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Abstract—Increasing dynamics of electrical loads presents
uncertainty and hence new challenges for power grid controls and
optimization. In economic dispatch control (EDC) for minimizing
generation cost, demand reporting by customers is a promising
approach for managing the uncertainty, but it raises important
privacy concerns. Adding random noise to aggregate queries of
demand reports can provide differential privacy (DP) for the
individual customers. But the noisy query results can adversely
impact the EDC’s optimality. In this paper, we analyze the
privacy cost in demand reporting in terms of how DP-induced
noise will increase the total generation cost. Our analysis shows
that the noise amounts for different customers are intricately
coupled with one another in determining the total cost. In view
of the coupling, we apply the principle of Shapley value to
attribute fair shares of the total cost to the power grid buses.
For efficient sharing of the privacy cost, in a manner scalable to
large power systems with many buses, we additionally propose
heuristic algorithms to approximate the Shapley value. Trace-
driven simulations based on a 5-bus power system model validate
our analysis and illustrate the performance of the proposed cost
sharing algorithms.

I. INTRODUCTION

In the era of smart grids, electrical loads are becoming more
dynamic and harder to predict due to, for example, the prolifer-
ation of demand-side renewables (e.g., solar panels), batteries
for energy storage, and smart appliances that can react to their
environments, as well as real-time energy pricing increasingly
required by law for customers [1]. The unpredictability of load
introduces new challenges for grid operators to optimize the
efficiency of their power networks. Economic dispatch control
(EDC) [2] is an important example problem. EDC plans the
active power outputs of generators to meet future demand at
the lowest total generation cost. In today’s power grids, EDC
uses a forecast-demand vector of the buses to send scheduled
power outputs to the generators. Higher load dynamics will
necessarily reduce the forecast accuracy and hence undermine
the EDC’s optimality [3]. To combat the uncertainty, demand
reporting from end customers is a promising solution, in which
smart meters installed at the consumption points report their
future demand for the purpose of the EDC. Demand reporting
has also been used in other demand response applications such
as bid-based market clearing [4].

Demand reporting, however, leads to natural privacy con-
cerns, because knowledge of power consumption may gener-
ally reveal sensitive information such as users’ daily activities.

For example, non-intrusive load monitoring (NILM) may
infer a household’s detailed tasks from a trace of its power
consumption [5]. To mitigate the privacy concern, differential
privacy (DP) [6] is a rigorous information-theoretic approach
to prevent leakage of individual records by statistical (e.g.,
aggregate) queries on a database of these records. DP is
relevant to the privacy of demand reporting for EDC, because
EDC requires only aggregate demand forecast per-bus for
its decisions. Hence, following the principle of DP, we may
add random noise to the aggregate (future) demand reported
by the customers and reveal only this noisy version of the
aggregate [5], [7], [8], [9], [10]. The amount of noise added
is commensurate with the required level of privacy protection.
Using the noisy per-bus aggregates for the EDC will lead to
suboptimal control, however. The resulting increased gener-
ation cost represents the cost of privacy. It is important to
understand this privacy cost.

Based on the above key observations, we study two fun-
damental problems in this paper. First, how to quantify the
system-wide total DP cost of demand reporting for EDC, in
which different groups of customers may require different
levels of privacy? Second, how to attribute fair shares of the
total DP cost to the heterogeneous groups of customers so
that, for example, customers having more stringent privacy
requirements will have to bear a higher privacy cost because
they impose higher inaccuracy of the input to the EDC? Our
analysis and cost sharing algorithms will provide an important
basis for practical implementation of demand reporting for
EDC and other smart grid control applications, by allowing
customers to acquire sufficient privacy protection on a fair cost
basis. The attribution of privacy cost in this study is meant to
apply in the context of an incentive program that motivates
customers to take part in the demand reporting by passing
on generation cost savings to the customers, although detailed
design of this incentive program is beyond the scope of this
paper. Hence, we do not expect that customers will make net
payments for buying privacy for their demand reports. Rather,
it is expected that they will receive compensation as reward for
their participation in the demand reporting. The privacy cost
may then serve as a negative adjustment to this compensation,
so that the net incentive compensation for a more privacy-
stringent customer will be lower but still positive.

In answering our research questions, we address the follow-



ing three key challenges:

• Existing studies on DP for smart meter data aggregation
have considered only a single homogeneous level of
required DP [5], [7], [8], [9], [10]. We believe that,
whereas heterogeneous customers in the real world will
desire different levels of privacy protection, a demand
reporting scheme that admits a range of the provided DP
will be more responsive to their needs. Moreover, existing
studies do not address key features of the physical system,
e.g., the grid’s topology, required by the EDC. In this
paper, we analyze heterogeneous DP protection and its
impact based on realistic power grid topology.

• Inaccuracy of demand reports will mislead the EDC into
a generation dispatch that does not balance the supply and
demand, thereby causing under-/over-frequency. Load-
frequency control (LFC), a closed-loop control system
that regulates the grid frequency, will kick in to fix
the mismatch in practice. Thus, we define the DP cost
as discrepancy between the post-LFC generation cost
and the generation cost without DP protection. However,
because of complex dynamics of the LFC, it is non-
trivial to derive the relationship between the post-LFC
generation cost and the noise amounts in demand reports.

