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Abstract
Collaborative learning based on training data contributed

by many edge devices is a promising paradigm for im-
plementing crowd intelligence. The collaboratively trained
model generally provides superior classification perfor-
mance due to the increased volume and expanded coverage
of the training data. However, the data contribution may
incur the concern of privacy breach. This paper presents
the design of a privacy-preserving collaborative learning ap-
proach, in which the edge devices and the cloud train differ-
ent stages of a deep neural network, and the data transmitted
from an edge device to the honest-but-curious cloud is per-
turbed by Laplacian random noises to achieve ε-differential
privacy. We apply the proposed approach to a case study of
collaboratively training a convolutional neural network for
handwritten digit recognition. The results show that our ap-
proach maintains 99% and 96% classification accuracy in
implementing privacy loss levels of ε = 5 and ε = 2, respec-
tively.

1 Introduction
Recent years have witnessed the performance break-

throughs of various pattern recognition tasks due to the re-
search advances in machine learning. In the era of the Inter-
net of Things (IoT), many edge devices distributed in urban
areas will generate massive data, which can be used to fur-
ther improve the performance of various machine learning
systems. In particular, the collaborative learning that builds
deep models based on the massive IoT data is envisioned as
an important learning paradigm to implement crowd intelli-
gence. In this paradigm, the increased volume and expanded

coverage of the training data will significantly improve the
quality of the learned model.

However, the training data contributed by the edge de-
vices may contain privacy sensitive information. Data
anonymoization can mitigate some concern about privacy
breach; but it is inadequate, because cross correlations
among different databases may be used to re-identify data
[18]. Note that recent legislation (e.g., General Data Projec-
tion Regulation in European Union and Personal Data Pro-
tection Act in Singapore) imposes stricter requirements for
privacy protection. To gain wide adoption in the era of IoT,
the collaborative learning systems that rely heavily on the
data contributed by the individual edge devices should be
designed with proper privacy preservation mechanisms.

In this paper, we present the design of a collaborative
learning approach that uses the computation capabilities of
the edge devices and implements the differential privacy
(DP) for the data transmitted to the cloud for building the
machine learning model. Specifically, the edge devices col-
laboratively train a deep neural network, where the training
of a number of front layers of the neural network is exe-
cuted on each edge device and the training of the remaining
layers is executed in the cloud. During the training phase,
whenever any edge device contributes a training sample, it
forward-propagates the training sample over the front layers
and transmits the intermediate result data vector to the cloud.
The cloud will further forward-propagates the remaining lay-
ers to compute the training loss. The training loss is finally
fed back to all participating edge devices to update their front
layers. Thus, the front layers at all the participating edge de-
vices remain the same during the training phase. On the com-
pletion of the training, the layers maintained by the cloud can
be disseminated to all the edge devices, such that the whole
neural network can be executed locally on the edge devices.

In this paper, we consider a honest-but-curious cloud that
aims to infer private information from the data uploaded by
the edge devices during the training phase. We adopt the
ε-DP [4] as our privacy definition, which gives quantifiable
indistinguishability of different data vectors yielded by the
edge devices against the honest-but-curious cloud. To im-
plement ε-DP, a Laplacian random noise vector is added to



the data vector generated by the front layers before being
transmitted to the cloud. In our design, we apply batch nor-
malization to the data vector generated by the front layers at
the edge device to attain an analytic upper bound of the nor-
malized data. The bound is used as the global sensitivity in
setting the Laplacian noise generator parameters to guaran-
tee ε-DP.

We apply our proposed approach to a case study of col-
laboratively training a convolutional neural network (CNN)
for image classification. We use MNIST [14], an image
dataset of handwritten digits, to train the CNN. Two convo-
lutional layers with max pooling are trained by the edge de-
vices, while six dense layers are trained by the cloud. Results
show that our approach maintains 99% and 96% classifica-
tion accuracy in implementing privacy loss levels of ε = 5
and ε = 2, respectively. Note that, to provide good DP pro-
tection, the typical privacy loss level, i.e., ε, is often set to a
value below 10. For example, in [9], to obtain the balance
between system performance and data privacy, the ε is set to
be 10. In [1], the ε is set to 0.5, 2, or 3. Thus, the case study
based on MNIST shows that our approach can achieve good
DP protection while maintaining satisfactory classification
performance.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 presents the design
of the differentially private collaborative learning approach.
Section 4 presents the performance evaluation results. Sec-
tion 5 concludes the paper.

