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1. INTRODUCTION

Recent years have witnessed the emergence of a class of data-

intensive embedded sensing applications such as strucéaléh
monitoring and volcano surveillance [6]. Sensors in thggdia
cations samples at high rates (e.gpp Hz) and hence generate
a large amount of data. Due to the limited communication band
width, these applications typically process the raw dataes-
sors and only transmit summaries to a central station [6]e Th
MSP430/ATmega-based mote platforms have limited comioutat
and storage resources, making them inappropriate for tgsea-
tions. The high-end mote platforms such as Imote2 and SumSPO
although equipped with sufficient processing capabiligyehsig-
nificantly higher power consumption and are typically based
non-extensible designs, e.g., limited on-board flash mertioat
prohibits logging raw sensor data valuable for offline asizly

We propose a smartphone-based versatile sensing platform t
meet the needs of a diverse set of data-intensive sensirigapp
tions. Smartphones have several salient advantages sunhlas
tiple network interfaces (3G/4G, WiFi, Bluetooth), varsointe-
grated sensors, and user-friendly development tools. Tice pf
smartphones has been decreasing drastically in the laatidetn
particular, low-end Android phones like LG Optimus N&i( MHz
CPU and GB memory) cost only about US$50 [2]. These features
make smartphone a promising base platform for developing- da
intensive embedded sensing applications.

In the VolcanoSRI project [3], we are currently building stra
phone based systems for real-time volcano tomography. Baé
samples seismic signal a00 Hz, detects earthquakes, estimates
hypocenters, and updates the tomographic model. Smasgphon
provide a low-cost platform that has sufficient processaqgadility
and allows for rapid prototyping with a large number of noftes
embedded sensing applications like VolcanoSRI. Howeesersi
system challenges must be addressed. First, the seysifvin-
phone sensors often does not meet the requirement of higlityfid
monitoring applications. For instance, the on-phone a&toeie-
ters cannot reliably detect the earthquakes lower than ituaign
4 [5]. Second, the smartphone operating systems do notdeovi
real-time functionalities, such as constant sampling aat accu-
rate timestamping, which are crucial to many embedded isgnsi
applications. Our measurements show that the detectingolfse
signal through USB interface of Android phones suffers aoren
dictable delay up t& ms, which makes it impossible to achieve
constant high sampling rate. Third, the smartphone power-ma
agement schemes, designed to adapt to user activitiespaneesh
applicable to the embedded sensing applications. Thercanis
sensor sampling can prevent the smartphone from enteréeyp sl
state, which hence can quickly deplete the batteries.

This extended abstract presents the desidgdrofdSense, a toolkit
for smartphone-based platform to build data-intensivesisgenap-
plications. To address the above challenges, DroidSengdesu
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Figure 1: A DroidSense node for real-time volcano monitorirgy
and tomography.

ments the smartphone with an extension board (referredaxtBaard)
that enables the integration of high-sensitivity extessaisors, and

is capable of real-time sensor sampling and lightweightaigro-
cessing. By offloading sensor sampling to extBoard, the smar
phone can sleep for most of the time to save energy. DroidSens
provides a rich and extensible library of signal processitup-
rithms, which can be easily hooked together to build sojufaittd
sensing applications. Owing to these features, DroidSense
powerful toolkit for developers to build a wide spectrum néegy-
efficient data-intensive sensing applications.

2. SYSTEM OVERVIEW

Hardware Composition: Each DroidSense node is composed of
an Android smartphone and an extBoard (e.g., 1010 [1] and Ar-
duino [4]) that is equipped with a low-power MCU and multiple
A/D channels. The extBoard, powered by external battegesn-
nected to the smartphone using a USB cable for both communica
tion and charging the on-phone battery. Fig. 1 shows a Desid&
node built for the VolcanoSRI project [3]. Various sensaas be
connected to the A/D pins of the extBoard.

System Architecture: The system architecture of DroidSense is
illustrated in Fig. 2. DroidSense consists of: (1) an emeedd
program running on the extBoard, which samples the sensats a
performs lightweight signal processing tasks, (2) an Aittepp
running on the smartphone, which performs computatioarisive
signal processing tasks and coordinates the operationmaft-s
phone and extBoard by the Task Controller, and (3) a Task-Part
tioner that dynamically optimizes the dispatch of signalgessing
tasks to smartphone and extBoard to minimize energy consomp
subject to processing delay.

Power Management: DroidSense disables many Android system
services so that the smartphone can go to the sleep statersoon
then the extBoard wakes up the smartphone to run computation
intensive signal processing tasks in an on-demand manner.