• As our analysis shows, the noise amounts for different
privacy groups are deeply coupled with one another in
determining the total DP cost. This property precludes
independent attribution of the DP cost for each group in
isolation. We must account for any network effects of the
DP between interdependent groups.

In addressing the above challenges, we make the following
contributions:

• We propose a demand reporting scheme in which each
customer chooses an ϵ value from a predefined offered
set according to the ϵ-DP definition, and all the customers
choosing the same ϵ constitute each privacy group. We
extend the approach in [6] to achieve ϵ-DP for each group.

• Based on a power engineering model of the LFC, we
derive an analytic expression for the total privacy cost.
We prove that it is always non-negative. This expression
is a prerequisite for computing the fair DP cost shares
for the different buses.

• We apply the principle of Shapley value to attribute fair
shares of the total privacy cost to the buses. However,
although the Shapley value is an effective and well
accepted conceptual device, its implementation does not
scale well to a large power system with many buses. Thus,
we propose heuristic algorithms of low complexity for
the DP cost attribution problem among the buses and the
privacy groups, and compare their performance with the
Shapley value-based approach.

• We conduct extensive simulations based on a 5-bus power
system model and real load traces to validate our analysis
and illustrate the performance of cost sharing algorithms.

The balance of the paper is organized as follows. Section II
reviews related work. Section III presents preliminaries and

states our problem. Section IV presents the proposed demand-
reporting scheme to support a range of DP requirements.
Section V analyzes the total privacy cost. Section VI presents
algorithms for attribution of fair shares of this privacy cost
among buses or groups of customers. Section VII presents
our simulation results. Section VIII concludes.

II. RELATED WORK

DP has been applied in smart metering to protect customers’
privacy [5], [7], [8], [9], [10]. Its implementation is mainly
based on distributing additive random noises [7], [8] among
the smart meter readings to achieve DP of aggregate queries,
such that demand-response aggregators cannot identify the
data of individual customers. Since smart meters may fail, fault
tolerance in modular addition-based encryption of aggregate
meter readings is an important problem [7]. Won et al. [9]
propose a proactive fault-tolerant aggregation protocol based
on future ciphertexts, to ensure DP at higher communication
efficiency and lower errors than previous fault tolerance ap-
proaches. Gulisano et al. [10] argue that DP-induced noises to
metering data may adversely affect certain data analytics appli-
cations, and propose approaches to limiting the noise amounts.
In battery-based load hiding, Zhao et al. [5] show that by
enforcing household battery charging/discharging amounts to
follow a binomial distribution, it is possible for the aggregation
of power consumption over time to satisfy (ϵ, δ)-DP.

Although the research discussed above analyzes privacy in
a power grid context, none of the results address how DP
for customers’ demand reports may impact the optimality of
EDC as an important power grid control problem. We provide
a novel analysis of the system’s privacy cost that considers
key characteristics of the physical control (e.g., power system
topology and interaction between EDC and LFC), and present
original insights of attributing fair shares of the overall cost
among heterogeneous privacy groups of the customers.

EDC and LFC in power grids face new challenges due
to increased supply/demand uncertainty arising from renew-
able generation and dynamic load. To mitigate the loss of
efficiency stemming from this uncertainty, recent work [3],
[11] has proposed to synchronize the EDC and LFC, whereas
traditionally the two control mechanisms operate at different
time scales. In [3], for example, the EDC is incorporated into
generation-side LFC such that they both run at the same pace.
In [11], load-side LFC is additionally integrated. Although
synchronization of the EDC with LFC can improve the control
in the face of uncertainty, such integrated EDC-LFC faces
significant deployment barriers in that it will require major
redesign of existing power grid control systems and electricity
markets. In contrast, in this paper we leverage the increasing
availability of advanced metering infrastructure (AMI) to allow
accurate control without major changes to the EDC and LFC.

III. PRELIMINARIES

In this section, we first present preliminaries of DP and
EDC. Then, we introduce the problem of EDC based on
demand reporting. The notation convention of this paper is as



follows. Take a symbol x as an example. X denotes a matrix,
x a column vector, x[t] the tth sample of a time series x
(we omit the time index [t] when it is clear), x̃ the Laplace
transform of x, ẋ the derivative of x with respect to time.
Rp and Rp×q denote the sets of p-dimensional real column
vectors and real p × q matrices, respectively. D denotes the
domain of data sets. ∥ · ∥ denotes cardinality.

A. Differential Privacy (DP)

In this paper, we use ϵ-DP [6] as our privacy definition. It
is formally defined as

Definition 1 ([6]). A randomized algorithm A : D → Rt gives

ϵ-DP if for all data sets D1 ∈ D and D2 ∈ D differing on

at most one element, and all S ⊆ Range(A), Pr(A(D1) ∈
S) ≤ eϵ · Pr(A(D2) ∈ S).

In other words, a differentially private algorithm A produces
indistinguishable output for any two datasets which differ
on a single element. Thus, an adversary cannot infer the
value of a single user’s data in the dataset. The parameter
ϵ characterizes the level of privacy. A smaller ϵ implies better
privacy. Prior research [12] shows that, by adding independent
and identically distributed (i.i.d.) Laplacian noise to the output
of a function F , we may achieve ϵ-DP. Let Lap(λ) denote a
zero-mean Laplace distribution of probability density function

(PDF) f(x|λ) = 1
2λe

|x|
λ . We have the following lemma.