2 Related Work
Collaborative learning schemes have been proposed to

protect the data owner’s privacy. Existing approaches can
be broadly classified into three categories of distributed ma-
chine learning, data obfuscation/encryption, and partitioned
model training.

2.1 Distributed Machine Learning
In [9, 17, 21], the distributed collaborative training of a

deep neural network is studied. In these studies, the gradients
or the model parameters are exchanged among the collab-
orative learning participants. The exchange is orchestrated
by a learning coordinator. The federated learning approach
is proposed in [17], in which the training data is kept lo-
cally and each client trains a local deep model. The central
server retrieves the local deep models from randomly chosen
clients and returns the average deep model to them. This
federated learning approach has been implemented in the
Google’s mobile App Gboard [7] that performs typing rec-
ommendation. In [21], each participant trains a local deep
model using stochastic gradient descent (SGD) and uploads
a selected portion of gradients to the coordinator for combin-
ing. Then, each participant downloads a selected portion of
the global gradients to update its local deep model. In the
Crowd-ML approach [9], a participant checks out the global
classifier parameters from the coordinator and computes the
gradients using its own training data. Then, the participants
transmit the gradients to the coordinator to update the global
gradients.

In the collaborative learning approaches, since the SGD
or the parameters still contain the model information, to

further protect the user privacy, in [9, 21], additive noises
are added to the model parameters transmitted to the cen-
tral server to achieve DP [4]. However, the DP protection
is for each parameter. When the number of parameters in
the model is large, the achieved privacy protection level is
low [1]. In a recent work [10], the authors propose to use the
generative adversarial networks that can generate the pro-
totypical samples of the targeted training set to weaken the
privacy protection achieved by [9, 21]. Moreover, in [2, 20],
cryptographic primitives are integrated with the approaches
in [17,21] for better privacy protection. However, these cryp-
tographic primitives, e.g., homomorphic encryption, often
incur high computation complexity. Thus, these approaches
are ill-suited for edge devices with constrained computing
resources.
2.2 Data Obfuscation/Encryption

Data obfuscation/encryption approaches have also been
proposed to protect data privacy. The approaches [8, 15]
transmit the encrypted or obfuscated training data to the co-
ordinator to build the machine learning models. The ap-
proach in [23] protects the privacy of both individual proper-
ties and group statistical properties by adding random noises
to sensitive samples and augmenting the dataset with faked
samples. This approach can counteract several privacy at-
tacks without affecting the prediction accuracy of the trained
model much.
2.3 Partitioned Model Training

In a recent work [16], instead of directly transmitting the
noisy training data to the server, part of the CNN computa-
tion is performed at the edge nodes. The work shows that, if
the edge nodes train the first layer of the CNN and add Gaus-
sian noises to the output of the first layer, desirable learn-
ing performance can be maintained. However, the actual DP
achieved at the server is much lower than that claimed by the
edge nodes. In addition, the paper [16] formulates an opt-
mization problem by considering privacy, resource cost and
learning precision to find out the optimal partitioning of the
CNN. However, the optimization model is based on an sim-
plification assuming the same weights for all three factors.

In [19, 22], the transfer learning techniques are used for
private inference across mobile devices and clouds. In this
method, a number of front layers of the target neural network
are deployed at the edge devices using a pre-trained neural
network and the remaining layers of the target neural net-
work in the cloud are trained using data from edge devices.
To protect the privacy of these data, Siamese fine-tuning, di-
mensionality reduction, and noise addition mechanisms are
used in [19]. In [22], the nullification technique is used to
hide the sensitive data before adding the Laplacian noises to
achieve DP. However, both approaches [19,22] can only pro-
tect the data privacy at the fine-tuning stage but not the train-
ing stage. In addition, parts of the data have to be released
for learning the pre-trained model in applications where no
public data is available.

