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Abstract—Desynchronized clocks among nodes in industrial
Internet of Things (IoT) can degrade system performance and
even lead to safety incidents. Clock synchronization protocols
based on network message exchanges, though widely used in
current industrial systems, are susceptible to delay attacks
against the packet transmission. This vulnerability cannot be
solved by conventional security measures such as encryption,
and remains an open problem. This paper proposes to use
the sine voltage waveform of a utility power grid to synchro-
nize “things” connected to the same grid. Our experiments
demonstrate that minute fluctuations of the voltage’s cycle
length encode fine-grained global time information in a city-
scale utility grid. Based on this key result, we develop a clock
synchronization approach that achieves sub-ms accuracy and is
provably secure against packet delay attacks. Implementation
results show that our approach achieves an average synchro-
nization error of 0.1 ms between two IoT nodes that are 10 km
apart. When the proposed system is deployed within the same
floor of a building, the error reduces to 10µs.

I. INTRODUCTION

Modern industries are embracing the vision of Internet

of Things (IoT) [1], which provides a fabric that con-

nects advanced sensing, computing, communications, and

actuation [2]. For the “things” (i.e., network nodes) in an

industrial IoT system, trustworthy time information can be

critical. Accurate timestamps of data allow us to make sense

of the data relative to extrinsic events, and synchronized

time enables punctual and coordinated real-time operations.

Desynchronized clocks, on the other hand, can degrade sys-

tem performance or cause expensive infrastructure damage.

For instance, in an electrical grid, smart meters and other

intelligent electronic devices (IEDs) installed at substations

to monitor the grid’s state and operate power instruments ac-

cordingly often require global clock synchronization of sub-

ms accuracy. Stale measurements will result in erroneous

control that endangers the grid’s safety [3]. Desynchroniza-

tion of consumer smart meters may also lead to instability

of a real-time energy market [4]. In car manufacturing,

desynchronized robots in a Roboteam [5] working on a

same car can cause clashes of their arms and disrupt the

production pipeline.
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In existing industrial systems, Network Time Protocol

(NTP) and Precision Time Protocol (PTP) are often used to

synchronize distributed slave nodes to a master node, which

may be equipped with a Global Positioning System (GPS)

receiver for further global synchronization. However, as

discussed in RFC 7384 [6], these protocols are susceptible to

various cybersecurity threats. A simple packet delay attack,

in particular, is effective in desynchronizing the slave nodes.

This attack cannot be prevented by conventional security

measures including cryptographic authentication and encryp-

tion [7], [8]. In the attack, a malicious intermediate node on

the network path between the slave and master strategically

delays the transmissions of the NTP or PTP packets, in order

to manipulate a slave’s clock. For instance, if an NTP request

or reply is delayed maliciously by τ , the slave’s clock will

have an extra drift of τ/2 from the master’s clock [7],

[8]. To the best of our knowledge, there is no solution to

completely solve this attack. The effectiveness of existing

mitigation approaches [6], such as using redundant masters

and network paths, varies significantly depending on the

network topology and attack points. In particular, a dense

deployment of GPS receivers in an industrial system may

harden the cyber network, but it may increase the physical

attack surface because the GPS receivers are susceptible to

wireless spoofing that can be launched remotely (e.g., 1.4 km

away [9]) using low-cost (e.g., $300 [10]) hardware.

Industrial systems have also resorted to cyber isolation to

protect their networks. Such isolation is shaky, however [11].

Zero-day vulnerability exploits, insider attacks, and stepping

stone attacks can render the isolation futile, as evidenced

in recent high-profile intrusions including Dragonfly [12]

and Stuxnet [13] against power and nuclear plants. For the

problem context of this paper, insiders (e.g., disgruntled

employees) who have access to network management may

easily launch a packet delay attack at a strategic router,

thereby endangering the integrity of time among a large

number of network nodes. Increased network connectivity

due to adoption of IoT will only further lower the barriers

of penetrating industrial systems. Hence, providing secure

clock synchronization in industrial IoT, where connectivity is

a defining characteristic, is an imperative research problem.

Recent research efforts have investigated clock synchro-



nization in wireless sensor networks and mobile/pervasive

computing. These approaches leverage the nodes’ built-in

radios [14], [15], [16] or external wireless time broadcasts

or periodic signals found in AM/FM radios [17], [18], Wi-

Fi beacons [19], power line electromagnetic radiation [20],

and fluorescent light flickering [21]. However, they are

designed without security considerations. Moreover, reliance

on wireless electromagnetic signals in a critical industrial

context often raises reliability and security concerns, due to

the possibility of wireless jamming and spoofing.

In this paper, we advance a desirable notion of inherent

security in providing secure and accurate time in time-

critical industrial IoT systems. We exploit the electric net-

work voltage (ENV) signal of an alternating current (ac)

utility grid to design an accurate clock synchronization

approach with provable security against the packet delay

attack, for an industrial IoT connected to the same grid. The

following properties of the ENV make it an ideal extrinsic

signal that serves our purposes. First, the ENV is a periodic

signal with a nominal frequency of 50 or 60Hz, and it

is almost identical across all locations within a local area

(e.g., a power substation or factory). Our measurements

show that the phase difference between the ENVs at two

locations 10 km apart is generally below 0.2ms and it has

a mean value of around 0.1ms. This property enables us to

achieve sub-ms average error in the clock synchronization.

Second, in industrial settings, many things are connected to

the utility grid for stable power supply and unattended long-

term operations. This typical setup renders our ENV-based

approach widely applicable. Third, the ENV is a highly

available and unforgeable physical signal that is practically

infeasible for the attacker to tamper with or jam. Any high-

frequency noise injected by the attacker into related power

lines can be removed readily by a low-pass filter. On the

other hand, injection of low-frequency disturbances that can

distort the ENV waveform would require a huge amount of

energy, which raises insurmountable barriers economically

and logistically for would-be attackers.