Lemma 1 ([12]). For all function F : D → Rt, the following

algorithm A gives ϵ-DP: A(D) = F(D) + [x1, x2, . . . , xr]ᵀ,

where the xi are drawn i.i.d. from Lap(S(F)/ϵ) and S(F)
denotes the global sensitivity of F .

We also introduce an infinite divisibility property [13] of
the Laplace distribution. Denote by Gamma(n,λ) a Gamma
distribution whose PDF is

f(x|n,λ) =
(1/λ)1/n

Γ(1/n)
x

1

n
−1e−x/λ,

where Γ(1/n) is the Gamma function evaluated at 1/n. Let
γ1,i and γ2,i denote two random variables that are drawn i.i.d.
from Gamma(n,λ). Then, for any natural number n, x =∑n

i=1 γ1,i − γ2,i follows Lap(λ).

B. Economic Dispatch Control (EDC)

EDC is the determination of active power outputs of gen-
erators to meet the system load at the lowest generation cost,
subject to various transmission and operational constraints.
It is a form of tertiary generation control that updates the
setpoints of LFC periodically (e.g., every five minutes or
longer [14], [15]). A formal formulation of EDC is as follows.

Consider a power grid with N buses and L transmission
lines. Denote by G and L the sets of generator buses and
load buses, respectively. For a generator or load bus, say
i, denote by pgi and pli the active power generation and
consumption, respectively, where pgi ≥ 0 and pli ≤ 0 following
the convention that power injection/draw is positive/negative.
To simplify the discussion, we assume that a load bus is

not connected with any generator (i.e., pgi = 0 if i ∈ L)
and a generator bus is not connected with any load (i.e.,
pli = 0 if i ∈ G). Denote by pg and pl the vectors composed
of pgi and pli for all buses, respectively. EDC is subject to
the following three constraints. First, the following linearized
nodal power flow constraint is widely adopted in power system
analysis [16]:

pg + pl = AᵀBAθ, (1)

where A ∈ RL×N is the incidence matrix characterizing
the power grid topology, B ∈ RL×L is a diagonal matrix
whose diagonal elements represent the susceptance of the
corresponding line, and θ ∈ RN is a vector of the voltage
phase angles at the buses. Second, the difference between the
phase angles of any two connected buses should be within
[−π/2,π/2] to ensure the grid’s stability [17]. This constraint
can be represented compactly as

−π/2 ≤ Aθ ≤ π/2, (2)

where π = [π, . . . ,π]ᵀ. Lastly, each generator’s output is
within its capacity, i.e.,

0 ≤ pgi ≤ pgi , ∀i ∈ G, (3)

where pgi represents the capacity of the generator at bus i.
Let Ci(p

g
i ) denote the generation cost of this generator. EDC

solves the following constrained optimization problem:

minimize
pg,θ

∑

i∈G

Ci(p
g
i ), subject to (1), (2), (3). (4)

Note that the input to Eq. (4) is pl. In this paper, we use
EDC(pl) to denote the solution to Eq. (4).

C. Demand Reporting based EDC (DR-EDC)

In today’s deregulated electricity markets, EDC is deeply
integrated with real-time pricing systems [2]. Specifically,
a profit-neutral independent system operator (ISO) takes as
input offers of supply from generators and demand bids from
utilities to compute real-time locational prices to clear the
market. Meanwhile, it uses demand forecast from the bids
as pl to solve the EDC problem in Eq. (4). Thus, improving
the quality and accuracy of the demand forecast will improve
the cost optimality and reliability of the EDC [18]. This is
especially important in the era of smart grids, where there are
increased demand dynamics and uncertainty.

In this paper, we consider a new scheme of EDC that we call
demand-reporting based EDC (or DR-EDC). At the beginning
of each DR-EDC cycle, the smart meters of customers report
their demand in one or more future cycles to their respective
utilities. The aggregated future demand is then used as input to
the EDC. Note that an EDC cycle is typically five minutes or
longer [14], [15], and existing AMIs can already sustain five-
minute reporting intervals [19]. Compared with conventional
EDC driven by utilities’ per-bus demand forecasts, the DR-
EDC driven by direct demand reports from the customers can
better manage load uncertainty. It is because the customers’
own smart meters have much better knowledge of the future



consumption than the utilities, e.g., they have direct access
to control and scheduling decisions of home automation
systems, smart appliances, battery systems, etc. The more
accurate control will reduce generation costs (as illustrated in
Section VII-A), which will translate generally into monetary
rewards for the customers as incentives or rebates. However,
there is the concomitant need to understand how the privacy
requirements of customers will impact the performance limits
of the DR-EDC and hence their net contributions, which is a
main concern of this paper.

IV. DIFFERENTIALLY PRIVATE DEMAND REPORTING

This section proposes a demand-reporting scheme that pro-
vides ϵ-DP under different ϵ values for different groups of
users. In the following, Section IV-A describes our system and
threat models. Section IV-B describes the proposed scheme.

