate is the ratio of the time
steps with |ε[k]| ≥ τ . Fig. 7 shows the results. We can see that,
to enforce a false alarm rate upper bound of 1% (represented
by a horizontal line), we need to apply different thresholds
for different noise levels. Such thresholds are also used in the
following sets of simulations.

2) Maximum attack impact: In this set of simulations, only
a single dissipativity-based fault detector is used and the
attacker tampers with the sensor measurement y. We evaluate
the maximum voltage deviation at any pilot bus caused by
an FDI attack at its onset, while the energy balance error
computed by the fault detector is below the threshold τ that
ensures a false alarm rate of 1%. We find the maximum
voltage deviation by evaluating a large number of attack
vectors given by the minimization approach in Section V-B2
that is initialized with many random seeds. Fig. 8 shows the
maximum voltage deviations when the attacker can tamper
with different numbers of y’s components (denoted by |ē|0).
Consistent with intuition, a larger voltage deviation will result
if more of y’s components are compromised. In particular, if
four components of y are compromised, the maximum voltage
deviation is 70 V, i.e., 6.7% of the nominal voltage, almost
reaching the safety margin of 7% [29].

3) Difficulty of finding attack vector: In this set of simu-
lations, we evaluate the difficulty for the attacker to compute
an attack vector under different settings of the detector bank
cardinality (i.e., the number of dissipativity-based detectors).
Specifically, we incrementally include a detector within P1

given by Theorem 1 into an evaluated detector bank. For
each cardinality setting, we solve the energy balance error
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ā

The cardinality of detector bank
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|ā|0=2
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|ā|0=5

(a) Control signal compromised.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Pr
ob

.o
ffi

nd
in

g
ē
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Fig. 9. Probability of finding an attack vector.

minimization problem with random seeds for 10,000 times
for the system at a particular time instant. For some seeds, we
cannot find a valid attack vector because the algorithm does not
converge. Thus, we use the probability of finding a valid attack
vector to characterize the difficulty of interest. Fig. 9(a) shows
this probability versus the cardinality of the detector bank
when the attacker can compromise different numbers of the
control signal’s components (denoted by |ā|0). The probability
reduces to zero when the cardinality is ten, which is below
and near the needed cardinality from Theorem 2 (i.e., eleven).
Fig. 9(a) also shows that if the attacker can compromise more
components of u, it is easier for them to find an attack vector.
Fig. 9(b) shows the results when the attacker can compromise
different numbers of the measurement’s components (denoted
by |ē|0). The results are similar to Fig. 9(a). As the system is
δ-converged before the onset of the attack, an injection must
be bounded to be stealthy to the data range checker defined
in Section VI-B. As a result, the attacker may not always
succeed in finding an attack vector, especially when it can
only compromise a limited number of the signal components.
For instance, as shown in Fig. 9(b), when the attacker can
compromise only two components of the measurement (i.e.,
|ē|0 = 2) and a single detector is used, the probability of
finding a valid attack vector is 75%.

VIII. CONCLUSION

In this paper, we analyze the bypass conditions for a
dissipativity-based fault detector that is applied to detect
attacks. Based on the analysis, we develop detector banks that
cannot be bypassed even in the Kerckhoffs’s setting, provided
that the attacker can tamper with either the sensor or control
data of an LTI CPCS. We also analyze the complexity of
the detector banks. Our results provide general insights into
understanding the deficiency of directly applying existing fault
detectors to identify attacks. They may need to be hardened
to defeat knowledgeable attackers. Future attempts of applying
existing fault detectors in a security context should keep this
observation in mind.
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APPENDIX A: PROOF OF THEOREM 1
Proof. First, we prove that any P in P is positive definite.
Clearly, all members of P1 are positive definite, as they are
diagonal matrices with positive elements. For any P in P2,
we now prove δᵀ(Ipc + 2In)δ > 0 for any non-zero vector
δ = [δ1, δ2, . . . , δn]ᵀ. We have δᵀIpcδ =

∑n
k=1 δkδik , where

{i1, i2, ..., in} is a permutation of {1, 2, ..., n} unique to Ipc.
As |

∑n
k=1 δkδik | ≤

√∑n
i=1 δ

2
i

√∑n
i=1 δ

2
ik

=
∑n

i=1 δ
2
i =

δᵀδ, −δᵀδᵀ < δᵀIpcδ < δᵀδᵀ. Thus, δᵀ(Ipc + 2In)δ ≥
δᵀδ > 0. Hence, P is positive definite.

Assume the attack’s onset time is K1. We omit K1 in the
following notations, except specified otherwise. Denote by εPi

the energy balance error computed using Pi. We now prove
that ∃Pi ∈ P , εPi

6= 0 for any FDI attack on the control signal
u. From Corollary 1, εPi

= −(2Ax + 2Bu + Ba)ᵀPiBa.
Define θ = 2Ax + 2Bu + Ba and ψ = Ba. We assume
that ψ 6= 0, because otherwise x[K1+1] =Ax+Bu+Ba =
Ax + Bu, i.e., the attack has no effect on the system state.
We consider the following cases:

Case 1: At least two elements of θ = [θ1, θ2, ..., θn]ᵀ are
different and at least two elements of ψ = [ψ1, ψ2, ..., ψn]ᵀ

are different. Suppose θ1 6= θ2 and ψ1 6= ψ2. There
exists a column permutation of In (denoted by P0) such
that θᵀP0 = [θ2, θ1, θ3, ..., θn]ᵀ. We now prove εP0+2In

or εIn is non-zero by contradiction, where In ∈ P1 and
(P0 + 2In) ∈ P2. Assume εP0+2In = εIn = 0. Since
εP0+2In = θᵀP0ψ + 2εIn = θ2ψ1 + θ1ψ2 +

∑n
i=3 θiψi +

2εIn = 0 and εIn = θᵀInψ =
∑n

i=1 θiψi = 0, we can
derive (θ2 − θ1)(ψ2 − ψ1) = 0, which contradicts θ1 6= θ2
and ψ1 6= ψ2.

Case 2: At least two elements of θ = [θ1, θ2, ..., θn]ᵀ

are different and ψ = [ψ,ψ, ..., ψ]ᵀ with ψ 6= 0. Suppose
θ1 6= θ2. Denote P1 = diag(2, 1, 1, ..., 1) ∈ P1 and P2 =
diag(1, 2, 1, 1, ..., 1) ∈ P1. We now prove εIn , εP1

, or εP2
is

non-zero by contradiction. Assume εIn = εP1
= εP2

= 0. As
εP1
− εIn = θ1ψ and εP2

− εIn = θ2ψ, we have θ1ψ = 0 and
θ2ψ = 0, which contradicts ψ 6= 0 and θ1 6= θ2.

Case 3: θ = [θ, θ, ..., θ]ᵀ and at least two elements of
ψ = [ψ1, ψ2, ..., ψn]ᵀ are different. If θ 6= 0, as εP =
θᵀPψ = ψᵀPθ, the proof procedure in Case 2 can be
applied; otherwise, θ = 2Ax + 2Bu + Ba = 0 and
x[K1 + 1] = Ax + Bu + Ba = −(Ax + Bu), i.e., the attack
flips the state’s sign, which can be easily detected.

Case 4: θᵀ = [θ, θ, . . . , θ] and ψ = [ψ,ψ, . . . , ψ]ᵀ with
ψ 6= 0. For In ∈ P1, to ensure εIn = θᵀInψ = nθψ = 0,
θ = 0, which flips the state’s sign as in Case 3.

The proof for the case that the measurement y is under
attack is similar to the above proof. It is omitted here due to
space constraints and can be found in Appendix A of [21].


