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1. INTRODUCTION
Recent years have witnessed the emergence of a class of data-

intensive embedded sensing applications such as structurehealth
monitoring and volcano surveillance [6]. Sensors in these appli-
cations samples at high rates (e.g.,100 Hz) and hence generate
a large amount of data. Due to the limited communication band-
width, these applications typically process the raw data atsen-
sors and only transmit summaries to a central station [6]. The
MSP430/ATmega-based mote platforms have limited computation
and storage resources, making them inappropriate for theseapplica-
tions. The high-end mote platforms such as Imote2 and SunSPOT,
although equipped with sufficient processing capability, have sig-
nificantly higher power consumption and are typically basedon
non-extensible designs, e.g., limited on-board flash memory that
prohibits logging raw sensor data valuable for offline analysis.

We propose a smartphone-based versatile sensing platform to
meet the needs of a diverse set of data-intensive sensing applica-
tions. Smartphones have several salient advantages such asmul-
tiple network interfaces (3G/4G, WiFi, Bluetooth), various inte-
grated sensors, and user-friendly development tools. The price of
smartphones has been decreasing drastically in the last decade. In
particular, low-end Android phones like LG Optimus Net (800MHz
CPU and2GB memory) cost only about US$50 [2]. These features
make smartphone a promising base platform for developing data-
intensive embedded sensing applications.

In the VolcanoSRI project [3], we are currently building smart-
phone based systems for real-time volcano tomography. Eachnode
samples seismic signal at100Hz, detects earthquakes, estimates
hypocenters, and updates the tomographic model. Smartphones
provide a low-cost platform that has sufficient processing capability
and allows for rapid prototyping with a large number of nodesfor
embedded sensing applications like VolcanoSRI. However, several
system challenges must be addressed. First, the sensitivity of on-
phone sensors often does not meet the requirement of high-fidelity
monitoring applications. For instance, the on-phone accelerome-
ters cannot reliably detect the earthquakes lower than magnitude
4 [5]. Second, the smartphone operating systems do not provide
real-time functionalities, such as constant sampling rateand accu-
rate timestamping, which are crucial to many embedded sensing
applications. Our measurements show that the detecting of apulse
signal through USB interface of Android phones suffers an unpre-
dictable delay up to5 ms, which makes it impossible to achieve
constant high sampling rate. Third, the smartphone power man-
agement schemes, designed to adapt to user activities, are not well
applicable to the embedded sensing applications. The continuous
sensor sampling can prevent the smartphone from entering sleep
state, which hence can quickly deplete the batteries.

This extended abstract presents the design ofDroidSense, a toolkit
for smartphone-based platform to build data-intensive sensing ap-
plications. To address the above challenges, DroidSense supple-

Figure 1: A DroidSense node for real-time volcano monitoring
and tomography.

ments the smartphone with an extension board (referred to asextBoard)
that enables the integration of high-sensitivity externalsensors, and
is capable of real-time sensor sampling and lightweight signal pro-
cessing. By offloading sensor sampling to extBoard, the smart-
phone can sleep for most of the time to save energy. DroidSense
provides a rich and extensible library of signal processingalgo-
rithms, which can be easily hooked together to build sophisticated
sensing applications. Owing to these features, DroidSenseis a
powerful toolkit for developers to build a wide spectrum of energy-
efficient data-intensive sensing applications.

2. SYSTEM OVERVIEW
Hardware Composition: Each DroidSense node is composed of
an Android smartphone and an extBoard (e.g., IOIO [1] and Ar-
duino [4]) that is equipped with a low-power MCU and multiple
A/D channels. The extBoard, powered by external batteries,is con-
nected to the smartphone using a USB cable for both communica-
tion and charging the on-phone battery. Fig. 1 shows a DroidSense
node built for the VolcanoSRI project [3]. Various sensors can be
connected to the A/D pins of the extBoard.

System Architecture: The system architecture of DroidSense is
illustrated in Fig. 2. DroidSense consists of: (1) an embedded
program running on the extBoard, which samples the sensors and
performs lightweight signal processing tasks, (2) an Android app
running on the smartphone, which performs computation-intensive
signal processing tasks and coordinates the operations of smart-
phone and extBoard by the Task Controller, and (3) a Task Parti-
tioner that dynamically optimizes the dispatch of signal processing
tasks to smartphone and extBoard to minimize energy consumption
subject to processing delay.

Power Management:DroidSense disables many Android system
services so that the smartphone can go to the sleep state sooner,
then the extBoard wakes up the smartphone to run computation-
intensive signal processing tasks in an on-demand manner.