A. System and Threat Models

1) System model: For simplicity, we assume that the de-
mand (or load) of each customer does not change during an
DR-EDC cycle. Denote by Ni the set of customers attached to
load bus i, pli,j [t] the demand report sent by the jth customer
in Ni at the beginning of the tth DR-EDC cycle. We assume
that each bus i is served by an aggregator, denoted by Ai.
Ai receives the demand reports from the customers in Ni and
reports the aggregated demand to the ISO for the EDC. The
demand aggregation among Ni can be implemented based
on homomorphic encryption [20] to prevent the aggregator
and any intermediate nodes in the aggregation tree from
knowing the individual pli,j . In this paper, we assume that
all the customers participate in the demand reporting. But our
analysis can be readily extended to address non-participating
customers.

2) Threat model: The adversary can be any “curious” entity
having access to the per-bus aggregated demand reports, but
not the actual per-bus power consumption that is available to
the ISO only. For example, the adversary can be an DR-EDC
aggregator or a subscriber to the per-bus aggregated demand
reports (e.g., the DR-EDC operator). The adversary aims to
infer the demand reports of individual customers from the
aggregates. Our scheme provides a guaranteed level of DP
to the customers against such an adversary. Our threat model
is similar to those used in representative DP research for smart
metering (e.g., [7], [8]).

B. DP-Assured Demand Reporting Scheme

This section presents a demand reporting scheme that guar-
antees DP. It is based on the basic principle discussed in
[8], although our scheme is more general in that it supports
multiple levels of privacy requirement. Moreover, our scheme
differentiates customers according to the load buses they are
on, which is needed for analyzing the impact of DP on the
EDC in Section V. The proposed scheme works as follows.

1) Formation and maintenance of privacy groups: Our
scheme offers K different pre-defined ϵ values denoted by
ϵ1, ϵ2, . . . , ϵK , where 0 < ϵ1 < ϵ2 < . . . < ϵK−1 and
ϵK = ∞. As discussed in Section III-A, a smaller ϵ implies
better privacy. In particular, from Lemma 1, with an infinitely
large ϵ (i.e., ϵK), the variance of the zero-mean Laplace
distribution Lap(S(F)/ϵ) is zero, which suggests there is zero
noise and hence no DP protection. Each customer chooses
an ϵ from the K values offered, according to her needs.
In practice, smart meters owned by the customer can be
configured and programmed to suitable settings automatically.
At bus i, the set of customers choosing ϵk is denoted by Φi,k,

where 1 ≤ k ≤ K . Thus,
∑K

k=1 ∥Φi,k∥ = ∥Ni∥. In this paper,
Φi,k is also called the kth privacy group of the bus i and k
represents the privacy level. The customers in Ni send their
selected privacy levels to the aggregator Ai. Then, for each
k ∈ [1,K], the aggregator sends the size of the kth privacy
group, i.e., ∥Φi,k∥, to the customers in Φi,k. When a new
customer joins the bus i or an existing customer leaves it or
changes her privacy level, Ai will inform relevant customers
in Ni of the change, to ensure that each customer knows the
current size of the privacy group that she belongs to.

2) Noising demand reports: At the tth DR-EDC cycle, for
the kth privacy group at the bus i, we define the function F
in Lemma 1 as

Fi,k(p
l
i,j [t

′]|j ∈ Φi,k, t
′ ∈ [1, t]) =

[∑
j∈Φi,k

pli,j [1], . . . ,
∑

j∈Φi,k

pli,j [t]

]ᵀ
∈ R

t.

At the beginning of the tth DR-EDC cycle, each customer
j in Φi,k draws two i.i.d. samples, γj,1[t] and γj,2[t], from
the Gamma distribution Gamma(∥Φi,k∥, S(Fi,k)/ϵk). Recall
that the customer obtains the parameter ∥Φi,k∥ of the Gamma
distribution during the formation or maintenance of the privacy
groups. By extending the approach in [8] to address privacy
groups, S(Fi,k) can be set to an upper bound of the per-
customer demand among all the customers in Φi,k.1 Then,
the customer generates a noisy version of the demand report,
i.e., pli,j [t] + γj,1[t]− γj,2[t]. Through an aggregation protocol
based on homomorphic encryption, Ai obtains an aggregated
demand for the kth privacy group denoted by Pi,k[t]:

Pi,k[t] =
∑

j∈Φi,k

pli,j [t] +
∑

j∈Φi,k

γj,1[t]− γj,2[t]. (5)

From Lemma 1 and the infinite divisibility property of the
Laplace distribution (see Section III-A), the scheme above
gives ϵk-DP for the kth privacy group at each bus.

V. TOTAL COST OF DIFFERENTIAL PRIVACY

In this section, we first define the total cost of DP in the
DR-EDC. Then, we derive its analytic expression and show
that it is always non-negative.

1To guarantee ϵ-DP, the historical peak load of the bus can be used as a
conservative and loose upper bound. The privacy cost analysis in this paper
does not rely on accurate setting of this upper bound. We refer the reader to
[10] for managing large noises resulting from conservative settings.



A. Definition of Total Privacy Cost

At the beginning of an EDC cycle, if given the true demand
vector pl, the optimal economic dispatch (denoted by p̊g) is
given by Eq. (4), i.e., p̊g = EDC(pl). However, under the
demand reporting scheme in Section IV to ensure DP, the
ISO obtains a noisy demand vector p̂l = pl + n, where
the ith element of n (denoted by ni) that corresponds to
the load bus i is given by ni =

∑K
k=1

∑
j∈Φi,k

γj,1 − γj,2.