3. SIGNAL PROCESSING LIBRARY

DroidSense provides a hierarchical and extensible libvésyg-
nal processing algorithms to enable the developer to quinkild
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Figure 2: System architecture of DroidSense: a)DroidSensap-
plication on the smartphone. b)Hierarchical Signal Procesing
Library. c)Task Partitioner. d)extBoard program on the exten-
sion board.
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reliable sensing applications. The signal processingrilgos are

<application ID="1" name="P-phase pickingtelay="1.0">

<!-- property delay specifies processing delay upper bownd -
<task ID="0" name="low-pass"insize="1600" outsize="1600" />
<task ID="1" name="wavelet4"insize="1600" outsize="100" />
<task ID="2" name="sparsity"insize="100" />
<task ID="3" name="picker" insize="100" />
<!l-- fromOut/toln are index of output and input pins -->
<connection frors"0" to="1" fromOut="0" toln="0" />
<connection frors"1" to="2" fromOut="0" toln="0" />
<connection frors"1" to="3" fromOut="0" toln="0" />

</applicatior»

Figure 3: Specification of coarse P-phase picking [6].

t.. Letl; denote the size of the input data 49 andT denote
the upper bound of processing delay. Lgtdenote whetheg;

is executed on the phond;(= 0) or extBoard (; 1). For

a sequence of taskssg s, ..., s,>, the Task Partitioner finds a
solution <4, I, ..., I,> to minimize the energy consumption of
smartphone, i.e 27 | I, PPt? + (1 — I,)PPtP + |I;_1 — I;| Petcly,
subject to>° ", I;t> + |I;_1 — L|t.l; < T. The parameters (i.e.,
PP, PP, P. andt.) can be measured in offline experiments. The
profile of s; (i.e., t?, t?, andl;) is updated by Task Controller in
run time. For the example shown in Fig. 3, the optimal sotutio
is <1,1,0,0>, resulting power consumption 3tf5.1 mW for pro-

implemented in C++, such that they can be executed on both thecessingl600 samples. Compared with the solutions <0,0,0,0> and

smartphone and the extBoard. On smartphone, these C++-imple
mentations are wrapped by Java Native Interface. By leuggag
the object-oriented programming paradigm, DroidSensarorgs
the data structures and algorithms into a hierarchicahfipshown
in Fig. 2(b). Current prototype version of the library indas12
commonly used algorithms that have been fully tested on idadu
[4] and three different smartphones.

As the blocks implement unified 1/O interfaces, they can bre co
nected to build applications. An application is specifiecibyXML
file. For instance, Fig. 3 shows an application of coarse &s@h
picking, i.e., detecting the arrival time of wavefront inmRwe of
earthquake, ovet600 data points of volcanic seismic signal [6].
This XML shows how seismic samples pass through a low pass
filter and then are transformed to the wavelet domain. Thestra
formed signal is then passed to the sparsity task to compgte s
nal sparsity and to the picker task to find the p-phase. Thk Tas
Partitioner interprets this XML file and generates the tesdign-
ment (cf. Section 4). According to the assignment resudt, Tilisk
Controller manipulates the execution of the tasks, theelsifbf
intermediate results, and the communication with the eatBdgin-
cluding execution requests and receiving/sending the .data

4. TASK PARTITIONING

There exists a trade-off between energy consumption and pro
cessing delay. Intuitively, if all algorithms are executea the
smartphone, the shortest processing delay can be achieved,
ever, with the cost of high energy consumption by the smartph
Hence, itis desirable to schedule the execution of eachittigoon
either smartphone or extBoard, such that the energy corsump
of the smartphone is minimized, subject to upper-boundedgss-
ing delay on extBoard that is responsible for real-time sesam-
pling. Lets; denote the™ signal processing algorithm (referred
to astask). Its execution times on the smartphone and extBoard
are denoted by? andt?, respectively. LetP denote the power
consumption, where the scripts’‘and ‘b’ represent smartphone
and extBoard, and the scripts’‘and ‘s’ represent active power

and sleep power. We assume that the power consumption and la-

tency of downloading or uploading a data unit from/to the rngho
and to/from extBoard, is the same, which are denoted’bwand

<1,1,1,1>, it reduces energy consumption2296 and11.9%, re-
spectively. These results are based on the power profileedf &
GT540 phone and Arduino [4] as the extBoard. Under the optima
solution, the projected lifetime over D-cell batteries ist0 to 60
days if the duty cycle of the extBoard is 10% and the applicati
shown in Fig. 3 is executed once every second.

5. CONCLUSION AND FUTURE WORK

This extended abstract presebiidSense, a toolkit for smart-
phone based data-intensive sensing systems. DroidSeatsecfe
a two-tier hardware architecture and provides a rich anensiile
library of signal processing algorithms. It dispatches éhecu-
tion of the signal processing algorithms either to the spiame
or to the extension board to minimize energy consumptior sub
ject to bounded processing delay. In the future, we will erl
the online partitioning of the tasks. In addition, we wiltégrate
the distributed signal processing and collaborative dagdyais in
DroidSense and account for power consumption of wirele®s-in
face in the design of task partitioner.
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