Subject to the grid-wide ENV, different IoT nodes can

count the ac cycles of the ENV signal to achieve clock cal-

ibration1 [18], [21], and remain synchronized once they are

initially synchronized. The initial synchronization, however,

requires the exchange of network messages, which may be

subverted by packet delay attacks. A major contribution of

this paper is the identification, validation, and exploitation

of a novel physical fingerprint embedded in the ENV signal,

which we call time fingerprint (TiF), that provides resilience

against the delay attacks. A TiF is a vector of successive ac

cycle lengths of the ENV signal. In a power grid, although

the system frequency is regulated at 50 or 60Hz by a control

system [22], the frequency fluctuates continuously because

1Clock calibration ensures that different clocks will advance at the same
speed; clock synchronization regulates the clocks to have the same value.

of inevitable transient imbalance between generation and

load. Accordingly, the ac cycle length fluctuates around its

nominal value as well. Our extensive measurements show

that, using a similarity-based matching algorithm, a TiF of

sufficient length captured by a node, say A, can be correctly

time-aligned within a trace of ac cycle lengths captured by

another node, say B, at the granularity of an ac cycle.

The above key observations enable a novel approach

to achieving the objectives of accurate and secure clock

synchronization simultaneously. Specifically, in a synchro-

nization session, we ensure the integrity (e.g., using cryp-

tographic signature) of a packet from node A to node B
that contains a TiF captured by A and the corresponding

A’s clock value. Based on that, B will be able to time-

align the received TiF within its own historical ac cycle

lengths timestamped with its clock. As a result, B will be

able to compute the offset between A’s and B’s clocks.

If this offset is communicated back to A with guaranteed

integrity, A can then calibrate its clock to synchronize with

that of B. This new approach is immune to any malicious

delays introduced in the communications between A and B,

since it does not depend on any explicit measurements of the

transmission delays. This principle that applies for a pair of

nodes underlines a complete clock synchronization system

among all the grid-connected nodes.

This paper presents a prototype implementation of our

system and discusses its performance based on extensive

empirical evaluations. The results show that our approach

achieves an average synchronization error of 0.1ms between

two network nodes 10 km apart. When the proposed system

is deployed within the same floor of a building, the error

reduces to 10µs.

The balance of the paper is organized as follows. §II

reviews related work. §III presents the design and implemen-

tation of the TiF capture hardware. §IV presents extensive

measurements that characterize key properties of the TiF

under different deployment environments. §V presents the

design and implementation of the proposed secure clock

synchronization approach for industrial IoT. §VI presents

evaluation results of the system prototype. §VII concludes.

II. RELATED WORK

Various clock calibration and synchronization approaches

have been proposed for wireless sensor networks and mo-

bile/pervasive computing applications. They can be classi-

fied broadly into two categories. The first category (e.g.,

RBS [14], TPSN [15], and FTSP [16]) achieves clock

synchronization by exchanging radio messages among the

nodes in question. The second category [17], [18], [19],

[20], [21] exploits external wireless time broadcasts and

periodic signals. Chen et al. [17] design a low-power mote

peripheral that can decode time broadcasts from timekeeping

radio stations (WWVB and DCF77) to achieve global time

synchronization. Li et al. [18] exploit the Radio Data System
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Figure 1. Illustration of ENV ac cycle length. T1 and T2 are two ac cycle
length measurements.

of FM radios, which broadcasts data blocks periodically,

to calibrate the clocks of motes. Similarly, ZigBee nodes

have used detection of periodic Wi-Fi beacons for clock

calibration [19]. Rowe et al. [20] design a mote peripheral to

receive periodic electromagnetic radiation from utility power

lines and calibrate the clocks of motes based on the detected

ac cycles. Li et al. [21] leverage periodic fluorescent light

flickering to calibrate the clocks of nodes equipped with

light sensors. Our approach belongs to the second category,

but it is also fundamentally different from all the prior

work. They leverage the periodicity of the external signals

to achieve clock calibration, whereas we exploit grid-wide

imperfections of the ENV’s periodicity to achieve clock

synchronization. They do not address security, whereas we

address it as a principal concern. Their use of wireless com-

munications and signals often raises reliability and security

concerns for mission- and safety-critical systems. We do not

use wireless signals.

ENV has been exploited to tell time for decades. Some

electric clocks connected to utility grids (e.g., those found in

home appliances) advance by counting the ac cycles. In some

power grids, the grid operators regulate the grid time, i.e.,

product of the number of ac cycles and the nominal cycle

length (e.g., 20ms for a 50Hz grid) based on Coordinated

Universal Time (UTC) by correcting the grid frequency.

However, the regulation often has errors on the order of

seconds. For instance, by controlling generators, the grid

operator in Texas increases/decreases the grid frequency

whenever the error of grid time exceeds 2 s [23], thus

keeping the maximum error to be also about 2 s. Moreover,

because this regulation may negatively impact power grid

reliability [24], it is either not adopted or considered obsolete

and being phased out. Grid time is therefore unsuitable for

accurate synchronization of things to UTC.

Audio and video recorders can capture the grid’s fre-

quency based on electromagnetic interference from power

lines or visual interference under fluorescent lighting [25],

[26], [27]. The continuously fluctuating grid frequency over

time may generate a signature for multimedia forensics. For

example, it is possible to authenticate the recording time of

an audio/video clip by matching a frequency trace extracted

from the clip against a historical grid frequency database

recorded directly from the utility grid. Since these forensics

approaches sample the grid frequency every few seconds,

the identification similarly has a temporal granularity on

the order of seconds. In this paper, we solve the systems
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Figure 2. ENV ac cycle lengths measured by two nodes at different
locations in a building for a duration of 10 minutes.

challenge of capturing the fine-grained ENV-based TiF and

validate its ability to “encode” time information with sub-ms

accuracy. We further apply the TiF to design a novel clock

synchronization system that satisfies both the security and

accuracy requirements for industrial IoT.

III. CAPTURING POWER GRID TIME FINGERPRINT

In this section, we use real data traces to illustrate the

fluctuations of ENV cycle lengths at different locations of

a utility grid, which motivate the concept of TiF. We then

describe our hardware design to capture the fluctuations in

high resolution.

A. ENV Cycle Length Fluctuations

Fig. 1 illustrates two ENV signals with a phase shift.

We can observe these phase shifts when the signals are

measured at different locations in a power network, due to

characteristics of the electrical power lines [22]. An ac cycle

length of the red solid ENV signal is the time period T1

between two consecutive zero crossings illustrated in Fig. 1.