3 Approach Design
This section presents the design of the proposed differen-

tially private collaborative learning approach. Our approach
belongs to the partitioned model training category discussed



in Section 2. We describe the system model and our ap-
proach in Section 3.1 and Section 3.2, respectively. Sec-
tion 3.3 presents an analysis that guides the setting of the
Laplacian noise generator to achieve ε-DP.

3.1 System Model
In this paper, we consider a collaborative learning system

consisting of multiple learning participants and an honest-
but-curious learning coordinator to realize a classification
system. In practice, the learning coordinator and participants
can be a cloud server and edge devices, respectively. In our
model, we mainly consider the privacy contained in the orig-
inal data due to potential leakage threat in which the data is
used in unauthorized applications. For example, in an activ-
ity recognition system based on wearable devices, three-axis
acceleration data can be used to infer human body activity.
However, the acceleration data can be also exploited to infer
the health status of the wearer. With such inferred health sta-
tus, targeted advertisement can be performed. Thus, protect-
ing the data privacy in a collaborative system is important.
Privacy-preserving approach can prevent data abuse.

The coordinator in our model is honest but curious.
Specifically, it honestly supports the collaborative learning
process to compute correctly and send results truthfully.
However, it is curious about the privacy contained in the data,
since it may exploit the privacy for irrelevant applications.
In this paper, we do not consider the privacy contained in the
label of the contributed training data since we assume that
the participant willingly contributes the labeled data to per-
form supervised learning and should have no expectation on
the privacy contained in the labels. Our approach supports
anonymization of the training features and labels. Specifi-
cally, the coordinator should not expect to know the partici-
pant’s identity for the received training samples. Moreover,
the coordinator cannot determine which two training sam-
ples come from the same participant. This can be achieved
via an anonymous communication network [3] to transmit
the training features and labels to the coordinator.

3.2 Approach Overview
In this paper, we propose an approach which can protect

the privacy of the extracted features before being transmit-
ted to the coordinator to preserve the privacy contained in
the original data. Perturbing original data directly to protect
privacy may lead to significant learning performance degra-
dation which will be shown in Section 4. From our analysis
in Section 3.3, we can perturb the results computed from the
original data before being transmitted to the coordinator to
protect the privacy contained in the original data.

To realize the advantages of collaborative learning, the
classification computation during the learning phase is per-
formed on the coordinator to make good use of various
data from different participants. In this paper, we consider
convolutional neural network (CNN) to design collaborative
learning system, since CNN is an effective machine learn-
ing model. In CNN, convolutional layers fold data in several
channels to extract features with specific pooling layers and
activation layers. The dense layers (i.e., fully-connected lay-
ers) classify the extracted features to yield class labels. In our
collaborative learning system, each participant runs convolu-
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Figure 1. Overview of our proposed privacy-preserving
collaborative learning approach.

tional layers to extract features that will be transmitted to the
coordinator. The coordinator maintains the dense layers and
forward-propagates them with the received features during
the learning phase. Moreover, the participants will perturb
the features before transmitting them to the coordinator.

Figure 1 illustrates the system architecture. Each partic-
ipant collects data and extracts features locally. Under the
privacy-preserving mechanism that will be presented in Sec-
tion 3.3, participant sends privacy-preserving features and
original labels to the coordinator such that the coordinator
can train the fully-connected layers. The coordinator uses
the backpropagation algorithm to update the fully-connected
layer parameters and meanwhile sends back the propagated
loss to the participants which will update convolutional lay-
ers accordingly. In the above process, the convolutional lay-
ers of all the participants are updated based on each con-
tributed training data sample. Thus, the participants enjoy
the advantages of collaborative learning, which help them
better extract features.

We now discuss several design issues.
• During the classification phase after the completion of

the collaborative learning, the participant can send test-
ing data features to the cloud, which will then perform
classification using the dense layers. Alternatively, on
the completion of the collaborative learning, the coor-
dinator can disseminate the dense layers to all partici-
pants. Then, each participant can run the full CNN to
perform classification without transmitting testing data.