Based on the inaccurate demand vector p̂l, the EDC solution
p̂
g
0 = EDC(p̂l) will be a generation dispatch that generally

cannot balance the total generation and the total demand. As
discussed in Section III-B, the EDC solution is used to update
the setpoints of the LFC. Starting from the initial setting p̂

g
0,

the LFC will adjust the power outputs of the generators, via a
closed-loop control based on real-time measurements of pl, to
exactly meet the demand and regulate the system frequency at
the required nominal value. Thus, under the LFC, the actual
generator outputs will converge to a new state, which we
denote as p̂g . We note that the control cycle of the LFC is
often two to four seconds and the convergence from p̂

g
0 to

p̂g often takes a few LFC cycles. Denote by p̊gi and p̂gi the
ith element of p̊g and p̂g , respectively. For the tth DR-EDC
cycle, the total privacy cost, denoted by c[t], is defined as

c[t] =
∑

i∈G
Ci(p̂

g
i [t])− Ci(p̊

g
i [t]). (6)

Thus, the accumulated total privacy cost up to the tth DR-EDC
cycle is given by

∑t
t′=1 c[t

′].
We now use Fig. 1 to illustrate the total privacy cost for

a certain DR-EDC cycle. The two subfigures of Fig. 1 show
the trajectories of the total generation cost during the DR-
EDC cycle. To simplify the illustration, each customer adds
a positive noise in the demand reporting in Fig. 1(a) and a
negative noise in Fig. 1(b), respectively. In both the subfigures,
the horizontal straight dotted lines represent

∑
i∈G Ci(p̊

g
i ), i.e.,

the minimized total generation cost when the ISO is given the
true demand vector pl. In Fig. 1(a), as the customers report
demand values that are larger than their actual loads during the
DR-EDC cycle, by following the generation dispatch p̂

g
0, the

generators will generate more power than actually demanded.
As a result, the total generation cost will be high (as illustrated
by the starting point of the blue curve) and over-frequency will
be observed. After a transient LFC process, at the end of the
DR-EDC cycle, the system frequency is restored back to the
nominal value and the generators’ outputs converge to p̂g. The
associated total generation cost is

∑
i∈G Ci(p̂

g
i ), as illustrated

by the end point of the blue curve. The height of the vertical
dashed line represents the total privacy cost. In Fig. 1(b),
as the customers report demand values that are smaller than
their actual loads, the generators will generate less power
than actually demanded, resulting in low total generation cost
and under-frequency. After a transient LFC process, the total
generation cost will be higher than

∑
i∈G Ci(p̊

g
i ).

B. Analytic Expression of Total Privacy Cost

An analytic expression of the total privacy cost is a prereq-
uisite for fairly attributing shares of this cost to the customers.

Privacy
Cost

Time

Generation
Cost

Privacy
Cost

Time

Generation
Cost

(a) (b)

p̂
g

0
p̊g p̊g

p̂g
p̂g

p̂
g

0

EDC

cycle

EDC

cycle

Fig. 1. Illustration of the total privacy cost in DR-EDC. Each customer adds
a positive noise in (a) and a negative noise in (b), respectively.

The ISO can compute p̊gi in Eq. (6) right after it measured the
actual bus loads pl. We note that the total power draw at each
load bus is often directly measured in real time (e.g., every
second) by power flow meters. However, the ISO has to wait
until the convergence of the LFC to measure the p̂gi in Eq. (6).
In this section, through analysis based on a dynamic model of
LFC that is widely adopted in power engineering, we obtain
analytic expressions of p̂gi and the total privacy cost defined in
Eq. (6). The analytic expression will be needed to compute the
privacy cost shares of buses using the Shapley value approach
in Section VI-A. Moreover, the ISO can use them to compute
the total privacy cost once the pl is measured. This improves
the timeliness of the ISO’s knowledge of the privacy cost.

Denote by p̂g0,i the ith element of the DR-EDC solution p̂
g
0

that corresponds to a generator bus i, and ni the ith element
of n that corresponds to a load bus i (i.e., the total noise in
the aggregated demand report for load bus i). We note that
n and ni can be measured by the ISO once pl is measured,
since n = p̂l −pl. We have the following lemma. Its proof is
omitted here due to space constraints and can be found in [21].

Lemma 2. For a certain DR-EDC cycle, the total privacy cost

is given by

c =
∑

i∈G

Ci

(

p̂g0,i +
Gi∑
i∈G Gi

·
∑

i∈L

ni

)

− Ci(p̊
g
i ), (7)

where Gi is the LFC gain for the generator at the bus i.

Note that the LFC gain Gi is a constraint known to the ISO.
We refer to the proof in [21] for details of this constant gain.
Note that Eq. (7) is not a closed-form formula for c, because
both p̂g0,i and p̊gi are obtained through solving the constrained
optimization problem in Eq. (4). The following lemma gives
an important property of the total privacy cost c.

Lemma 3. For any DR-EDC cycle, c ≥ 0.

Proof. After the LFC converges, the generators’ outputs p̂g

must satisfy the steady-state constraints in Eqs. (1), (2), and
(3) with pg replaced by p̂g and pgi replaced by p̂gi . Since p̊g

is the optimal solution that minimizes the total generation cost
subject to the same steady-state constraints that p̂g satisfies, we
must have

∑
i∈G Ci(p̂

g
i [t]) ≥

∑
i∈G Ci(p̊

g
i [t]) and c ≥ 0.
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Fig. 2. All possible values of
∑

i∈G Ci(p̂
g
i [t]) after LFC converges (repre-

sented by the blue curve) and the minimized generation cost
∑

i∈G Ci(p̊
g
i [t])

(represented by the red flat plane) for the IEEE 14-bus test system.