In this paper, we design a hardware device to continuously

measure the ac cycle lengths. Details of the design will be

presented in §III-B. We deploy two of the hardware devices,

Node 1 and Node 2, in two different rooms on the same floor

of an office building. Fig. 2 shows 30,000 ac cycle length

measurements obtained by the two nodes, respectively, over

the same time period of about 10 minutes. The ac cycle

lengths shown are around 20,015µs, because the nominal

grid frequency in our region is 50Hz. The ac cycle length

changes over time and the fluctuations at the two nodes are

almost identical. To illustrate, Fig. 3 shows a zoomed-in

view of Fig. 2, where the traces measured by both nodes

are depicted over a selected window of one second. We can

see that the ac cycle lengths measured by the two nodes

fluctuate synchronously. The fluctuations are within 10µs,

which is just 0.05% of the nominal cycle length.

The good match between the profiles of the fluctuating

ac cycle lengths, as shown in Fig. 3, suggests that (i) the

fluctuations at different locations on a building floor are

nearly identical, and (ii) a trace of the fluctuations over a

certain time period is unique over a longer time horizon.

These two hypotheses, if true, imply that a trace of the

fluctuations may naturally “encode” a unique signature for
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Figure 3. A zoomed-in view of Fig. 2.

when the trace was captured. We thus call a vector of

some number of consecutive ac cycle lengths (recorded at

some location) a time fingerprint (TiF). In §IV, we present

extensive measurements under a wide range of settings

(e.g., length of the TiF and physical distance between two

synchronizing nodes up to city scale) to test these two

hypotheses.

B. Time Fingerprint Capture Hardware

This section presents a hardware design for capturing

minute fluctuations of the ENV cycle length as shown in

Fig. 3. The design must allow high resolution measurements

to preserve even tiny features. Moreover, it should be de-

signed as a portable periphery that can be easily integrated

with commercial off-the-shelf (COTS) IoT platforms.

1) Hardware and firmware: A possible method is to

directly sample the ENV signal using a high-speed analog-

to-digital converter (ADC) and compute the cycle lengths

from the captured data. However, processing high-rate data

will incur significant compute overhead, which may threaten

the system’s real-time performance. High-speed ADC is

expensive as well. This sampling method is therefore not

advisable. Instead, we design a circuit to generate interrupts

upon zero crossings of the ENV. These crossings are then

analyzed by a microcontroller (MCU) to give the ac cycle

lengths. Fig. 4 shows the schematics of our prototype hard-

ware. Given the line-to-neutral utility voltage, the prototype

uses an ac/ac adapter and a voltage divider to step down the

voltage. The voltage signal is conditioned and converted to

a square wave signal that preserves the cycle lengths and

generates interrupts to an MCU. A firmware on the MCU

then uses an internal high-frequency timer to measure the

cycle lengths locally and efficiently.

Details of the signal processing components in Fig. 4 are

as follows. The combination of the ac/ac adapter and the

voltage divider outputs a differential sinusoid signal with

a peak-peak voltage of around 2V. A unit-gain differential

input amplifier converts the differential signal to a single-

ended signal and adds to it a reference voltage of 1.65V

provided by a voltage referencer. The resulting output is

thus a voltage signal referenced by ground and centered at

1.65V. The measurement of ac cycle lengths can be affected

by localized high-frequency (e.g., tens to hundreds of kHz)

voltage noise emitted by electrical appliances and consumer

electronics in the environment [28]. To reduce their impact,

we apply a Sallen-Key second-order low-pass filter to the
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Figure 4. Schematics of the proposed hardware prototype. GPS and
Raspberry Pi are used for evaluation purposes only, and can be eliminated
or replaced in actual deployments.

single-ended signal. The cutoff frequency of the filter is

58.8Hz. The filter can also remove malicious high-frequency

noise injected into related power lines by an attacker. The fil-

tered signal is passed to a Schmitt trigger that compares the

signal with the reference voltage. When the filtered signal

goes above the reference voltage, the output swings at the

positive rail; otherwise, it swings at the negative rail. Thus,

the time duration between two consecutive rising edges of

the square wave output of the Schmitt trigger gives an ac

cycle length. In our design, the differential input amplifier

and the Schmitt trigger use the same reference voltage from

the voltage referencer for adding and triggering, respectively.

Thus, noise in the reference voltage will not affect the

measurement.

Our prototype uses a development board equipped with

an STM32F407VGT6 32-bit MCU to measure the ac cycle

lengths. The firmware running on the MCU is written in

C. Specifically, we configure a hardware timer running at

8.4MHz. On receiving an ENV zero-crossing interrupt (ZCI)

from the Schmitt trigger (i.e., a rising edge of the Schmitt

trigger’s output), the MCU outputs an unsigned integer that

is the difference between its present timer value and the

timer value at the last interrupt. By excluding a time quantity

that corresponds to the nominal ac cycle length (20ms), the

MCU’s ac cycle length measurement can be represented in

two bytes. The time resolution is 1/8.4MHz ≈ 0.12µs,

which is sufficient for capturing the fluctuations with a mag-

nitude of 10µs, as shown in Fig. 3. The MCU delivers each

measurement immediately to its host IoT device with the

corresponding ZCI. By handling the ZCI, the IoT device can

accurately timestamp the present cycle length measurement

using its local clock, despite communication delay from the

MCU to the IoT device.
2) Integration with IoT platforms: In Fig. 4, the com-

ponents in the shaded areas make up the core of the TiF

capture hardware. The MCU can be a native unit in the

capture hardware. Or it can be one on the IoT platform to

which the capture hardware is attached. For instance, we



can leverage the MSP430 MCU, widely found in sensor

network platforms and power grid devices [29], to measure

the cycle lengths. The TimerA provided by TinyOS on an

MSP430-based kMote used in a smart plug platform can

achieve a 4.2MHz clock rate after a reconfiguration of

sourcing the SMCLK clock from the DCO clock without

a divider. The achieved 0.24µs time resolution is sufficient

for capturing the ac cycle length fluctuations. Since the TiF

capture hardware (i.e., the shaded components in Fig. 4)

needs to access the ENV, we can integrate it into the power

supply unit of industrial IoT devices.