• In order to utilize the large volume of training data to
improve the effectiveness of the convolutional layers,
it is desirable to maintain the same convolution layers
at all the participants. We adopt the following method
to keep convolutional layer consistency among partic-
ipants. After the coordinator updates dense layer pa-
rameters, it broadcasts propagated loss to all the partic-
ipants. Thus, all the participants can update their own
convolutional layers simultaneously. Since we can con-
figure the same hyperparameters for the convolutional
layers at all the participants, we can maintain the con-
volutional layers at all the participants consistent.



• The system will have significant overhead if each par-
ticipant immediately sends new extracted features once
it generates new data. To solve this issue, in our design,
if the data exceeds a specified value, the participant
starts to process data to extract feature and transmit it.
This method matches well with our privacy-preserving
approach which adopts batch normalization and Lapla-
cian noisification, which will be presented in the next
subsection.

3.3 Achieving ε-Differential Privacy
Differential privacy is an information-theoretic approach

to protecting data privacy. It aims to confound the query
results based on adjacent datasets. In our approach, we
adopt ε-differential privacy [4] as our privacy definition.
The ε-differential privacy (ε-DP) is formally defined as
follows: A randomized algorithm A : D → Rt gives ε-
DP if for all adjacent datasets D1 ∈ D and D2 ∈ D dif-
fering on at most one element, and all S ⊆ Range(A),
Pr(A(D1) ∈ S)≤ exp(ε)×Pr(A(D2) ∈ S). Here, the differ-
ential privacy level ε, is a positive number which measures
privacy loss. Smaller ε always means better protection: when
ε is very small, Pr(A(D1) ∈ S) ≈ Pr(A(D2) ∈ S) for all
S⊆Range(A). Thus, the query results A(D1) and A(D2) are
nearly indistinguishable, which prevents the attackers from
recognizing the original dataset. We consider bounded dif-
ferential privacy, where two neighboring databases have the
same size, and have different records at only one of the po-
sitions. An approach to implementing ε-DP is to add Lapla-
cian noise [6]. Concretely, for all function F : D → Rt ,
the randomized algorithm A(D) = F (D) + [n1,n2, . . . ,nt ]

ᵀ

gives ε-DP, where each ni is drawn independently from a
Laplace distribution Lap(S(F )/ε) and S(F ) denotes the
global sensitivity of F . Note that the global sensitiv-
ity S(F ) is S(F ) = maxneighboring databases D,D′∈D ||F (D)−
F (D′)||1 while Lap(λ) is a zero-mean Laplace distribution

with a probability density function of f (x|λ) = 1
2λ

e−
|x|
λ .

A challenge in implementing ε-DP is the determination
of the global sensitivity S(F ). It is hard to determine global
sensitivity after convolutional layers. Theoretically, the out-
put of convolutional layers can continuously increase or de-
crease during training epochs. However, too large or too
small outputs of the convolutional layers may cause the gra-
dient exploding problem or gradient vanishing problem [12].
Batch normalization (BN) [12] is developed to normalize the
output of hidden layers to avoid the problems to support neu-
ral network training. Using each batch as a unit, BN normal-
izes the output of specific layers and then forwards it to the
next layer. It limits the range of the output, enabling the de-
termination of the global sensitivity S(F ). In our approach,
we apply standard BN parameters: fixed variance 1 and fixed
mean 0. In the following, we explain the method to compute
the global sensitivity S(F ).

For simplicity, we assume there is only one channel in
the CNN and the dimension of the output of the convolu-
tional layers is L×W . Denote the batch size in the con-
volutional neural network as N, the output of convolutional
layers in a position 〈i, j〉 of element k in the batch as Xi, j,k.
The difference between two adjacent datasets D and D′ in

our scenario is Xi, j,k and X ′i, j,k, while the other elements are
the same. The query request in our scenario is to read each
element in the dataset because the coordinator can access all
data sent from the participants. Thus, the global sensitiv-
ity S(F ) is equal to the maximum difference between Xi, j,k
and X ′i, j,k, S(F ) = max〈i, j,k〉∈〈L,W,N〉{Xi, j,k −X ′i, j,k}. Due to
the constraint imposed by BN, we have ∑

N
k=1 Xi, j,k = 0 and

∑
N
k=1 Xi, j,k

2 = N.
To analyze S(F ), we now prove for any ` ∈ {1,2, . . . ,N}

that −
√

N−1 ≤ Xi, j,` ≤
√

N−1 and both equal signs are
applicable in special cases.