We now use a numeric example to illustrate the above non-
negative property. The example is based on an IEEE 14-bus
test system [22] that has two generators at bus 1 and bus
2, respectively. (There are three synchronous condensers that
output reactive power only.) The following results are for a
certain DR-EDC cycle, where the loads are fixed to their
initial values specified in the system model. In Fig. 2, the
blue curve illustrates all the possible values of

∑
i∈G Ci(p̂

g
i [t])

when the p̂g satisfies the steady-state constraints in Eqs. (1),
(2), and (3). To help illustration, we use a flat plane in Fig. 2
to represent

∑
i∈G Ci(p̊

g
i [t]). We can see that

∑
i∈G Ci(p̂

g
i [t])

is lower-bounded by
∑

i∈G Ci(p̊
g
i [t]).

VI. DIFFERENTIAL PRIVACY COST SHARING

Given the total cost of DP, a fundamental question is how
to fairly attribute fair shares of the cost among customers
requesting different privacy levels. In this section, we first
consider the problem of sharing the cost among buses. Then,
we consider the problem of further distributing the per-bus
privacy cost to customers attached on the bus.

A. Bus-Level Privacy Cost Sharing

As discussed in Section V-B, the aggregated noise in the
demand report of each bus, i.e., ni, can be measured. However,
the complex and non-linear relationship between c and each
ni will render fitting c as c =

∑
i∈L fi(ni) extremely difficult,

where fi’s are the fitting functions. (We note that if we could
find such a fitting, fi(ni) would be a fair cost share for bus i.)
Indeed, from our regression-based fitting trials, the aggregated
noise amounts ni are deeply coupled with one another in
determining the c. To address this issue, in Section VI-A1
we apply the principle of Shapley value [23] for attributing
privacy costs with several desirable properties. However, the
computation of Shapley value has poor scalability to a large
number of buses. Thus, we additionally propose two heuristic
but efficient cost sharing approaches in Section VI-A2, and
compare their performance with that of the Shapley value
approach.

1) Shapley value-based approach: The Shapley value is a
solution concept for fairly distributing a total value generated
by a coalition of players in cooperative games [23]. It reflects
a player’s marginal contribution to all possible coalitions, and
has several desirable properties such as efficiency, symmetry,
and linearity [23]. The solution concept can be similarly
applied for attributing cost, which is a dual concept of value.
To facilitate presentation, in this paper we use the term
“Shapley cost” to refer to the cost share of a “player” (i.e., a
bus in the current context) as determined by the Shapley value
principle. Specifically, the Shapley cost of a bus is the marginal
increase in generation cost due to the bus in the coalition.

We now describe how to compute the Shapley costs of
buses. For bus i, if it is in the coalition, it reports its noisy

aggregated demand (i.e., pli+ni) to the aggregator; otherwise,
it reports its actual aggregated demand (i.e., pli). Denote by S
the coalition of buses. From Lemma 2, the total privacy cost
given a coalition of buses S is

c(S) =
∑

i∈G

Ci

(

p̂g0,i(S) +
Gi∑
i∈G Gi

·
∑

i∈S

ni

)

− Ci(p̊
g
i ),

where p̂g0,i(S) is the initial power output of the generator at bus
i as solved by the EDC based on noisy demand reports from
the buses in S and actual demand values from the remaining
buses. By the Shapley’s principle, the Shapley cost of a load
bus i, denoted by csi , is

csi =
1

∥L∥!

∑

π∈perm(L)

c(S(π, i)) − c(S(π, i)\i), (8)

where π is a permutation of the load buses in L, S(π, i) is a
subset of π that includes the buses in π no later than i in order.
From the efficiency property of Shapley value, the total privacy
cost is shared among all the load buses, i.e., c =

∑
i∈L csi . We

note that the Shapley cost of a load bus can be negative (see
the numeric results in Section VII-C). For example, when the
demand report of the bus has negative noise and all the other
buses use positive noise, the negative noise may offset in part
the positive noise and hence reduce the total generation cost. In
this case, the bus in point should be rewarded with a negative
Shapley cost. For the load bus i, the accumulated Shapley cost
up to the tth DR-EDC cycle is

∑t
t′=1 c

s
i [t

′].
2) Heuristic approaches: Despite several desirable prop-

erties of the Shapley cost [23], Eq. (8) has exponential
complexity in the number of load buses due to the permutation.
This renders the Shapley cost infeasible to compute for large
power grids. To manage the computational cost, a Monte
Carlo method can be applied to approximate Eq. (8) [24].
However, the method does not guarantee exact answers and
often it still requires high compute overhead for good results
[24]. Therefore, we now present two heuristic cost sharing
approaches based on assigning privacy cost as a function of
the corresponding prescribed noise. Specifically, in the two
approaches we use respectively the magnitude and variance
of ni as weight for proportional sharing of the privacy cost.