In our setup, we use a Raspberry Pi (RPi) single-board

computer as an example IoT platform. This is because the

RPi supports diverse peripheral and networking interfaces

that facilitate the evaluation. The RPi receives the ac cycle

length measurements from the MCU through a virtual COM

port over a USB cable. The ZCI signal is connected to

a general-purpose input/output (GPIO) pin of the RPi. A

GPIO interrupt handler records the RPi’s system clock at µs

resolution, to obtain a timestamp that it adds to the incoming

cycle length measurement from the USB. To obtain accurate

groundtruth time for the evaluation, we integrate the RPi

with an Adafruit GPS receiver [30] that delivers both NMEA

sentences and pulse-per-second (PPS) signals with 10-ns

accuracy through the GPIO pins to the RPi. By using

Raspbian OS’s gps-gpio kernel module and a few other

software packages including gpsd, the RPi’s clock can be

synchronized to the UTC with an offset of 1µs or less. Note

that in actual deployments of the proposed TiF-based clock

synchronization, the GPS receiver will not be needed and

other IoT hardware platforms can replace the RPi.

IV. MEASUREMENT STUDY

This section presents extensive measurements using the

hardware prototype in §III-B to understand key properties

of the ac cycle length fluctuations. These properties form

an important basis for designing the TiF-based clock syn-

chronization platform in §V with appropriate choice of the

system parameters.

A. Time Fingerprint Decoding

The good match of the ac cycle length fluctuations ob-

served in §III-A implies that a TiF captured by a node,

say A, can be time-aligned within a trace of ac cycle

lengths captured by another node, say B. In other words,

B can “decode” the time, according to B’s local clock,

during which the TiF was captured by A, provided that

the measurements in the trace were timestamped using B’s

clock. In this section, we evaluate extensively the accuracy

of the decoded time under different settings.

1) Decoding algorithm and evaluation methodology: A

TiF, denoted by x, is a vector of n consecutive ac cycle

lengths measured by node A. Let a vector y denote a trace

of m consecutive ac cycle lengths measured by node B. The

measurements in y are timestamped with B’s clock, whereas

only the last element of x is timestamped with A’s clock.

We assume that the time duration of measuring x is within

the time duration of measuring y, which is denoted as x⊳y.

How to ensure this condition is discussed in §V-C.

Decoding x means identifying the time instant, according

to B’s clock, for the last element of x (i.e., x[n]). Why

we choose the last element of x will be discussed in §V-C.

The basic idea of the decoding is to match x with a TiF

within a window of size n in y using a similarity metric,

e.g., reciprocal of sum of square errors (RSSE). By sliding

the window within y, the timestamp of the last element of

the window that yields the largest similarity is identified as

the time instant for x[n]. Formally, the index of the window

that yields the largest similarity is given by

i∗ = argmax
i∈[1,m−n+1]

s(x,y[i : i+ n− 1]), (1)

where s(·, ·) is the similarity function and y[i : i + n − 1]
represents a vector consisting of the ith to (i + n − 1)th
elements of y. Then, the decoding algorithm outputs the

timestamp of the last element of the window (i.e., y[i∗ +
n−1]) for x[n]. Note that the TiF capture devices may have

measurement biases. Our extensive controlled experiments

show that the small measurement biases of our prototype

nodes do not affect the decoding result. The details of the

experiments are omitted here due to space constraints and

can be found in the long version of this paper [31].

We evaluate the accuracy of the decoding algorithm as

follows. We deploy the hardware prototype at two nodes

at different locations. By leveraging groundtruth timestamps

from the integrated GPS receivers, we select two traces of ac

cycle length measurements of length m that are respectively

captured by the two nodes during the same time period.

Within the trace captured by A, we slide a window of size n
to generate a total of (m−n+1) TiFs. We use the algorithm

in Eq. (1) to decode each TiF. Let i∗k denote the output

of Eq. (1) for the kth TiF from A’s trace. Since the two

selected traces are captured during the same time period,

i∗k = k signifies a correct decoding. We thus measure the

probability of correct decoding as the ratio of the number of

correctly decoded TiFs to the total number (m− n+ 1) of

the TiFs. Moreover, we call (i∗k−k) the decoding error. For

the measurement results presented in this section, we set m
to be 30,000, which corresponds to ten minutes of data. In

actual deployments of the TiF-based clock synchronization,

the setting of m for the decoding algorithm can be much

shorter. A detailed guideline for setting m will be discussed

in §V-C. Thus, by setting m = 30000 in our empirical study,

the measured probability of correct decoding gives a lower

bound of the actual probability of correct decoding when

the setting of m is smaller.

2) Measurement results on a building floor: We conduct

extensive measurements on an entire floor of an office
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Figure 5. Floor plan of the floor in an office building with test points
marked. The label colors represent the grid phases of the electrical wiring.
Specifically, the test points TP1, TP2, TP3, TP4, and TP12 are on the R-
phase; TP5, TP6, TP7, TP11, and TP13 are on the Y-phase; TP8, TP9,
TP10, TP14, TP15, and TP16 are on the B-phase.

Table I
PROBABILITY OF CORRECT DECODING FOR DIFFERENT TEST POINTS ON

THE SAME PHASE ON THE BUILDING FLOOR IN FIG. 5.

Phase Test points Correct decoding probability
Node A Node B n=100∗ n=200 n=400 n=800

R TP1 TP2 1 1 1 1
TP1 TP3 0.950 1 1 1
TP1 TP4 0.997 1 1 1
TP3 TP4 1.0 1 1 1

Y TP7 TP6 1 1 1 1
TP7 TP11 1 1 1 1
TP6 TP7 0.896 0.998 1 1
TP7 TP11 0.827 0.999 1 1

B TP8 TP9 1 1 1 1
TP8 TP10 1 1 1 1

* n is the length of the TiF.

building that seats around 100 office employees. Fig. 5

shows the floor plan. All the power outlets on this floor are

branched from a main power panel and wired to the three

phases of R, Y, and B of the utility grid. We select 16 power

outlets as our test points, which are marked in Fig. 5. The

label color of a test point represents the grid phase that the

corresponding power outlet is on. In each test, we connect

two units of the hardware prototype respectively to the two

selected test points.

In the first set of tests, the two test points in each test are

on the same phase. Table I shows the probability of correct

decoding under different settings of n, i.e., the length of

the TiF. When n ≥ 400, the probability is one. This result

suggests that if A samples a TiF for at least eight seconds,

the time instant at which each measurement in the TiF is

sampled by A can be exactly identified by B. Since each ac

cycle length measurement is represented by two bytes, the

raw data volume of a TiF of length of 400 is 0.8 kB only.