From the Cauchy–Schwarz inequality, we have(
∑

t∈{1,2,...,N}\{`}
Xi, j,t

)2

≤ (N−1) ∑
t∈{1,2,...,N}\{`}

Xi, j,t
2. (1)

Applying ∑t∈{1,2,...,N}\{`}Xi, j,t = −Xi, j,` and
∑t∈{1,2,...,N}\{`}Xi, j,t

2 = N − Xi, j,`
2 to Inequality (1),

we obtain Xi, j,`
2 ≤ (N−1) · (N−Xi, j,`

2), which leads to

−
√

N−1≤ Xi, j,` ≤
√

N−1. (2)

The equal sign in the first “≤” of Inequality (2) is ap-
plicable when Xi, j,` = −

√
N−1 and Xi, j,t = 1/

√
N−1 for

t ∈ {1,2, . . . ,N} \ {`}. Similarly, the equal sign in the sec-
ond “≤” of Inequality (2) is taken when Xi, j,` =

√
N−1 and

Xi, j,` =−1/
√

N−1 for t ∈ {1,2, . . . ,N}\{`}.
From the above analysis, S(F ) denoting

max〈i, j,k〉∈〈L,W,N〉{Xi, j,k − X ′i, j,k} is equal to 2
√

N−1.
By adding a random noise from Lap(S(F )/ε) [5], we
can achieve ε-DP to protect original data privacy. It also
succeeds when there are multiple channels in CNN. The
detailed proof is omitted here due to space constraint.

4 Performance Evaluation
In this section, we evaluate our approach in an application

of image-based handwritten digit recognition.
4.1 Evaluation Methodology and Settings

Our evaluation is based on a public dataset MNIST [14].
MNIST is a hand written dataset which consists of 60,000
training samples and 10,000 testing samples. Each sample is
a 28× 28 gray scale image showing a handwritten number
within 0 to 9. It is widely used in machine learning liter-
ature as a basic benchmark dataset to eveluate the learning
performance.

In our model, the CNN deployed at the participants has
two convolutional layers with 30 and 80 channels, respec-
tively. After each conventional layer, we apply max-pooling
layers to reduce the size of the output. In neural networks,
the max-pooling layer can accelerate learning with reduced
parameter dimension while extracting features of subregion
in a sample. In dense layers, the ReLU activation layer is
used to increase the nonlinearity of the neural network. After
the second conventional layer, we use a BN layer to acceler-
ate the learning rate and prevent gradient vanishing problem
and gradient exploding problem. Then, the DP technique is
applied to perturb the output of the BN layer to preserve data
privacy.
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Figure 2. CNN structure.
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Figure 3. Impact of privacy loss level ε on the test accu-
racy of the collaboratively learned model with DP.

After adding the DP noise, the participants send perturbed
features to the coordinator as the input for the dense layers.
In our model, the dense layers contain four hidden layers for
reducing the data dimension gradually and one output layer
with a dimension of 10 which is the dimension of labels.
Finally, we use softmax layer to predict label and compute
loss. The structure of the CNN is shown in Figure 2.

In our experiments, we set the hyperparameters of CNN
as follows: the learning rate is equal to 0.01 and the batch
size is equal to 64. Thus, the global sensitivity S(F ) is equal
to
√

63. Therefore, we apply various privacy loss levels ε to
evaluate the performance of the differentially private collab-
orative learning based on MNIST.