Formally, the cost shares of load bus i, denoted respectively
by cni and cσi for the two approaches, are given by

cni =
|ni|∑
i∈L |ni|

· c, cσi =
σ2
i∑

i∈L σ2
i

· c,

where σ2
i is the variance of ni. In the definition of cni , the

rationale of using the magnitude of ni as weight is that either a
positive or negative ni should incur a positive privacy cost (see
Fig. 1). The σ2

i in cσi can be estimated based on historical trace
of ni. In Section VII-C, we will evaluate the effectiveness of
the above two heuristic approaches by comparing their results
with the corresponding Shapley costs.

B. Customer-Level Sharing of Privacy Cost

This section discusses how to further distribute the cost
share of bus i, i.e., ci, to customers attached on the bus.
We assume that the customers do not report their actual
power consumption due to privacy protection. Thus, the noise
introduced by an individual customer j, i.e., γj,1 − γj,2,
cannot be measured. As a result, the Shapley cost described
in Section VI-A1 cannot be applied to customer-level cost
sharing. Instead, our proposed approach first divides ci among
the privacy groups, and then further divides a group’s share to
the group’s customers. We adopt a heuristic approach similar
to those proposed in Section VI-A2 and use ∥Φi,k∥ · 2 ·
(S(Fi,k)/ϵk)

2
as weight for the kth privacy group in dividing

ci among the privacy groups. Note that 2 · (S(Fi,k)/ϵk)
2

is
the variance of the kth privacy group’s Laplacian noise, which
follows Lap(S(Fi,k)/ϵk). Thus, our solution considers jointly
the privacy group size ∥Φi,k∥ and the noise variance. A privacy
group’s cost share is further divided equally among all the
customers in the group. In the above approach, the customers
who do not require DP (i.e., ϵ = ∞) share no privacy cost.

The power distribution network attached to a bus often
adopts a tree topology, in which the customers are the leaf
nodes of the tree. Some intermediate nodes of the tree may
have power meters installed. Therefore, the noise amounts for
demand reports of subtrees rooted at these intermediate nodes
can be measured. Our future work will investigate how to
apply Shapley costs to these subtrees in order to refine the
fairness of the customer-level cost sharing.

C. Implementation

The bus-level privacy cost sharing approaches can be readily
integrated with various ex-post real-time pricing schemes
that are popular in wholesale markets such as New England
ISO, PJM, and Midwest ISO. Ex-post electricity prices are
determined based on load measurements of the buses, which
are often obtained at the end of each EDC cycle. The load
measurements can also be used to compute the privacy cost
shares of the buses using the methods in Section VI-A.

Relaying upstream real-time prices to end customers is
generally considered a desirable feature of smart grids. It
has been implemented by utilities such as ComEd [25] and
Ameren [26]. The customer-level privacy cost sharing in
Section VI-B can be readily integrated with such real-time
pricing for end customers.

G2
Bus 4

Bus 1

Bus 5
Bus 3Bus 2

G1

Fig. 3. 5-bus system ([17], Chapter 6, pp.327).

TABLE I
DEMAND REPORTING VS. DEMAND FORECASTING

Scheme Additional cost (%)
DR-EDC with 5% customers choosing ϵ = 0.5 3.28
DR-EDC with no customers choosing ϵ = 0.5 2.83

EDC based on demand forecasting 5.02

VII. SIMULATIONS

Our simulations are based on the 5-bus power system model
shown in Fig. 3 ([17], Chapter 6, pp.327). The two generators’
cost functions are quadratic functions of different parameters.
We simulate a total of 200 customers in the system. For DP,
each customer chooses an ϵ value from {0.5, 1, 1.5, 2.5,∞}.
The EDC cycle is five minutes. Hourly load data traces of U.S.
domestic customers in January 2015 [27] are interpolated and
used to set the loading of buses in our simulations. Unless
otherwise specified, all the power values in this section are
normalized to per unit (pu) values.

A. Demand Forecasting vs. Demand Reporting

This set of simulations compares the privacy cost of DR-
EDC with the additional generation cost caused by inaccuracy
of traditional demand forecasting. The demand forecasting
is based on the widely adopted persistence model [28], in
which the immediate past load is used as the current demand
forecast for each bus. To evaluate the DR-EDC, we simulate
the system for 100 rounds, where each round corresponds to
the load traces on one day. At the beginning of each round,
the customers randomly choose their ϵ values. The average
aggregated total privacy cost over the 100 rounds is presented.

Table I shows the results for DR-EDC under two settings,
as well as traditional EDC based on demand forecast. The
additional generation costs due to either DP-induced noise or
inaccurate forecast are in percentages of the total generation
cost. In the first DR-EDC setting, ten out of 200 (i.e., 5%)
customers choose the highest privacy level, i.e., ϵ = 0.5,
resulting in a 3.28% privacy cost; in the second setting, no
customers choose this highest privacy level, resulting in a
2.83% privacy cost. This result is consistent with intuition
that the privacy cost decreases with the customers’ required
privacy. By comparison, the results based on demand forecast
show an additional cost of around 5%, which is higher than
the privacy cost of DR-EDC in either setting. Note that this
5% additional cost is significant and comparable to line loss
(e.g., 7% in U.S. [29]). Furthermore, it would increase with
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higher demand uncertainty. In contrast, as our results show,
DR-EDC with DP protection can reduce the additional cost
by up to 43%, which is substantial.