In the second set of tests, the two test points in each test

0 4 km2

TP-A

TP-B

TP-C

TP-D

Figure 6. The locations of four distributed test points in Singapore. The
line-of-sight distances from TP-A to TP-B, TP-C, and TP-D are from 9 to
12 km. (Image credit: Google Map.)

are on different phases. Table II shows the correct decoding

probability with a TiF length of up to 6,400. We can see that,

although the correct decoding probability increases with n,

it remains low. This observation suggests that the ac cycle

length fluctuations on different grid phases have much lower

correlation compared with those on the same grid phase as

shown in Table I. This is mainly because the changes of load

connected to the three phases of the grid are not fully cor-

related, leading to a certain degree of independence among

the grid frequencies on the different phases. This important

observation poses a challenge in designing the TiF-based

clock synchronization system, because prior knowledge of

the grid phases of A and B will be needed. In §V, we will

present an approach for the system to identify autonomously

each IoT node’s grid phase.

3) Measurement results across different floors and geo-

graphic locations: The floor shown in Fig. 5 is the 8th

floor of an office building. We also deploy a node in a

room called Apex on the 13th floor of the same building.

Apex is on the R-phase. Table III shows the correct decoding

probability when we decode the TiFs collected in Apex using

the traces collected at TP4, TP6, and TP8 on the floor shown

in Fig. 5. These three test points are on different phases.

We can see that when the TiF length is 3,200, which is

about one minute of data, the correct decoding probability

is one when A and B are on the same phase. Compared

with the results in Table I, the TiF needs to be longer to

achieve correct decoding between the two different floors.

This result is consistent with the intuition that the ENV

correlation decreases as the distance of the power network

path between the two test points increases, because the

transients of load can have localized effects on the grid

frequency [22]. Moreover, the correct decoding probabilities

across different phases are lower than the corresponding

probabilities for the same phase, which is consistent with

the results in §IV-A2.

We also deploy nodes at widely separated geographic

locations in our city, as shown in Fig. 6. The test point TP-A

in Fig. 6 is the floor shown in Fig. 5. TP-B, TP-C, and TP-D

are within three buildings and they are on the R-phase, B-

phase, and Y-phase of the city’s utility grid, respectively.



Table II
PROBABILITY OF CORRECT DECODING FOR DIFFERENT TEST POINTS ON DIFFERENT PHASES ON THE BUILDING FLOOR IN FIG. 5.

Node A Node B Correct decoding probability
Test point Phase Test point Phase n=50 n=100 n=200 n=400 n=800 n=1600 n=3200 n=6400

TP1 R TP5 Y 0.000 0.000 0.000 0.005 0.013 0.097 0.385 0.660
TP1 R TP6 Y 0.001 0.002 0.003 0.011 0.019 0.116 0.205 0.260
TP7 Y TP8 B 0.002 0.007 0.020 0.067 0.108 0.161 0.205 0.245

Table III
CORRECT DECODING PROBABILITY FOR DIFFERENT TEST POINTS ON DIFFERENT FLOORS.

Node A Node B Correct decoding probability
Test point Phase Test point Phase n=50 n=100 n=200 n=400 n=800 n=1600 n=3200 n=6400

TP4 R 0.106 0.295 0.532 0.683 0.849 0.979 1 1
Apex R TP6 Y 0 0.003 0.012 0.042 0.097 0.295 0.319 0.528

TP8 B 0.011 0.031 0.093 0.179 0.302 0.428 0.505 0.791

Table IV
CORRECT DECODING PROBABILITY ACROSS DIFFERENT GEOGRAPHIC LOCATIONS SHOWN IN FIG. 6.

Node A Node B at TP-A Correct decoding probability
Test point Phase Test point Phase n=50 n=100 n=200 n=400 n=800 n=1600 n=3200 n=6400 n=12800 n=20000

TP-B R TP4 R 0.089 0.201 0.343 0.48 0.652 0.78 0.82 0.83 1 1
TP-C B TP8 B 0.023 0.067 0.17 0.34 0.475 0.63 0.8 0.99 1 1
TP-D Y TP6 Y 0.013 0.035 0.074 0.143 0.23 0.39 0.69 0.95 0.98 1

The line-of-sight distances from TP-A to the other three

test points are from 9 km to 12 km. In particular, at TP-

D, we deploy a Wi-Fi extender that is based on power-line

communication (PLC), at the same power extension cord that

our node is connected to. This helps us understand whether

PLC affects our hardware. Table IV shows the correct

decoding probability when A is at three remote test points

and B is at a TP-A’s test point that is on the same phase as

A. We can see that for city-scale geographic distances, a TiF

length of 20,000, which corresponds to about 6.7 minutes

of data, is needed to achieve correct decoding. At TP-D, the

Wi-Fi extender’s PLC does not affect the decoding, due to

the low-pass filter in our design. Most industrial IoT systems

are deployed within limited geographic areas, e.g., within a

building or in a factory area. Nevertheless, the measurement

results in Table IV show that the TiF is still effective for

city-scale distances. The raw data volume of a TiF of length

of 20,000 is 40 kB. The transmission of this amount of data

collected over 6.7 minutes imposes little overhead on today’s

cyber networks.

B. Synchronism of ZCIs

In this section, we evaluate the synchronism of the ZCIs

for the same grid phase at different locations. To improve

the measurement accuracy, we connect the GPS receiver’s

PPS output to a digital pin of the MCU, such that the MCU

can accurately calibrate its clock and timestamp the ZCI

interrupts from the Schmitt trigger. After calibrating two

nodes by connecting them to a same power extension cord

and measuring the biases between them, we deploy these two

nodes at different test points to evaluate the synchronism

of their ZCIs. As illustrated in Fig. 1, t1 and t2 denote

Table V
SYNCHRONISM OF ZCIS AT DIFFERENT LOCATIONS.

Node A Node B t1 − t2
Test point Phase Test point Phase mean (µs) s.d. (µs)

TP10 B TP8 B 6 2
Apex R TP4 R 70.6 1.6

85 18
TP-C B TP8 B 156 17

118 14

the timestamps of the ZCIs generated by the two nodes,

respectively. Because of the phase characteristics of the

impedance of power lines, the phase shift (t1 − t2) is often

non-zero and we measure this phase shift to characterize the

synchronism of the ZCIs.