4.2 Evaluation Results
For comparison, we use the centralized training approach

without any privacy consideration as the baseline. The cor-
responding CNN excludes the noisification layer as shown
in Figure 2. This centralized non-DP approach achieves
99.58% test accuracy. From Figure 3, with our differentially
private collaborative learning approach, the test accuracy in-
creases with the privacy loss level ε. Note that a large ε

means less privacy protection. Thus, there exists a trade-off
between the test accuracy and the degree of privacy protec-
tion. Generally, when the ε is chosen to be 5, which is often
considered providing satisfactory privacy protection [1, 9],
our system can still achieve 99.18% test accuracy. When ε is
reduced to 1, the test accuracy decreases to 84.33%, because
large DP noises start to undermine the performance of the
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Figure 4. Impact of batch size on the test accuracy of the
collaboratively learned model with DP (ε = 2).

classification system. However, when ε is around 2 to 5, the
system shows good classification performance. Specifically,
only 3% of accuracy reduction is observed when ε reduces
from 5 to 2.

In the second set of experiments, we investigate the im-
pact of BN’s batch size on the classification performance
of the collaboratively learned model. For training CNN, a
smaller batch size often results in more accurate estimation
of the gradient descent, but longer convergence time of the
training process. Moreover, in our approach, the batch size N
determines the global sensitivity S(F ), i.e., S(F ) =

√
N−1.

Thus, the smaller batch size also results in lower noise levels
for the same ε setting. We set ε = 2. Figure 5 shows the test
accuracy of the CNNs trained by our differentially private
collaborative learning approach and the centralized learning
approach without privacy preservation, under different batch
size settings. When the batch size N = 32, the test accuracy
is 99.5% and 98.1% for the centralized non-DP learning ap-
proach and our DP approach, respectively. When N increases
to 128, the accuracy drops to 99.3% for the centralized non-
DP approach and 94.0% accuracy for our approach. For our
approach, with a larger batch size, both the global sensitivity
and noise level become larger, leading to performance drop.

Adding Laplacian noises to the original data to achieve
ε-DP is an alternative approach. In this section, we also in-
vestigate its effectiveness. Under this alternative approach,
the global sensitivity S(F ) of the original data (i.e., the pixel
values) is the maximum difference between any two pix-
els. Since the pixel value in MNIST is within the range of
(0,255), the global sensitivity is a fixed value of 255. Fig-
ure 5 shows the test accuracy of the CNN trained by this
alternative approach under various ε settings. We can see
that, when ε = 10, the test accuracy is 11.35% only, which
is close to the performance of random guessing (i.e., 10%).
When ε≥ 100, although the approach can achieve good test
accuracy, the privacy loss is too high to be meaningful in a
collaborative learning system. Thus, the results show that
adding Laplacian noises to the original data significantly de-
grades the learning performance. Moreover, by comparing
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the original data for DP.

the results obtained with this alternative approach and our
approach, we can see that the unsupervised feature learning
performed by the convolutional layers is susceptible to the
DP noises, whereas the classification boundary learning per-
formed by the dense layers is more robust to the DP noises.

5 Conclusion and Future Work
This paper presents the design of a collaborative learning

approach that trains different stages of a deep neural network
at the edge devices and the cloud, respectively. The deep
neural network model is constructed based on the training
samples contributed by all the participating edge devices. To
protect the privacy contained in the data communicated to
the honest-but-curious cloud during the collaborative learn-
ing process, Laplacian random noises are added to the com-
municated data. We apply our approach to a case study of
collaboratively learning a CNN for handwritten digit classi-
fication. Results show that collaboratively learned CNN with
ε-DP has about 3% classification accuracy loss only, when
the DP loss level ε is down to 2.

There are several potential future directions of this work.
First, due to the page limit, we only evaluated the perfor-
mance of our approach with one dataset. We will con-
duct more experiments using other benchmark datasets, e.g.,
CIFAR-10 [13] and LFW [11]. Second, we will implement
the collaborative learning approach on edge devices to under-
stand its performance and overhead in real IoT applications.
Third, we will prove the privacy guarantee achieved by our
approach and investigate the trade-off between privacy and
learning precision under different settings. Finally, in our ap-
proach, the convolutional and dense layers are partitioned to
the participants and cloud, respectively. In our future work,
we will investigate other partition approaches and investigate
the impact of different partitions on the trade-off between DP
and learning performance.
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