B. Total Privacy Cost over a Day

This set of results shows how the total privacy cost changes
with load and customers’ DP-induced noise over time. At the
beginning of the simulation, each customer randomly chooses
a privacy level. The distribution of customers choosing the five
ϵ values from 0.5 to ∞ is 18.5%, 17%, 21%, 24%, and 19.5%.
Fig. 4(a) shows the actual total load (red curve) and aggregate
of the demand reports (blue curve) over a day. Fig. 4(b) shows
the total generation costs of the EDC given the actual load (red
curve) and the DR-EDC (blue curve). We can see that the total
generation cost of DR-EDC is always higher than that of EDC
given the actual load. This result is consistent with Lemma 3.

Fig. 5 shows the magnitude of total noise (i.e., absolute
difference between the two curves in Fig. 4(a)) and the
total privacy cost (i.e., difference between the two curves
in Fig. 4(b)). We can observe that the total privacy cost is
not always proportional to the magnitude of the total noise.
This is because the total privacy cost is also affected by the
distribution of noise among the buses. Intuitively, if a generator
with a low generation cost curve Ci(·) is close to a load bus
with a high noise for its demand report, the noise will not
cause a significant increase in the generation cost.

C. Evaluation of Privacy Cost Sharing Approaches

1) Bus-level cost sharing: We compare the three bus-level
cost sharing approaches discussed in Section VI-A, namely
the Shapley cost (SC) and the two heuristic approaches using
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Fig. 6. Total noise amounts of buses in four DR-EDC cycles and the
corresponding privacy cost shares under the SC and NM approaches. In each
bar group of (b), the first and second bars are respectively the results of SC
and NM.

respectively noise magnitude (NM) and noise variance (NV)
as weight to split the privacy cost among the buses. Each
simulation lasts for 300 DR-EDC cycles. Fig. 6 shows the
demand-report noises of the three load buses in four selected
DR-EDC cycles, and the corresponding cost shares under
the SC and NM approaches. In the first DR-EDC cycle,
the buses use similar noises and the total privacy cost is
almost equally shared between them. In the second cycle, the
buses use different noises and their cost shares are roughly
proportional to the noise magnitudes. In these two cycles, the
two approaches of SC and NM yield similar results. In the
third cycle, bus 2 uses positive noise, while the other two
buses use negative noises. As a result, the Shapley cost of bus
2 is negative. This is because bus 2’s presence in the coalition
helps reduce the total generation cost, as its positive noise
offsets the negative noises of the other buses. Interestingly,
therefore, in this particular cycle bus 2’s noise helps make
the overall demand report more accurate. Under the Shapley’s
principle, bus 2 should be rewarded. We see a similar result
in the fourth cycle, where bus 1 is rewarded because its noise
counteracts the noises of the other buses. We note that, under
the SC approach, the aggregated cost share of a bus over a
long time period is almost surely positive, since it is extremely
unlikely for the noise of any bus to help reduce the overall
inaccuracy all the time. We next illustrate this observation.

We compare the aggregated privacy cost shares over the
300 DR-EDC cycles computed by the three approaches. Fig. 7
shows the results. Consistent with our previous discussion, the
aggregated Shapley cost is positive for every bus. Both the
NM and NV approaches yield similar aggregated privacy cost
shares as the Shapley costs. Specifically, the maximum per-
bus deviations from the Shapley costs are 6.2% and 12.1%
respectively for the NM and NV approaches. From Fig. 7,
therefore, the NM approach appears to perform better. Note
that, to compute the Shapley costs for the 5-bus system,
the EDC problem in Eq. (4) needs to be solved 24 times.
Moreover, as discussed in Section VI-A2, this number will
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increase exponentially with the number of load buses, which
renders the Shapley cost approach infeasible for large power
systems. In comparison, the NM approach has much lower
computational time complexity.

2) Customer-level cost sharing: We follow the approach
described in Section VI-B to further distribute the per-bus
Shapley cost among the customers. Fig. 8 shows, for each bus,
the ratio of per-customer aggregated cost in a privacy group to
the sum of privacy costs of all the privacy groups. We can see
that on a certain bus, the per-customer cost increases with the
customer’s required privacy, which is consistent with intuition.
Note that the customers not requiring any DP protection share
no privacy cost.

VIII. CONCLUSION AND FUTURE WORK

We analyzed the cost of differential privacy as increase
of a grid’s total generation cost when its EDC is given
noisy demand reports, rather than the customers’ true de-
mand data, for the sake of the privacy protection. We then
applied the principle of Shapley value to distribute this total
privacy cost among different buses in the power system. Since
Shapley value is infeasible to compute for large systems,
we additionally developed heuristic cost sharing algorithms
that scale well to large grids, and compare their solutions to
corresponding Shapley value solutions. Simulations based on
a 5-bus power system model illustrated the privacy cost, its
Shapley cost shares, and corresponding cost shares according
to the heuristic algorithms.

To improve the accuracy of the DP cost analysis, it is inter-
esting for future work to extend the analysis in Section V-B to
address line loss and/or ac power flow models. It is also inter-
esting to design incentive programs with effective mechanisms
to motivate customers to participate in the demand reporting.
For instance, an interesting question is how to design the set
of offered ϵ values such that all the customers are sure to pay
less irrespective of their choice of the ϵ value, compared with
the choice of not reporting their demand at all.
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