Table V shows the mean and s.d. of (t1 − t2) when the

two nodes are deployed at different test points on the same

grid phase. When they are on the same building floor shown

in Fig. 5, the phase shift has a mean value of 6µs and s.d. of

2µs. The small s.d. suggests the stability of the phase shift.

For the test point Apex on the 13th floor and TP4 on the

8th floor of the same building, the mean value increases to

70.6µs. We also measure the phase shifts between TP-C and

TP-A, which are about 10 km apart, during three time slots

on one day. The mean value ranges from 85µs to 156µs.

The change of the phase shift may be caused by the change

of load distribution in the power grid [22].

C. Summary and Implications

We can draw the following three important conclusions

from the above extensive measurement results.

First, the measurements validate the TiF within an up-to-

city scale geographic area. They also provide guidance on



setting the TiF length. When the nodes reside within a local

power distribution tree network rooted at a power panel, a

TiF length of 400 appears enough. For nodes separated by

up to 10 km, a TiF length of up to 20,000 may be needed.

Second, by decoding a TiF captured by node A, node B
can identify the ac cycle within its trace that corresponds

to a given ac cycle in A’s TiF. Moreover, as shown in

Table V, the time offsets between an ac cycle’s ZCIs detected

at different locations are generally below 200µs. Thus,

if the two nodes can handle the ZCIs without delay in

timestamping the ac cycle length measurements, using the

correspondence of ac cycles given by the TiF decoding, B
will be able to determine the offset between A’s and B’s

clocks with a 200µs accuracy. Thus, sub-ms accuracy clock

synchronization is possible.

Third, time delays in transmitting A’s TiF to B does not

affect the result of the TiF decoding. The synchronization

is thus resilient against packet delay attacks. Conventional

cryptographic techniques (e.g., signed messages or message

digests) can be applied to ensure the integrity of the TiF

itself during network transmissions.

In summary, high-resolution TiF provides a highly

promising basis for accurate and secure clock synchroniza-

tion for an IoT connected to the same utility grid. In contrast,

NTP’s synchronization accuracy depends a lot on network

conditions and it is often on the order of ms or even tens of

ms in a city-scale network. Although PTP can achieve sub-

ms accuracy, it requires special hardware support including

PTP-enabled network interface cards at the hosts and all

the switches and routers along the network path. Thus in

practice, PTP is often used in Ethernet LANs only. And

importantly, both NTP and PTP are susceptible to packet

delay attacks, whereas the proposed system is not.

V. ACCURATE AND SECURE CLOCK SYNCHRONIZATION

Based on the key observations in §IV, this section presents

the design of an accurate and secure clock synchronization

approach for industrial IoT. Specifically, §V-A describes our

threat model of the packet delay attack; §V-B overviews

our approach; §V-C provides an analysis of our approach

regarding its security against the packet delay attack.

A. Threat Model

Our threat model is the packet delay attack. Specifically,

we assume that the endpoints (master and slave) of a clock

synchronization protocol are trustworthy. However, one or

more attackers on a network path of the protocol’s packets

may delay the transmission of these packets. We assume that

the total malicious delay for a packet is finite. Moreover, we

assume that the protocol’s packets cannot be tampered with

because of cryptographic protection.

As analyzed in [7], [8], the delay attack will introduce

an additional synchronization error of τ1−τ2
2 for an NTP

slave, where τ1 and τ2 are the malicious delays introduced
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Figure 7. System architecture and clock synchronization.

to the NTP request and reply packets, respectively. An attack

injecting large delays may be detected by monitoring the

total transmission time of the request and reply packets.

However, an attacker who knows the attack detection meth-

ods can control the injected delays to bypass the detection. In

[31], we give conditions for bypassing two attack detection

approaches – a timeout approach adopted by the NTP im-

plementation and an approach based on exponential moving

average. To the best of our knowledge, there is no solution to

completely solve the packet delay attack for traditional clock

synchronization protocols that exchange network messages

containing solely local clock values of the slave/master.

B. Overview of Our Approach

This section presents the master-slave system architecture

for our approach. Then, we present a method for the system

to identify IoT nodes’ grid phases autonomously.

1) Master-slave architecture: As observed in §IV-A2, if

two nodes are on different phases, the TiF decoding will

have errors. To address this issue, we propose to adopt

a master-slave architecture as shown in Fig. 7, where a

smart meter (either customer- or industry-class) is used as an

example slave node. In the architecture, a centralized master

is equipped with a TiF sampling board with three channels

connected respectively to the three grid phases, where each

channel is a set of the components shown in Fig. 4. For

instance, this board can be installed at the main power panel

of a building. We assume that the master’s clock is secured.

(Special efforts to secure the master are practical, since an

IoT has one or at most only a few of these masters. Security

of the master(s) will allow us to bootstrap the security

of a much larger system.) If the system requires global

synchronization, the master’s clock can be synchronized

securely with UTC, e.g., using a GPS receiver that is

geographically isolated from the outside with an air gap

sufficient to prevent wireless spoofing attacks. The master

timestamps its real-time ac cycle length measurements and

stores them in a memory buffer. This data will be retrieved

for processing synchronization requests from the IoT slave

nodes. A memory buffer of 100MB is sufficient for storing

data generated by the three sampling channels in the last 24

hours. One master may serve many slaves.

In a synchronization session, an IoT slave (i) captures a

TiF x, (ii) timestamps it using the slave’s clock value upon

the ZCI of its last ac cycle, (iii) signs it for integrity, and

(iv) transmits it to the master for clock synchronization. The



slave performs the sampling only when it needs to resyn-

chronize. Upon receiving the TiF, the master (i) checks its

integrity based on the digital signature, (ii) decodes it using

a trace of the latest ac cycle length measurements retrieved

from the memory buffer, and (iii) sends back a signed packet

containing the difference between the decoding output and

the x’s timestamp, which is the slave’s clock offset. Finally,

the slave sets and/or calibrates its clock using the received

offset. A detailed analysis of this approach, e.g., how to

ensure security in the face of packet delay attack, will be

presented in §V-C.

For an IoT spanning a large geographic area (e.g., a city),

multiple masters can be deployed in a distributed anycast

manner. An IoT slave may select a closest master for the

best ZCI synchronism, for example.