3. SIGNAL PROCESSING LIBRARY
DroidSense provides a hierarchical and extensible libraryof sig-

nal processing algorithms to enable the developer to quickly build



Figure 2: System architecture of DroidSense: a)DroidSenseap-
plication on the smartphone. b)Hierarchical Signal Processing
Library. c)Task Partitioner. d)extBoard program on the ext en-
sion board.

reliable sensing applications. The signal processing algorithms are
implemented in C++, such that they can be executed on both the
smartphone and the extBoard. On smartphone, these C++ imple-
mentations are wrapped by Java Native Interface. By leveraging
the object-oriented programming paradigm, DroidSense organizes
the data structures and algorithms into a hierarchical library shown
in Fig. 2(b). Current prototype version of the library includes12
commonly used algorithms that have been fully tested on Arduino
[4] and three different smartphones.

As the blocks implement unified I/O interfaces, they can be con-
nected to build applications. An application is specified byan XML
file. For instance, Fig. 3 shows an application of coarse P-phase
picking, i.e., detecting the arrival time of wavefront in P-wave of
earthquake, over1600 data points of volcanic seismic signal [6].
This XML shows how seismic samples pass through a low pass
filter and then are transformed to the wavelet domain. The trans-
formed signal is then passed to the sparsity task to compute sig-
nal sparsity and to the picker task to find the p-phase. The Task
Partitioner interprets this XML file and generates the task assign-
ment (cf. Section 4). According to the assignment result, the Task
Controller manipulates the execution of the tasks, the buffers of
intermediate results, and the communication with the extBoard (in-
cluding execution requests and receiving/sending the data).

4. TASK PARTITIONING
There exists a trade-off between energy consumption and pro-

cessing delay. Intuitively, if all algorithms are executedon the
smartphone, the shortest processing delay can be achieved,how-
ever, with the cost of high energy consumption by the smartphone.
Hence, it is desirable to schedule the execution of each algorithm on
either smartphone or extBoard, such that the energy consumption
of the smartphone is minimized, subject to upper-bounded process-
ing delay on extBoard that is responsible for real-time sensor sam-
pling. Let si denote theith signal processing algorithm (referred
to astask). Its execution times on the smartphone and extBoard
are denoted bytp

i
and tbi , respectively. LetP denote the power

consumption, where the scripts ‘p’ and ‘b’ represent smartphone
and extBoard, and the scripts ‘a’ and ‘s’ represent active power
and sleep power. We assume that the power consumption and la-
tency of downloading or uploading a data unit from/to the phone
and to/from extBoard, is the same, which are denoted byPc and

<application ID="1" name="P-phase picking"delay="1.0">
<!-- property delay specifies processing delay upper bound -->

<task ID="0" name="low-pass"insize="1600"outsize="1600" />
<task ID="1" name="wavelet4"insize="1600"outsize="100" />
<task ID="2" name="sparsity"insize="100" />
<task ID="3" name="picker" insize="100" />
<!-- fromOut/toIn are index of output and input pins -->
<connection from="0" to="1" fromOut="0" toIn="0" />
<connection from="1" to="2" fromOut="0" toIn="0" />
<connection from="1" to="3" fromOut="0" toIn="0" />

</application>

Figure 3: Specification of coarse P-phase picking [6].

tc. Let li denote the size of the input data tosi, andT denote
the upper bound of processing delay. LetIi denote whethersi
is executed on the phone (Ii = 0) or extBoard (Ii = 1). For
a sequence of tasks <si, s2, . . . , sn>, the Task Partitioner finds a
solution <I1, I2, . . . , In> to minimize the energy consumption of
smartphone, i.e.,
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, tbi , andli) is updated by Task Controller in

run time. For the example shown in Fig. 3, the optimal solution
is <1,1,0,0>, resulting power consumption of305.1 mW for pro-
cessing1600 samples. Compared with the solutions <0,0,0,0> and
<1,1,1,1>, it reduces energy consumption by22% and11.9%, re-
spectively. These results are based on the power profile of the LG
GT540 phone and Arduino [4] as the extBoard. Under the optimal
solution, the projected lifetime over4 D-cell batteries is40 to 60

days if the duty cycle of the extBoard is 10% and the application
shown in Fig. 3 is executed once every second.

5. CONCLUSION AND FUTURE WORK
This extended abstract presentsDroidSense, a toolkit for smart-

phone based data-intensive sensing systems. DroidSense features
a two-tier hardware architecture and provides a rich and extensible
library of signal processing algorithms. It dispatches theexecu-
tion of the signal processing algorithms either to the smartphone
or to the extension board to minimize energy consumption sub-
ject to bounded processing delay. In the future, we will explore
the online partitioning of the tasks. In addition, we will integrate
the distributed signal processing and collaborative data analysis in
DroidSense and account for power consumption of wireless inter-
face in the design of task partitioner.
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