2) Autonomous grid phase identification: The master has

access to all the three grid phases. In synchronizing with a

slave, correct TiF decoding requires knowledge of which

grid phase the slave is on. It is infeasible to manually

label every IoT device in a large system. This section

presents an autonomous grid phase identification method. It

is based on a key observation from our measurements that,

if nodes A and B are on the same grid phase, the decoding

errors will be nearly all zero; otherwise, they are dispersed.

Thus, we reuse the method for evaluating decoding errors

in §IV-A1 to identify a slave’s grid phase. Specifically, the

slave captures and transmits m consecutive ac cycle lengths

to the master. Upon receiving the data, the master retrieves

the latest m consecutive ac cycle lengths on all the three

grid phases. Unlike the offline evaluation in §IV-A1 where

the two nodes’ data traces are collected during exactly the

same time period, this autonomous identification allows a

small displacement of their time periods. For each pair of

the slave’s trace and the master’s trace on a grid phase,

we follow the method in §IV-A1 to slide a window within

the slave’s trace to generate many quasi decoding errors

(they are quasi because they are not true decoding errors

due to the aforementioned displacement) and form a discrete

probability density function (PDF) of the quasi errors. The

slave’s grid phase is identified as the master’s grid phase that

yields a PDF with the highest bar among all the three PDFs.

We note that this autonomous identification is a one-time

procedure that should be executed when an IoT device is

added to the system or it changes power supply. For instance,

a device can initiate this procedure when it is powered up.

Fig. 8 shows the PDFs generated by a master on the

floor shown in Fig. 5, when identifying the grid phase of

a slave connected to the test point TP10 on B-phase. The

slave transmits 1,000 cycle length measurements. The PDF

generated with the master’s B-phase data trace gives the

highest bar. Hence, the identification is correct. When the

slave is at the other test points in Fig. 5, the identification

results are all correct.
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Figure 8. PDFs of quasi decoding errors for identifying the grid phase of
TP10.

C. Security Analysis of Our Approach

1) Latency of a synchronization session: The latency of

a synchronization session of our approach, denoted by t, is

defined as the time from when the slave completes sampling

x to when it receives the clock offset from the master. It

characterizes how fast the slave can get resynchronized. The

slave can measure t accurately using its own clock. We also

analyze its breakdown as follows. Denote by t1 the time

delay (in ms) for the slave to sign the TiF x, and by v the

network speed (in kb/s) for transmitting x. As each data

point of x uses 16 bits, the time for transmitting x is 16n
v

ms. Denote by t2, t3, and t4 the time delays (in ms) for the

master to verify the integrity of x, decode it, and transmit

the clock offset back to the slave, respectively. Then, t ≈

t1 +
16n
v

+ t2 + t3 + t4. In §VI, we will measure t1, t2, t3,

and t4.

We note that the offset returned by the master is for

a past state of the slave (i.e., when the slave completed

sampling x). The slave’s clock may have drifted further

during the synchronization session. This observation is a

key reason why we timestamp the TiF x upon the ZCI of

the last cycle in x, in order to maximize the freshness of

the offset returned by the master. From our evaluation in

§VI, a synchronization session requires less than one second.

Typical crystal oscillators found in MCUs and personal

computers have drift rates of 30 to 50 ppm [19]. Thus,

during the synchronization session, the slave’s clock may

have drifted for tens of µs. Even if we simply set the client’s

clock according to the returned offset, our approach can still

achieve the sub-ms accuracy.

2) Security against packet delay attack: Upon receiving

a TiF x from the slave, the master retrieves a trace of the

latest ac cycle length measurements (denoted by y) from

its memory buffer to decode x. We set the length of y to

be m = n + L, where L is a large enough number such

that L ≫ t
20 ms

. For instance, in our performance evaluation

in §VI, the measured t is around one second and we set

L = 1000 to make L ≫ t
20 ms

. This setting ensures that the

time duration of measuring x is within the time duration of

measuring y, i.e., x⊳y, which is a prerequisite for decoding

x. The attacker may delay the transmission of x to violate

the requirement x ⊳ y. We propose a countermeasure stated



in the following proposition.

Proposition 1. The slave discards the clock offset returned

by the master if t
20 ms

> L, where t is the latency of the

synchronization session measured by the slave. Under this

strategy,

1) any packet delay attack on the transmission of x that

invalidates x ⊳ y will not affect the slave’s clock;

2) if t
20 ms

≤ L, the packet delay attack has no effects.

Proof: Denote by ts→m the time from when the slave

completes sampling x to when the master receives x, inclu-

sive of the delay added by the attacker to the transmission

of x. A necessary condition for the packet delay attack to

invalidate x ⊳ y is ts→m

20 ms
> L. As t > ts→m, the attack

must result in t
20 ms

> L. Vice versa, if t
20 ms

≤ L, the delay

attack cannot invalidate x ⊳y and thus has no effects on the

completed synchronization session.
The setting of L used by the master to decode x can be

communicated to the slave together with the clock offset.

Once the slave detects an attack that invalidates x ⊳ y, it

can notify the master in the next synchronization session.

Depending on the (customizable) security policy, the master

can increase the setting of L to contain the attack. We should

also alert the system operator to investigate the attack. The

autonomous identification can similarly employ the above

safeguard against the packet delay attack.
We omit discussions of other attacks such as imper-

sonation and packet replay. These attacks can be solved

generally using conventional security measures.

VI. PERFORMANCE EVALUATION

We have implemented the synchronization approach pre-

sented in §V. We use the node shown in Fig. 4 as a slave. The

RPi uses OpenSSL to sign the data to be transmitted using

SHA256. For evaluation purpose, the slave node is integrated

with a GPS receiver. The setup of the master is as follows.

We use three RPi-based nodes and connect them respectively

to TP4, TP6, and TP8 shown in Fig. 5, which are on different

grid phases. Each of these nodes is equipped with a GPS

receiver for global synchronization. Moreover, to improve

the accuracy of timestamping at the master, we connect the

GPS receiver’s PPS output to a digital pin of the MCU and

use the MCU to timestamp ac cycle length measurements.

All the three nodes stream their measurements to a tower

server with an Intel Xeon 3GHz quad-core processor. The

decoding algorithm in Eq. (1) can be parallelized since the

computation for each iterator i in Eq. (1) is independent.

Our implementation divides the computation equally among

four threads to fully utilize the quad cores. We note that, to

serve many IoT slaves, more computation resources can be

allocated to maintain the timeliness of the decoding.
We conduct several sets of experiments as follows.

Time profiling. We measure the latency of the key steps of a

clock synchronization session under two settings of the TiF

Table VI
TIME DELAYS IN A CLOCK SYNCHRONIZATION SESSION.

n m t1 t2 t3 t4 Tx delay∗ Total
(ms) (ms) (ms) (ms) (ms) (ms)

400 1400 126 6 10 0.2 12.8 155
20000 21000 129 6 168 4 640 947
∗v=500kb/s is used for estimating the TiF transmission delay.
Italic numbers are estimates, as they depend on the setting of v.
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Figure 9. Clock synchronization errors over days.

length n to ensure correct decoding within a building floor

and over a 10 km distance, respectively. Table VI shows (i)

the RPi’s delay in signing a TiF (t1), and (ii) the server’s

delay in verifying the TiF’s integrity (t2), decoding the TiF

(t3), and sending the offset (t4). The total latency, estimated

based on v = 500 kb/s, is less than one second.

One-week evaluation within a building floor. We deploy

a slave node at TP10, as shown in Fig. 5. It can identify its

grid phase correctly using the method in §V-B2. It adopts

a TiF length of 400 and resynchronizes every 15 minutes.

Throughout the whole experiment, the master is always able

to decode the slave’s TiF correctly. Thus, we use the phase

shift between the ZCIs detected respectively by the slave

and the master as the metric of synchronization error. On the

slave, the TiFs are timestamped by both the MCU and the

RPi. Fig. 9(a) shows the phase shifts between the master’s

ZCI and the slave’s ZCI timestamped by the MCU and RPi,

respectively. For the phase shifts measured by the MCU,

the mean and s.d. are 9.8µs and 3.3µs, respectively. The

difference between the two curves, which is around 80µs, is

caused by the Raspbian OS’s delay in handling the ZCI at the

slave. The results show that, if an IoT device can handle the

ZCI without delay, it can achieve an average synchronization

error of around 10µs, if the master resides within the same

power distribution tree network.

Four-day evaluation between TP-C and TP-A. We deploy

a slave node at TP-C and synchronize it with the master at

TP-A. For this slave node, we disconnect the ZCI from the

RPi so that the RPi will timestamp a TiF upon receiving

it from the USB. This setup evaluates the synchronization

performance of an IoT device without an interface for



handling low-level interrupts. Fig. 9(b) shows the results.

The phase shifts measured by the MCU are generally below

200µs, with mean and s.d. of 132µs and 63µs, respectively.

Thus, between TP-A and TP-C, our approach can achieve

an average synchronization error of about 0.1ms. The RPi

without ZCI experiences up to 3ms error due to the USB

communication delay.

VII. CONCLUSIONS AND FUTURE WORK

We identified and validated an important property of the

periodic voltage signal in a utility power grid, namely that

the signal’s cycle length fluctuations encode fine-grained

global time information. Based on this key finding, we devel-

oped accurate clock synchronization with provable security

against packet delay attacks, for an industrial IoT system

connected to the same grid. Extensive empirical evaluations

show that our approach achieves an average synchronization

error of 0.1ms between two network nodes 10 km apart, and

10µs within the same floor of a building.

The experiments in this paper were conducted in a same

city-scale power grid. For future work, it is interesting

to conduct experiments in other power grids of different

scales. For nodes not directly connected to the grid, we

will explore the existence of time fingerprint in powerline

electromagnetic radiation.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and shepherd for

providing valuable feedback on this paper. This research

was funded in part by the Energy Innovation Research Pro-

gramme (EIRP, Award No. NRF2014EWTEIRP002-026),

administered by the Energy Market Authority (EMA). The

EIRP is a competitive grant call initiative driven by the

Energy Innovation Programme Office, and funded by the

National Research Foundation (NRF).

REFERENCES

[1] World Economic Forum, “Industrial internet of things: Un-
leashing the potential of connected products and services,”
2015, http://bit.ly/185DE8E.

[2] J. A. Stankovic, “Research directions for the internet of
things,” IEEE Internet of Things Journal, vol. 1, no. 1, 2014.

[3] D. P. Shepard, T. E. Humphreys, and A. A. Fansler, “Evalua-
tion of the vulnerability of phasor measurement units to GPS
spoofing attacks,” Intl. J. Critical Infrastructure Protection,
vol. 5, no. 3, 2012.

[4] R. Tan, V. Badrinath Krishna, D. K. Yau, and Z. Kalbarczyk,
“Impact of integrity attacks on real-time pricing in smart
grids,” in CCS, 2013.

[5] H. Weibel, “Tutorial: Precision clock synchronization
protocol and synchronous Ethernet,” in IN2P3, 2012,
http://www.in2p3.fr/actions/formation/Numerique12/IEEE
1588 Tutorial IN2P3 Handout.pdf.

[6] T. Mizrahi, “Security requirements of time protocols in packet
switched networks,” https://tools.ietf.org/html/rfc7384.

[7] M. Ullmann and M. Vogeler, “Delay attacks – implication on
NTP and PTP time synchronization,” in Intl. Symp. Precision
Clock Sync. for Meas., Control and Commun., 2009.

[8] T. Mizrahi, “A game theoretic analysis of delay attacks against
time synchronization protocols,” in Intl. Symp. Precision
Clock Sync. for Meas., Control and Commun., 2012.

[9] Argonne National Laboratory, “GPS is easy to spoof,” http:
//www.ne.anl.gov/capabilities/vat/spoof.html.

[10] Q. Y. Lin Huang, “GPS spoofing – low-cost GPS simulator,”
in DEFCON23, 2015, https://bit.ly/22H2XTA.

[11] Kaspersky Lab, “Datesheet: Five myths of industrial control
systems security,” http://media.kaspersky.com/pdf/DataSheet
KESB 5Myths-ICSS Eng WEB.pdf.

[12] “Hackers infiltrated power grids in U.S., spain,” http://on.
recode.net/1m6E3Le.

[13] S. Karnouskos, “Stuxnet worm impact on industrial cyber-
physical system security,” in 37th Conf. IEEE Ind. Electron.
Society, 2011.

[14] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time
synchronization using reference broadcasts,” ACM SIGOPS
Operating Systems Review, vol. 36, no. SI, pp. 147–163, 2002.

[15] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync
protocol for sensor networks,” in SenSys, 2003.
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